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THE POINT AND RHODIUS SPECTRA OF CERTAIN NONLINEAR
SUPERPOSITION OPERATORS

SANELA HALILOVIĆ1 AND SAMRA SADIKOVIĆ

ABSTRACT. In this paper we consider the nonlinear superposition operator F in lp spaces
of sequences (1 ≤ p ≤ ∞), generated by the function f(s, u) = a(s) + u

u2+1
. We find

out the Rhodius spectrum σR(F ) and the point spectra σp(F ) of these operators and the
spectral radius. We make comparison and give some conclusions about these spectra.

1. INTRODUCTION AND PRELIMINARIES

The nonlinear superposition operators arise in a large field of mathematics problems
and have various applications in mathematical physics, mathematical economics, mathe-
matical biology, discrete and continuous dynamical systems and so on. Hence, the eigen-
problem of such operators deserves a substantial attention. The spectral theories for
nonlinear operators on Banach spaces is now quite well-established research topic and it
is still in developing process ([5], [11]). The term spectrum for nonlinear operators, in
the beginning, was used just for the set of eigenvalues i.e. the point spectrum. Later it
became clear that the notion spectrum need to have wider meaning and more complete
description. The several nonlinear spectra and spectral theories have been introduced in
the literature by now (see [1], [2], [4], [7], [10], [13]). For the class C(X) of all con-
tinuous operators F on Banach space X, the following definition has been introduced by
Rhodius in 1984. ([13]).

Definition 1.1. For the continuous operator F : X → X the set

ρR(F ) = {λ ∈ K : λI − F is bijective and (λI − F )−1 ∈ C(X)}

is called the Rhodius resolvent set and

σR(F ) = K \ ρR(F ).

is the Rhodius spectrum.
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K is the field of real or complex numbers (R or C). We may notice that a point λ ∈ K
belongs to ρR(F ) if and only if λI − F is a homeomorphism on X. The Rhodius spectral
radius of F ∈ C(X) is the number

rR(F ) = sup{|λ| : λ ∈ σR(F )}.

The Rhodius spectrum of some nonlinear superposition operators may be found in [2],
[8] and [9].

Definition 1.2. The set of all eigenvalues of the operator F

σp(F ) = {λ ∈ K : Fx = λx for some x 6= 0}

is called the point spectrum of F .

It is known that if F is a nonlinear operator F with F (0) = 0 then

σp(F ) ⊆ σR(F ).

Let Ω denotes an arbitrary set and f = f (s, u) be a function defined on Ω × R and
taking values in R. For a given function x = x(s) on Ω one can define another function
y(s) = f(s, x(s)) for s ∈ Ω. In this way, the function f generates an operator

(1.1) Fx (s) = f(s, x(s)),

This operator F is usually called a nonautonomous superposition operator, Nemytskij
operator or composition operator ([3], [6]). Superposition operators on sequence spaces
are not studied so intensively as on spaces of functions (see [3]). We are going to observe
the operator of superposition, defined in the Banach spaces of sequences lp (1 ≤ p ≤ ∞) ,
so we have s ∈ N in (1.1).

Dedagić and Zabreiko in [6] have investigated the conditions for acting and continuity
of superposition operators on the sequence spaces l∞, co and lp for 1 ≤ p < ∞ (see also
[12]) and those conditions are given in the next two theorems.

Theorem 1.1. Let 1 ≤ p, q <∞. Then the following properties are equivalent:

(i) the operator F acts from lp to lq;
(ii) there are functions a (s) ∈ lq and constants δ > 0, n ∈ N, b ≥ 0, for which
|f (s, u)| ≤ a (s) + b |u|

p
q (s ≥ n, |u| < δ) ;

(iii) for any ε > 0 there exists a function aε ∈ lq and constants δε > 0, nε ∈ N, bε ≥ 0,
for which ‖aε (s)‖q < ε and

|f (s, u)| ≤ aε (s) + bε |u|
p
q (s ≥ nε, |u| ≤ δε) .

Theorem 1.2. Let 1 ≤ p, q < ∞ and let the superposition operator (1.1), generated by the
function f (s, u), acts from lp to lq. Then this operator is continuous if and only if each of
the functions is continuous for every s ∈ N.

2. MAIN RESULTS

We consider the superposition operator F, generated by the function
f(s, u) = a(s) + u

u2+1 , where a = (a(s))s∈N is a sequence from the space lq
(1 ≤ q ≤ p ≤ ∞). We are going to show that this operator acts from the space lp to the
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space lp.
If 1 ≤ p <∞ we have

|f(s, u)| = |a(s) +
u

u2 + 1
| ≤ |a(s)|+

∣∣∣∣ u

u2 + 1

∣∣∣∣ .
For |u| < 1 we certainly have | u

u2+1 | ≤ |u|, so

(2.1) |f(s, u)| ≤ |a(s)|+ | u

u2 + 1
| ≤ d(s) + 1 · |u|,

where d(s) = |a(s)|. Since a ∈ lq and lq ⊆ lp we conclude d ∈ lp. Now we can see there
exists constants δ = 1, n = 1, b = 1 such that ∀s ≥ n, |u| < δ, inequality (2.1) holds. From
the Theorem 1.1 it follows that F : lp → lp.
In case p = l∞, we have the following considerations.

a ∈ lq ⊆ l∞ ⇒ ∃ sup
s∈N

a(s) = A <∞.

For arbitrary x = (x1, x2, · · · ) ∈ l∞ we have

sup
s∈N
|Fx(s)| = sup

s∈N
|a(s) +

xs
x2s + 1

| ≤ sup
s∈N
|a(s)|+ sup

s∈N
| xs
x2s + 1

| ≤ A+
1

2
<∞.

Here we have used the fact that 1
2 is the global maximum of the function

(2.2) f1(x) =
x

x2 + 1
, (x ∈ R).

We see that for every x ∈ l∞ it holds Fx ∈ l∞, thus F acts from l∞ to l∞. For every s ∈ N
the function f(s, u) = a(s) + u

u2+1 is continuous, so according to the Theorem 1.2, the
operator F is a continuous one.

Theorem 2.1. Let the superposition operator F : lp → lp, be generated by the function
f(s, u) = a(s) + u

u2+1 , where (a(s))s is a sequence from the space lq (1 ≤ q ≤ p ≤ ∞). Then
the Rhodius spectrum of F is σR(F ) = (− 1

8 , 1).

Proof. Denote x = (x1, x2, ...) ∈ lp and a = (a1, a2, ...) ∈ lq.

F (x1, x2, ...) = (a1 +
x1

x21 + 1
, a2 +

x2
x22 + 1

, ...).

The operator λI − F for λ = 0 becomes

−Fx = (−a1 −
x1

x21 + 1
,−a2 −

x2
x22 + 1

, ...).

From −Fx = −Fy (x, y ∈ lp), we have

(−a1 −
x1

x21 + 1
,−a2 −

x2
x22 + 1

, ...) = (−a1 −
y1

y21 + 1
,−a2 −

y2
y22 + 1

, ...)

−as −
xs

x2s + 1
= −as −

ys
y2s + 1

, ∀s ∈ N

xs
x2s + 1

=
ys

y2s + 1
, ∀s ∈ N.

The function (2.2) is not injective, so from the last equation does not follow xs = ys, ∀s ∈
N. That is why this operator −F is not injective. This is neither surjective operator since
−as − xs

x2
s+1 ∈ [− 1

2 − as,
1
2 − as](s ∈ N). Hence, the operator −F is not bijection and it

follows that
0 ∈ σR(F ).
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If λ 6= 0 then (λI − F )x = (λx1 − a1 − x1

x2
1+1

, λx2 − a2 − x2

x2
2+1

, ...).

(λI − F )x = (λI − F )y (x, y ∈ lp)⇒
(λx1 − a1 − x1

x2
1+1

, λx2 − a2 − x2

x2
2+1

, ...) = (λy1 − a1 − y1
y21+1

, λy2 − a2 − y2
y22+1

, ...)

λxs − as −
xs

x2s + 1
= λys − as −

ys
y2s + 1

, ∀s ∈ N⇒

λxs −
xs

x2s + 1
= λys −

ys
y2s + 1

, ∀s ∈ N.

For the function
f2(x) = λx− x

x2 + 1
it holds f2(0) = 0 and we are going to find if the equation f2(x) = 0 has any nontrivial
solutions.

f2(x) = λx− x

x2 + 1
= 0

x(λ− 1

x2 + 1
) = 0⇒ x = 0 ∨ λ− 1

x2 + 1
= 0.

It is easy to see that we have nontrivial solutions x = ±
√

1−λ
λ for λ ∈ (0, 1). Thus, the

function f2(x) is not injective and λI − F is not an injective operator for λ ∈ (0, 1). So,
we have

(0, 1) ⊆ σR(F ).

The operator λI − F is generated by the function

f3(s, u) = λu− a(s)− u

u2 + 1
.

For arbitrary fixed s it may be considered as a function of one variable u and when we add
−a(s) to the function f2(u) we get the function f3(s, u). Therefore, the function f3(s, u)
is bijective for arbitrary s, if and only if the function f2 is bijective. The function f2 is
bijective for λ = 1 and for λ > 1 we have

f ′2(x) =
λ(x2 + 1)2 − 1 + x2

(x2 + 1)2
=
x2(λx2 + 2λ+ 1) + λ− 1

(x2 + 1)2
> 0, ∀x ∈ R.

The function f2 is continuous, strictly increasing for λ > 1 and it also holds

lim
x→+∞

f2(x) = lim
x→+∞

(λx− x

x2 + 1
) :

x2

x2
= lim
x→+∞

λx = +∞ and

lim
x→−∞

f2(x) = lim
x→−∞

(λx − x

x2 + 1
) :

x2

x2
= lim

x→−∞
λx = −∞, so f2 is a bijective function

for λ > 1. We find that the function f3(s, u) is bijective for λ ≥ 1, for every s ∈ N and it
implies that operator λI − F is bijective for λ ≥ 1.

If λ < 0 then lim
x→+∞

f2(x) = lim
x→+∞

(λx− x

x2 + 1
) :

x2

x2
= lim
x→+∞

λx = −∞ and

lim
x→−∞

f2(x) = lim
x→−∞

(λx− x

x2 + 1
) :

x2

x2
= lim
x→−∞

λx = +∞.

Consider the rational function that we get

f ′2(x) =
λ(x2 + 1)2 − 1 + x2

(x2 + 1)2
=
λx4 + (2λ+ 1)x2 + λ− 1

(x2 + 1)2
.

If we introduce the substitution t = x2 then the numerator of this fraction becomes
λt2 + (2λ + 1)t2 + λ − 1 and its discriminant is 8λ + 1, so for λ < − 1

8 this biquadratic
function in numerator is always negative and since denominator is always positive, we
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get f ′2(x) < 0, ∀x ∈ R. We have that f2 is a continuous, strictly decreasing function from
+∞ to −∞ when λ < − 1

8 , thus f2 and f3(s, u) are bijective functions (for all s ∈ N) and
it implies that operator λI − F is bijective for λ < − 1

8 .

For λ = − 1
8 we have f ′2(x) = − 1

8
(x2−3)2
(x2+1)2 and x = ±

√
3 are the points of inflection since

f ′′2 (x) = −2x(x2−3)
(x2+1)3 , f ′2(±

√
3) = 0, f ′′′(x) = −6(x6−x4+5x2−1)

(x2+1)5 , f ′′′2 (±
√

3) 6= 0. Hence, the
function f2(x) is continuous and always decreasing from +∞ to−∞ and we conclude that
f2 and f3(s, u) are bijective functions for λ = − 1

8 , so the operator − 1
8I − F is bijective.

For λ ∈ (− 1
8 , 0) we will show that operator λI − F is not injective.

(λI − F )x = (λI − F )y (x, y ∈ lp)⇒

(λx1 − a1 −
x1

x21 + 1
, λx2 − a2 −

x2
x22 + 1

, ...) = (λy1 − a1 −
y1

y21 + 1
, λy2 − a2 −

y2
y22 + 1

, ...)

λxs − as −
xs

x2s + 1
= λys − a2 −

ys
y2s + 1

, ∀s ∈ N⇒

λxs −
xs

x2s + 1
= λys −

ys
y2s + 1

, ∀s ∈ N.

λxs −
xs

x2s + 1
= λys −

ys
y2s + 1

λxs − λys =
xs

x2s + 1
− ys
y2s + 1

λ(xs − ys) =
xs(y

2
s + 1)− ys(x2s + 1)

(x2s + 1)(y2s + 1)

λ(xs − ys) =
(xs − ys)(1− xsys)

(x2s + 1)(y2s + 1)
.

If xs 6= ys then it follows λ = 1−xsys
(x2

s+1)(y2s+1)

(λx2s + λ)y2s + xsys + λx2s + λ− 1 = 0

(2.3) ys =
−xs ±

√
D

2λ(x2s + 1)
,

where D = x2s − 4λ(x2s + 1)(λx2s + λ − 1) = −4λ2x4s + (1 + 4λ − 8λ2)x2s + 4λ − 4λ2. If
we take xs = 3 we get D = −400λ2 + 40λ + 9 and then D ≥ 0 for λ ∈ ( 1−

√
10

20 , 1+
√
10

20 ).

Since (− 1
8 , 0) ⊆ ( 1−

√
10

20 , 1+
√
10

20 ), we get that for λ ∈ (− 1
8 , 0) and xs = 3, the equation

(2.3) always has real solutions ys. For example, for λ = − 1
10 and xs = 3 from (2.3) we

get ys = 1 and ys = 2. It means that for λ ∈ (− 1
8 , 0) the operator λI − F is not injective

and we have shown: (
−1

8
, 0

)
⊆ σR(F ).

For λ ≥ 1 and λ ≤ − 1
8 operator λI − F is bijective and we need to research whether

(λI − F )−1 is a continuous operator. If λ ≥ 1, for arbitrary s ∈ N function
f(s, u) = λu − a(s) − u

u2+1 is bijective, increasing and continuous, so there exists its
inverse f−1(s, u) which is also bijective, increasing and continuous function ([14]). From
Theorem 1.2 follows that operator (λI − F )−1, generated by f−1(s, u), is a continuous
operator. That is why [1,+∞) ⊆ ρR(F ). For λ ≤ − 1

8 , for arbitrary s ∈ N, function
f(s, u) = λu − a(s) − u

u2+1 is bijective, decreasing and continuous, so there exists its
inverse f−1(s, u) which is also bijective, decreasing and continuous function ([14]). From
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Theorem 1.2 follows that operator (λI − F )−1, generated by f−1(s, u), is a continuous
operator. Therefore (−∞,− 1

8 ] ⊆ ρR(F ).
After summerizing all above, we get that the Rhodius resolvent set is

ρR(F ) =

(
−∞,−1

8

]
∪ [1,+∞)

and the Rhodius spectrum of F :

(2.4) σR(F ) =

(
−1

8
, 1

)
.

�

We get that the Rhodius spectrum (2.4) of this considering operator F is nonempty,
bounded, but not closed set and the spectral radius is

rR(F ) = sup{|λ| : λ ∈ σR(F )} = sup{|λ| : λ ∈ (−1

8
, 1)} = 1.

Theorem 2.2. Let the superposition operator F : lp → lp, be generated by the function
f(s, u) = a(s) + u

u2+1 , where (a(s))s is a sequence from the space lq (1 ≤ q ≤ p ≤ ∞).

If a(s) = 0, ∀s ∈ N, then the point spectrum of F is σp(F ) = (0, 1).
If (∃s ∈ N) a(s) ∈ [− 1

2 , 0)∪(0, 12 ], then σp(F ) = R. If (∀s ∈ N) a(s) = (−∞,− 1
2 )∪( 1

2 ,+∞),
then σp(F ) = R \ {0}.

Proof. We need to find out does the equation (λI −F )x = 0 have any nontrivial solution.
For λ = 0 we have

−Fx = (−a1 −
x1

x21 + 1
,−a2 −

x2
x22 + 1

, ...) = (0, 0, ...)⇒

(2.5) −as −
xs

x2s + 1
= 0, ∀s ∈ N.

If a(s) = 0, ∀s ∈ N, then equation (2.5) becomes − xs

x2
s+1 = 0 and it has only trivial

solution xs = 0, ∀s ∈ N i.e. x = (0, 0, ...), so 0 /∈ σp(F ). If there exists s such that
as 6= 0 then from (2.5) it follows asx2s + xs + as = 0. The discriminant is D = 1 − 4a2s
and D ≥ 0 for as ∈ [− 1

2 ,
1
2 ]. Thus 0 ∈ σp(F ) if (∃s ∈ N) a(s) ∈ [− 1

2 , 0) ∪ (0, 12 ] and if
(∀s ∈ N) as ∈ (−∞,− 1

2 ) ∪ ( 1
2 ,∞) then 0 /∈ σp(F ).

For λ 6= 0 we consider the equation

(λx1 − a1 −
x1

x21 + 1
, λx2 − a2 −

x2
x22 + 1

, ...) = (0, 0, ...).

λxs − as −
xs

x2s + 1
= 0, ∀s ∈ N

(2.6) λx3s − asx2s + (λ− 1)xs − as = 0, ∀s ∈ N.

These are cubic equations and all cubic equations have either one real root or three real
roots; so every equation in (2.6) has at least one real solution.
Denote K(x) = λx3−asx2 +(λ−1)x−as. If (∃s ∈ N), as 6= 0, then for such s is K(0) 6= 0
so there is (at least one) real solution xs 6= 0 of the equation K(x) = 0. It follows that
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equation (λI − F )x = 0 has nontrivial solution x = (x1, x2, ...) and R \ {0} ⊆ σp(F ). If
a(s) = 0, ∀s ∈ N, then

(λx1 −
x1

x21 + 1
, λx2 −

x2
x22 + 1

, ...) = (0, 0, ...).

λxs −
xs

x2s + 1
= 0, ∀s ∈ N.

The equation λxs − xs

x2
s+1 = 0 has one trivial solution xs = 0 and for λ ∈ (0, 1) it has also

nontrivial solutions xs = ±
√

1−λ
λ . Hence, (0, 1) ⊆ σp(F ). �

From the Theorem 2.1 and Theorem 2.2 we see that if a(s) = 0, ∀s ∈ N, (F0 = 0) we
have

σp(F ) = (0, 1) ⊆ σR(F ) =

(
−1

8
, 1

)
.

In other cases, when F0 6= 0, we do not have this inclusion, i.e. σp(F ) 6⊆ σR(F ). In fact,
if (∃s ∈ N) a(s) ∈ [− 1

2 , 0) ∪ (0, 12 ], then we have even an opposite inclusion

σp(F ) = R ⊇ σR(F ) =

(
−1

8
, 1

)
.

These results of the point and Rhodius spectra for considering nonlinear superposi-
tion operators may be used in solving some nonlinear operator equations and eigenvalue
problems.
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[4] P. CATANĂ: Different spectra for nonlinear operators, An. Şt. Univ. Ovidius Constanţa, 13(1), (2005), 5–14.
[5] R. CHIAPPINELLI: Approximation and convergence rate of nonlinear eigenvalues: Lipschitz perturbations of

a bounded self-adjoint operator, J. Math. Anal. Appl. 455 (2017), 1720–1732.
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