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A NEW CLASS OF ANALYTIC FUNCTIONS CONCERNING
WITH SUBORDINATIONS

TOSHIO HAYAMI AND SHIGEYOSHI OWA1

ABSTRACT. Let A be the class of functions f(z) which are analytic in the open unit disk.
Also, let S∗(α) denote the subclass of A consisting of starlike functions f(z) of order α
(0 ≤ α < 1). Considering of the extremal function for the class S∗(α), a new class Sk(α)
of f(z) concerned with subordinations is defined. The object of the present paper is to get
some properties of f(z) for Sk(α).

1. INTRODUCTION

Let A denote the class of functions f(z) which are analytic in the open unit disk U =
{z ∈ C : |z| < 1}. If f(z) ∈ A satisfies f(z1) 6= f(z2) for any z1 ∈ U and z2 ∈ U with
z1 6= z2, then f(z) is said to be univalent in U and denoted by f(z) ∈ S. If a function
f(z) ∈ A maps U onto a starlike domain with respect to the origin, then f(z) is said to
be starlike in U and denoted by f(z) ∈ S∗. We say that f(z) is starlike of order α in U if
f(z) ∈ A satisfies

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U)

for some real α (0 5 α < 1). We also denote by S∗(α) the class of starlike functions f(z)
of order α in U. Furthermore, we call that f(z) is convex of order α in U if f(z) ∈ A
satisfies zf ′(z) ∈ S∗(α) for some real α (0 5 α < 1) and denote by K(α). From the
definitions for classes, we know that K(α) ⊂ S∗(α) ⊂ S∗ ⊂ S ⊂ A and that f(z) ∈ S∗(α)

if and only if
∫ z

0

f(t)

t
dt ∈ K(α). The function f(z) given by

f(z) =
z

(1− z)2(1−α)
= z +

∞∑
n=2

n∏
j=2

(j − 2α)

(n− 1)!
zn

is the extremal function for the class S∗(α), and the function f(z) given by
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f(z) =


1− (1− z)2α−1

2α− 1
= z +

∞∑
n=2

n∏
j=2

(j − 2α)

n!
zn

(
α 6= 1

2

)

− log(1− z) = z +
∞∑
n=2

1

n
zn

(
α =

1

2

)
is the extremal function for the class K(α) (see [1] or [4]).

Taking the principal value for k
√
z, we consider a function f(z) defined by

(1.1) f(z) =
z

(1− k
√
z)

2(1−α) = z +

∞∑
n=2

n∏
j=2

(j − 2α)

(n− 1)!
z
n−1+k
k (k = 1, 2, 3, · · · ).

Then, f(z) satisfies

Re

(
zf ′(z)

f(z)

)
= Re

(
k + (2− 2α− k) k

√
z

k (1− k
√
z)

)
>
k + α− 1

k
(z ∈ U).

This means that f(z) is starlike of order
k + α− 1

k
in U and therefore, f(z) is also starlike

of order α in U. With f(z) given by (1.1), we introduce a new class of A applying the
subordinations.

2. A NEW CLASS Sk(α)

Let f(z) and g(z) be analytic in U. Then f(z) is said to be subordinate to g(z) if
there exists an analytic function w(z) in U satisfying w(0) = 0, |w(z)| < 1 (z ∈ U) and
f(z) = g(w(z)). We denote this subordination by, (see [4]):

f(z) ≺ g(z) .

Let Ak be the class of functions f(z) given by

f(z) = z +

∞∑
n=2

an−1+k
k

z
n−1+k
k (k = 1, 2, 3, . . . )

which are analytic in U. For such a function f(z), we introduce the class Sk(α) consisting
of functions f(z) which satisfy

f(z) ≺ z

(1− k
√
z)2(1−α)

(z ∈ U),

where 0 5 α < 1 and k = 1, 2, 3, . . . .
Recently, Owa et. al. [7] have studied some problems for new classes S∗k(α) and Kk(α)

of f(z) given by

f(z) = z +

∞∑
n=1

a1+n
k
z1+

n
k (k = 1, 2, 3, . . . )

satisfying

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U)
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and

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U)

for some real α (0 5 α < 1), respectively. Also, Owa ([5] and [6]) and Srivastava and
Owa [8]have discussed some properties of generalized Carathéodory functions.

For considering our problems for functions f(z), we have to recall here the folowing
lemma due to Miller and Mocanu ([3] and [4]) or due to Jack [2].

Lemma 2.1. Let w(z) be analytic in U with w(0) = 0. Then if |w(z)| attains its maximum
value on the circle |z| = r < 1 at a point z0 ∈ U, then we have z0w′(z0) = mw(z0), where
m is real and m = 1.

Now, we derive

Theorem 2.1. If f(z) ∈ Sk(α) (0 5 α < 1), then

Re

(
zf ′(z)

f(z)

)
>
k + α− 1

k
(z ∈ U).

Proof. For f(z) ∈ Sk(α), there exists a function w(z) which is analytic in U, w(0) = 0 and
|w(z)| < 1 (z ∈ U) such that

f(z) =
w(z)(

1− k
√
w(z)

)2(1−α) .
This gives us that

(2.1)
zf ′(z)

f(z)
=
zw′(z)

w(z)

(
1 +

2(1− α)
k

k
√
w(z)

1− k
√
w(z)

)
.

We suppose that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = ρ < 1.

Then, applying Lemma 2.1, we write that w(z0) = ρeiθ and z0w(z0) = mw(z0) (m = 1).
It follows from (2.1) that

Re

(
z0f
′(z0)

f(z0)

)
= Re

z0w′(z0)w(z0)

1 +
2(1− α) k

√
w(z0)

k
(
1− k

√
w(z0)

)


= Re

m
1 +

2(1− α)ρ 1
k ei

θ
k

k
(
1− ρ 1

k ei
θ
k

)
 .

Letting t = cos
θ

k
, we see that

Re

(
ei
θ
k

1− ρ 1
k ei

θ
k

)
=

t− ρ 1
k

1 + ρ
2
k − 2ρ

1
k t
.

If we write that

g(t) =
t− ρ 1

k

1 + ρ
2
k − 2ρ

1
k t

(−1 5 t 5 1) ,
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then

g′(t) =
1− ρ 2

k(
1 + ρ

2
k − 2ρ

1
k t
)2 > 0 .

This means that
g(t) = g(−1) = − 1

1 + ρ
1
k

,

that is, that

Re

(
z0f
′(z0)

f(z0)

)
= m

1− 2(1− α)ρ 1
k

k
(
1 + ρ

1
k

)


>
k + α− 1

k
.

This completes the proof of the theorem. �

Letting α = 0 in Theorem 2.1, we have

Corollary 2.1. If f(z) ∈ Sk(0), then

Re

(
zf ′(z)

f(z)

)
>
k − 1

k
(z ∈ U).

Remark 2.1. If we take k = 1 in Theorem 2.1, then f(z) is starlike of order α in U.

Next, we derive

Theorem 2.2. If f(z) ∈ Sk(α) (0 5 α < 1), then

(2.2)
|z|(

1 + |z| 1k
)2(1−α) 5 |f(z)| 5 |z|(

1− |z| 1k
)2(1−α)

for z ∈ U. The equalities in (2.2) holds true for

(2.3) f(z) =
z(

1− z 1
k

)2(1−α) .
Proof. Note that there exists an analytic function w(z) which is called the Schwarz func-
tion w(z) such that

f(z) =
w(z)(

1− k
√
w(z)

)2(1−α) .
Letting w(z) = |w(z)|eiθ, we have that

|f(z)| =
|w(z)|(

1− |w(z)| 1k ei θk
)2(1−α)

=
|w(z)|{(

1− |w(z)| 1k cos θ
k

)2

+ |w(z)| 2k sin2 θ
k

}1−α

=
|w(z)|(

1 + |w(z)| 2k − 2|w(z)| 1k cos θ
k

)1−α .
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In view of the Schwarz lemma for w(z), we know that |w(z)| 5 |z| (z ∈ U). Therefore,
we obtain that

|z|(
1 + |z| 1k

)2(1−α) 5 |f(z)| 5 |z|(
1− |z| 1k

)2(1−α)
for z ∈ U. Further, if f(z) is given by (2.3), then f(z) ∈ Sk(α) and f(z) satisfies (2.2). �

Making α = 0 in Theorem 2.2, we have

Corollary 2.2. If f(z) ∈ Sk(0), then

(2.4)
|z|(

1 + |z| 1k
)2 5 |f(z)| 5 |z|(

1− |z| 1k
)2 (z ∈ U).

The equality in (2.4) holds true for

f(z) =
z(

1− z 1
k

)2 .
If we let |z| → 1 in Theorem 2.2, then we have

Corollary 2.3. If f(z) ∈ Sk(α), then

|f(z)| =
(
1

4

)1−α

.

The equality is attained for f(z) given by (2.3) with z = eikπ.

Further, we consider

Theorem 2.3. If f(z) ∈ Sk(α), then

|f ′(z)| = 1(
1 + |z| 1k

)2(1−α)
(
1− 2(1− α)

k
− |z| 1k

1− |z| 1k

)
(z ∈ U).

Proof. For f(z) ∈ Sk(α), we have (2.1). With Lemma 2.1, we say that |w(z)| 5 |z| and

zw′(z)

w(z)
= m = 1

for z ∈ U. This shows that

|f ′(z)| =

∣∣∣∣f(z)z
∣∣∣∣
∣∣∣∣∣zw′(z)w(z)

(
1 +

2(1− α)
k

k
√
w(z)

1− k
√
w(z)

)∣∣∣∣∣
=

∣∣∣∣f(z)z
∣∣∣∣
(
1− 2(1− α)

k

∣∣∣∣∣ k
√
w(z)

1− k
√
w(z)

∣∣∣∣∣
)

=
1(

1 + |z| 1k
)2(1−α)

(
1− 2(1− α)

k

|z| 1k
1− |z| 1k

)

for z ∈ U. �
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