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EVERSIBILITY WITH RESPECT TO AN IDEAL

TULAY YILDIRIM

ABSTRACT. We define a right ideal I of an associative ring R to be eversible if xRy ⊆ I
for x, y ∈ R , then there exists 1 6= z ∈ R such that zRx ⊆ I and conversely. In case 0 is
an eversible ideal, then R is called an eversible ring. We prove that the eversible condition
is preserved by certain sorts of ring extensions and localizations. Numerous examples and
relations between the other well known rings are provided throughout.

1. INTRODUCTION

A ring is reduced if it has no nonzero nilpotent elements. Cohn called a ring R re-
versible if ab = 0 implies ba = 0 for a, b ∈ R, [2]. An element a ∈ R is a left zero-divisor if
there is 0 6= r ∈ R with ar = 0. An element which is not a left zero-divisor is called a non-
left zero-divisor. Right zero-divisors and non-right zero-divisors are defined analogously.
Anderson and Camillo [1] investigate that the rings whose zero products commute, used
the term ZC2 for what is called reversible, but Krempa and Niewieczerzal [5] took the
term C0 for it. Therefore, in the class of reversible rings every left zero-divisor is a right
zero-divisor and conversely.

In [3], Ghashghaei et. al. show that there exist rings in which every left zero-divisor
in R is also a right zero-divisor while are not reversible rings. Such as rings are called
eversible rings.

In [8], G. Mason introduced the reflexive property for ideals (a right ideal I of a ring R
(possibly without identity) is called reflexive if aRb ⊆ I implies bRa ⊆ I for a, b ∈ R) and
J.-Y. Kim and J. U. Baik generalized this concept by defining idempotent reflexive right
ideals and rings [4] (if aRe ⊆ I implies eRa ⊆ I for any a, e2 = e ∈ R). In [6], the
authors give some characterizations of reflexive rings and show that the concept of idem-
potent reflexive ring is not left-right symmetric, and that the reflexive condition is Morita
invariant. Moreover, they prove that both the polynomial ring and the power series ring
over a reflexive ring are idempotent reflexive. Reflexive rings are obviously one-sided
idempotent reflexive, but not conversely by ([6], Example 2.3(1)). It is proved in ([6],
Theorem 2.6) that the reflexive condition is Morita invariant. A (right idempotent) reflex-
ive ring which is not semiprime (resp., reflexive) is also constructed from any semiprime
(resp., reflexive) ring in ([6], Proposition 2.5 and Theorem 3.9).
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In this paper, we call a right ideal I of an associative ringR to be (idempotent) eversible
if (xRe ⊆ I) xRy ⊆ I for x, y ∈ R (and e2 = e ∈ R), then there exists 1 6= z ∈ R such that
(eRz ⊆ I ) zRx ⊆ I and conversely. In case 0 is an (idempotent) eversible ideal, then
R is called an (idempotent) eversible ring. In particular, we define a right ideal I of an
associative ring R to be completely eversible if xy ∈ I, then there exists 1 6= z ∈ R such
that zx ∈ R. Also, R is completely eversible if 0 has the corresponding property.

Throughout this paper, R will be an associative ring with identity, U(R) its group of
units, J(R) its Jacobson radical, Id(R) its set of idempotents of R. Soc(RR) is the right
socle of R. We observed the followings:

(1) if R is an eversible ring and e ∈ Id(R), then eR is eversible (equivalently, eR is
two-sided) and e is central;

(2) if R is a subdirectly irreducible semiprime ring such that every right ideal of R
is eversible, then R is a division ring, and in case R is a right primitive ring in
which every maximal modular right ideal is eversible, then R is a field;

(3) for all a ∈ aR, every right ideal a ∈ aR is completely eversible if and only if every
aR is completely eversible.
Concerning idempotent eversible condition, we shall obtain that:

(4) for an idempotent eversible maximal ring R which contains an injective maximal
right ideal, then R is right self-injective and;

(5) R is a regular right self-injective ring with Soc(RR) 6= 0, if and only if R is an
idempotent eversible right p.p.-ring containing an injective maximal right ideal.

2. EVERSIBILITY

We begin with the formal definitons of the central concept of the article.

Definition 2.1. For a one-sided ideal I of a ring R, x ∈ R is called a left pivot for I if xa ∈ I
then a ∈ I, [8].

Definition 2.2. A right ideal I is called eversible if xRy ⊆ I for x, y ∈ R, then there exists
1 6= z ∈ R such that zRx ⊆ I and conversely. A ring R is called eversible when 0 is an
eversible ideal.

Lemma 2.1. Let I be a right ideal of a ring R.
(1) If I is an eversible right ideal of a ring R, then sRr ⊂ I for all s ∈ I, r ∈ R. Hence

R2I ⊆ I.
(2) We have the following:

(a) if R = rR for some r ∈ R then every eversible right ideal is two-sided.
(b) if I is an eversible right ideal with a left pivot, then I is two-sided.
(c) if e is an idempotent, every eversible right ideal I ⊆ eR is two-sided.

Proof. (1) Let x ∈ sRr such that x = sr1r for all r1 ∈ R and so x ∈ I. Thus we have,
sRr ⊆ I. But also I is eversible, so there exists 1 6= z ∈ R such that zRs ⊆ I which
implies that R2I ⊆ I.
(2) (a) and (b) are straightforward.
(c) Assume that I ⊆ eR, for all i ∈ I and r ∈ R we have i = er = e2.er ∈ R2I. Thus
I = R2I is an ideal. �

Theorem 2.1. Let R be an eversible ring and e ∈ Id(R). The followings are equivalent:
a) eR is eversible
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b) e is central
c) eR is two-sided.

Proof. (a)⇒ (b) Since eR is two-sided by the Lemma 2.1, for any r ∈ R, we get re.e = ex
for some x and so ere = re. Thus sere = sre and (se− s)Re = 0 for all r, s ∈ R. Since R
is eversible, there exists 1 6= z ∈ R such that zR(se− s) = 0. In particular for z = r = e,
we obtain ese = es for all s. But we also have ese = se. With this part of the proof,
(c)⇒ (b) and (b)⇒ (c) can be easily seen.
(b) ⇒ (a) If e is central and xRy ⊂ eR, then xry = es for all r ∈ R and for some s,
so exry = xry. Thus (ex − x)ry = 0 for all r ∈ R and since R is eversible, there exists
1 6= z ∈ R such that zr(ex− x) = 0. Therefore zrex = zrx. But e is central so zRx ⊂ eR
as desired. �

By taking into consideration the Theorem 2.1, in a ring in which every principal right
ideal is eversible, the idempotents are central. So we have the same consequence for the
following.

Proposition 2.1. For a ring R, if every non-zero principal right ideal is eversible, then
idempotents are central.

Proof. For all x, y, z ∈ R, zRx ⊂ xR since xRy ⊂ xR, and so z2Rx ⊂ zxR. By the
hypothesis, mRz2 ⊂ zxR for 1 6= m ∈ R. In particular, if we take m = x = e and
z = 1− e, then (1− e)Re = 0 and eR(1− e) = 0. Thus e is central. �

Recall that a ring R is said to be prime if the product of any two nonzero ideals of R is
nonzero. Equivalently, aRb = 0 with a, b ∈ R implies a = 0 or b = 0. A ring R is called
semiprime if it has no nonzero nilpotent ideals. Equivalently, aRa = 0 with a ∈ R implies
a = 0.

Theorem 2.2. If R is a subdirectly irreducible semiprime ring such that every right ideal of
R is eversible, then R is a division ring.

Proof. For a unique smallest non-zero ideal K of R which is also a minimal right ideal, if
K contains any non-zero right ideal I of R, then R2I ⊂ I. So R2I is an ideal in K and
R2I = 0 or R2I = K. If R2I = 0 then I3 = 0 which contradicts with R is semiprime. Thus
K is a minimal right ideal soK = eR and e is central by Theorem 2.1. Thus I =< er−r >
is an ideal and it must contain K, but it has known that I ∩ K = 0. Hence I = 0 and
R = eR is a division ring. �

Theorem 2.2 still holds only if we say that every principal right ideal is eversible. If a
non-zero right ideal L is contained in K, then K contains all the principal right ideals xR
for x ∈ L and also I = xR is non-zero since R is semiprime ring.

Since reduced rings are semiprime and every right ideal is eversible in eversible rings,
we have the following:

Proposition 2.2. If every non-zero principal right ideal of R is eversible, then every minimal
left ideal I with I2 6= 0 is a division ring.

Proof. Let I be a minimal left ideal with I2 6= 0 which has the form Re for e2 = e ∈ R. By
Proposition 2.1, we have eR is eversible ideal and xRe ⊂ eR for all x ∈ R. So xee = es
for some s ∈ R and exe = xe for all x ∈ R. Therefore eRe = Re is a division ring. �

An ideal P of a ring R is called left primitive if it is the largest ideal of R contained in
some maximal left ideal M of R. A ring is called primitive if 0 is a primitive ideal.
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Theorem 2.3. Let R be a right primitive ring whose every maximal modular right ideal is
eversible, then R is a field.

Proof. By the assumption, R is primitive ring so there exists a maximal modular right
ideal M which has the form (M : R) = 0. By Lemma 2.1 (b), M is two-sided ideal and so
that M ⊆ (M : R) = {r ∈ R : Rr ⊂M}, i.e. M = 0. Thus R is a field. �

Proposition 2.3. Let 1 ∈ R, if M,N,P are right ideals with MN ⊆ I, then PM ⊆ I if and
only if I is an eversible right ideal .

Proof. (⇐) If MN ⊆ I, then mRn ⊆ I for all m ∈ M , n ∈ N so pRm ⊆ I for all p ∈ P
which means PM ⊆ I.
(⇒) If mRn ⊆ I then RmRn ⊆ I so RpRm ⊆ I and pRm ⊆ I. �

Definition 2.3. A right ideal I is called completely eversible if xy ∈ I then there exists
1 6= z ∈ R such that zx ∈ I. We say that R is completely eversible if 0 has the corresponding
property.

Clearly, completely eversible ideals are eversible and these are two-sided.

Definition 2.4. I is called left (right) symmetric if abc ∈ I implies acb ∈ I (respectively,
abc ∈ I implies bac ∈ I) .

Definiton 2.4 is a modification of one in [7] which deal with unital rings, in that case
the left and right definitons are equivalent. Actually, it is true that I is (left) symmetric if
and only if

∏n
i=1 ai ∈ I implies

∏n
i=1 aσ(i) ∈ I for all n and permutations σ ∈ Sn.

Example 1. Every completely prime ideal is completely eversible and any prime completely
eversible ideal is completely prime. The set of completely eversible ideals is closed under in-
tersection. Hence every ideal of R is completely eversible, if every ideal of R is an intersection
of completely prime ideals.

Example 2. If R is strongly regular, then every one-sided ideal is completely eversible.

Example 3. For a ring R, a maximal right ideal is completely eversible if and only if it is
two-sided, in this case it is completely prime.

Theorem 2.4. Let I be a right ideal of a ring R.
(1) I is a right symmetric left ideal if and only if Ix−1 is completely eversible and hence

Ix−1 is right symmetric
(2) If Ix−1 is right symmetric, then it is two-sided.

Proof. (1) If ab ∈ Ix−1 then abx ∈ I so bax ∈ I and ax ∈ I. For z ∈ R, zax ∈ I and
za ∈ Ix−1. Furthermore, abc ∈ Ix−1 implies abcx ∈ I so bacx ∈ I and hence bac ∈ Ix−1.
(2) Let r ∈ Ix−1 and s ∈ R. Clearly, srx ∈ I and rsx ∈ I. Thus rs ∈ Ix−1. �

Now consider a ring in which every aR is completely eversible. Since ab ∈ aR, there
exists z ∈ R such that za ∈ aR.

Theorem 2.5. If a ∈ aR for all a ∈ R, then every right ideal is completely eversible if and
only if every aR is completely eversible.

Proof. If xy ∈ I, then xy ∈ xyR so zx ∈ xyR ⊂ I, as desired. �
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3. IDEMPOTENT EVERSIBLE IDEALS

A right ideal I is called idempotent eversible if aRe ⊆ I if and only if there exists
1 6= c ∈ R such that eRc ⊆ I. We say that R is an idempotent eversible ring when 0 is an
idempotent eversible ideal.

Proposition 3.1. If R is an idempotent eversible ring and e is an idempotent of R, then the
following are equivalent:

(1) eR is an idempotent eversible right ideal.
(2) eR is a two-sided ideal.
(3) e is central.

Proof. (1)⇒ (2) Let i ∈ eR = I. So we have i = ex ∈ R2I for some x ∈ R. Thus I ⊆ R2I.
By the hypothesis eR is an idempotent eversible right ideal and eRa ⊆ eR for any a ∈ R,
so we get cRe ⊆ eR for some 1 6= c ∈ R. Hence R2e ⊆ eR. Therefore I = R2I. Also we
have bi = bex = beex ∈ R2I for any b ∈ R and i ∈ I. Hence I = eR is a two-sided ideal.
(2)⇒ (3) For some x ∈ R, xe = xee ∈ x(eR) ⊆ eR. So we have xe = er for some r ∈ R.
Thus exe = er = xe. For any s ∈ R, we obtain sexe = sxe. Now (se − s)xe = 0 and so
(se− s)Re = 0. Since R is idempotent eversible, there exists 1 6= c ∈ R such that eRc = 0
and so we have eR(ce − c) = 0. Therefore ece = ec which implies that ex = xe for any
x ∈ R.
(3) ⇒ (1) Suppose xRf ⊆ eR where f = f2 ∈ R. For any r ∈ R, we have xrf = ey
for any y ∈ R. Therefore exrf = ey = xrf , so (ex − x)rf = 0. Since R is idempotent
eversible and (ex − x)Rf = 0, we get fRc = 0 so fR(ec − c) = 0 for some 1 6= c ∈ R.
Thus frec = frc. Since e is central, so frc ∈ eR. Hence fRc ∈ eR. �

Corollary 3.1. If every principal right ideal of R is idempotent eversible, then R is abelian.

In general, the existence of an injective maximal right ideal in a ring R may not guar-
antee the right self-injectivity of R. However, we obtain the following result.

Proposition 3.2. If an idempotent eversible maximal ring R contains an injective maximal
right ideal, then R is right self-injective.

Proof. Let M be an injective maximal right ideal of R and N a maximal right ideal. So
we have R = M ⊕ N . Thus we obtain M = eR and N = (1 − e)R for some nonzero
idempotent e ∈ R. If NM = 0, then we get (1 − e)Re = 0. Since R is idempotent
eversible, cR(1 − e) = 0. Thus, in particular for c = e, e is central. Therefore we heve
R = M ⊕ N = Re ⊕ R(1 − e). So R(R/M) is projective. By [10], (R/M)R is injective.
Thus NR is injective. If NM 6= 0, then NM = N . So there is b ∈ N such that bM 6= 0,
whence N = bM . Let f :M → N be the map defined by f(m) = bm for all m ∈M . Then
f is an epimorphism. Since the right module NR is projective and M/kerf ∼= N , we have
M ∼= kerf ⊕M/kerf ∼= kerf ⊕ N as right R-modules. Thus NR is injective. Therefore
R =M ⊕N is right self-injective. �

Corollary 3.2. If a semiprime ring R contains an injective maximal right ideal, then R is
right self-injective.

A ring R is called a right p.p.-ring if every principal right ideal of R is projective. So,
as an application of Proposition 3.2, we have the following

Corollary 3.3. Let R be a ring, the following are equivalent:
(1) R is a regular right self-injective ring with Soc(RR) 6= 0.
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(2) R is an idempotent eversible right p.p.-ring containing an injective maximal right
ideal.

Proof. (1) ⇒ (2) Firstly, regularity of R implies that R is an idempotent eversible right
p.p.-ring. If every maximal right ideal of R is essential, then Soc(RR) is contained in
J(R), which is imposible. So there exists a maximal right ideal M of R which is not
essential. Therefore M is a direct summand of R. Since R is right self-injective, M is an
injective right ideal.
(2) ⇒ (1) By Proposition 3.2, R is right self-injective. Since R is right p.p.-ring, R is
regular . Moreover we have Soc(RR) 6= 0 because there is an injective maximal right
ideal. �

By [11], a ring R is called a right HI-ring if R is a right hereditary ring containing an
injective maximal right ideal. Osofsky [9] proves that a right self-injective right hereditary
ring is semisimple Artinian. The next corollary extends [11, Theorem 8].

Corollary 3.4. The following statements are equivalent for a ring R:
(1) R is semisimple Artinian.
(2) R is an idempotent eversible right HI-ring.

Proof. (1)⇒ (2) This is obvious.
(2)⇒ (1) This follows from Proposition 3.2 and Osofsky Theorem (see [9]). �
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