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SOME PROPERTIES OF THE CONJUGATE FOURIER-JACOBI AND
FOURIER-CHEBYSHEV SERIES

SAMRA SADIKOVIĆ1 AND SANELA HALILOVIĆ

ABSTRACT. In the present paper we prove a new result on determination of jump dis-
continuities by the n-th order tails of the conjugate Fourier-Jacobi series. Also, we prove
the equiconvergence related to "harmonic" function (Poisson integral) and conjugate "har-
monic" function (conjugate Poisson integral) of the Fourier-Chebyshev series.

1. INTRODUCTION AND PRELIMINARIES

Let P (α,β)
n (x) be the Jacobi polynomial of degree n and order (α, β), α, β > −1, normal-

ized so that P (α,β)
n (1) =

(
n+α
n

)
. They are orthogonal on the interval (−1, 1) with respect

to the measure dµα,β(x) = (1− x)α(1 + x)βdx.

Define R(α,β)
n (x) =

P (α,β)
n (x)

P
(α,β)
n (1)

, and denote by Lp(α, β), (1 ≤ p < ∞) the space of func-

tions f(x) for which ‖f‖p(α,β) = {
∫ 1

−1 |f(x)|pdµα,β(x)}
1
p is finite.

For functions f ∈ L1(α, β), its Fourier-Jacobi expansion is

(1.1) f(x) ∼
∞∑
n=0

f̂(n)ω(α,β)
n R(α,β)

n (x),

where

f̂(n) =

∫ 1

−1
f(y)R(α,β)

n (y)dµα,β(y)

are the Fourier coefficients and

ω(α,β)
n = {

∫ 1

−1
[R(α,β)
n (y)]2dµα,β(y)}−1 ∼ n2α+1.

An alternative way is to define Fourier-Jacobi expansion of a function f on (0, π) by (1.2).

(1.2) f(θ) ∼
∞∑
n=0

f̂(n)ω(α,β)
n R(α,β)

n (cos θ),
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where

f̂(n) =

∫ π

0

f(ϕ)R(α,β)
n (cosϕ)dµα,β(ϕ),

ω(α,β)
n = {

∫ π

0

[R(α,β)
n (cosϕ)]2dµα,β(ϕ)}−1 ∼ n2α+1,

and correspondingly dµα,β(θ) = 2α+β+1sin2α+1 θ
2 cos2β+1 θ

2dθ.

To the Fourier-Jacobi series of the form (1.2), its conjugate series is defined by

(1.3) f̃(θ) ∼ 1

2α+ 2

∞∑
n=1

nf̂(n)ω(α,β)
n R

(α+1,β+1)
n−1 (cos θ) sin θ,

(see [7]). If we start with (1.1), and x = cos θ, this would correspond to

f̃(x) ∼ −1

2α+ 2

∞∑
n=1

nf̂(n)ω(α,β)
n R

(α+1,β+1)
n−1 (x)

√
1− x2.

Conjugate Fourier-Jacobi series was introduced by B. Muckenhoupt and E. M. Stein
[7] when α = β, and by Zh.-K. Li [6] for general α and β. "Conjugacy" is an important
concept in classical Fourier analysis which links the study of the more fundamental prop-
erties of harmonic functions to that of analytic functions and is used to study the mean
convergence of Fourier series [13].

Further, we shall consider the "harmonic" function (Poisson integral) associated to
(1.1):

(1.4) f(r, x) =

∞∑
n=0

rnf̂(n)ω(α,β)
n R(α,β)

n (x), 0 ≤ r < 1,

and the "conjugate harmonic" function (conjugate Poisson integral) of (1.4)

(1.5) f̃(r, x) =
−1

2α+ 2

∞∑
n=1

rnnf̂(n)ω(α,β)
n R

(α+1,β+1)
n−1 (x)

√
1− x2,

(see [6]).

Denote by S
(α,β)
n (f, x) the n−th partial sum of (1.2), and by S̃

(α,β)
n (f, x) the n−th

partial sum of (1.3), where x = cos θ. If α = β = −1

2
, the corresponding Fourier-Jacobi

series becomes Fourier-Chebyshev series, so by S(− 1
2 ,−

1
2 )

n (f, x) we denote the n-th partial
sum of the Fourier-Chebyshev series of f. Also, throughout this paper we use the following
general notations: L[a, b] is the space of integrable functions on [a, b] and C[a, b] is the
space of continuous function on [a, b] with the uniform norm ‖·‖C[a,b]. W [a, b] is the space
of functions on [a, b] which may have discontinuities only of the first kind and which are
normalized by the condition f(x) = 1

2 (f(x+) + f(x−)).
In this paper first we give a review of the results on determination of jump disconti-

nuities for functions of generalized bounded variation by differentiated and integrated
Fourier series, and then we prove a new result on determination of jump discontinuities
by the n-th order tails of the conjugate Fourier-Jacobi series. After that, we prove the
equiconvergence related to "harmonic" function (Poisson integral) and conjugate "har-
monic" function (conjugate Poisson integral) of the Fourier-Chebyshev series.
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2. DETERMINATION OF JUMPS BY FOURIER SERIES

The knowledge of the precise location of the discontinuity points is essential for many
of the methods aiming at obtaining exponential convergence of the Fourier series of a
piecewise smooth function, avoiding the well-known Gibbs phenomenon, the oscillatory
behavior of the Fourier partial sums of a discontinuous function.

If a function f is integrable on [−π, π], then it has a Fourier series with respect to the
trigonometric system {1, cos nx, sin nx}∞n=1, and we denote the n-th partial sum of the
Fourier series of f by Sn(x, f), i.e.,

Sn(x, f) =
a0(f)

2
+

n∑
k=1

(ak(f) cos(kx) + bk(f) sin(kx)),

where ak(f) =
1

π

π∫
−π

f(t) cos(kt) dt and bk(f) =
1

π

π∫
−π

f(t) sin(kt) dt are the k−th Fourier

coefficients of the function f. By S̃n(x, f) we denote the n−th partial sum of the conjugate
series, i.e.,

S̃n(x, f) =

n∑
k=1

(ak(f) sin(kx)− bk(f) cos(kx)).

The identity determining the jumps of a function of bounded variation by means of its
differentiated Fourier partial sums has been known for a long time. Let f(x) be a function
of bounded variation with period 2π, and Sn(x, f) be the partial sum of order n of its
Fourier series. By the classical theorem of Fejer [13] the identity

(2.1) lim
n→∞

S′n(x, f)

n
=

1

π
(f(x+ 0)− f(x− 0))

holds at any point x.
The classes of functions of bounded variation of higher were firstly introduced by N.

Wiener [12].
A function f is said to be of bounded p-variation, p ≥ 1, on the segment [a, b] and to

belong to the class Vp[a, b] if

V ba p(f) = sup
Πa,b

{∑
i

|f(xi)− f(xi−1)|p
} 1
p

<∞,

where Πa,b = {a = x0 < x1 < ... < xn = b} is an arbitrary partition of the segment [a, b].
V ba p(f) is the p-variation of f on [a, b].

B. I. Golubov [3] has shown that identity (2.1) is valid for classes Vp.

Theorem 2.1. Let f(x) ∈ Vp, (1 ≤ p < ∞) and r ∈ N0. Then for any point x one has the
equation

lim
n→∞

S
(2r+1)
n (x, f)

n2r+1
=

(−1)r

(2r + 1)π
(f(x+ 0)− f(x− 0)).

Another type of generalization of the class BV on everywhere convergence of Fourier
series, for every change of variable, was introduced by D. Waterman in [11].

Let Λ = {λn} be a nondecreasing sequence of positive numbers such that the series∑ 1

λn
diverges and {In} be a sequence of nonoverlapping segments In = [an, bn] ⊂

[a, b]. A function f is said to be of Λ-bounded variation on I = [a, b] (f ∈ ΛBV ) if
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∑ |f(bn)− f(an)|
λn

<∞ for every choice of {In}. The supremum of these sums is called

the Λ-variation of f on I. In the case Λ = {n}, one speaks of harmonic bounded variation
(HBV ).

The class HBV contains all Wiener classes. M. Avdispahić has shown in [1] that HBV
is the limiting case for validity of the identity (2.1).

G. Kvernadze in [5] generalized Theorem A for ΛBV classes.

Theorem 2.2. Let r ∈ Z+ and suppose ΛBV is the class of functions of Λ-bounded variation
determined by the sequence Λ = (λk)∞k=1. Then

(a) the identity

lim
n→∞

((Sn(g; θ))(2r+1)

n2r+1
=

(−1)r

(2r + 1)π
(g(θ+)− g(θ−)).

is valid for every g ∈ ΛBV and each fixed θ ∈ [−π, π] if and only if ΛBV ⊆ HBV.
(b) there is no way to determine the jump at the point θ ∈ [−π, π] of an arbitrary

function g ∈ ΛBV by means of the sequence ((Sn(g; θ))(2r), n ∈ N0.

Also, here we note the result for conjugate Fourier series [5]:

Theorem 2.3. Let r ∈ N and suppose ΛBV is the class of functions of Λ-bounded variation
determined by the sequence Λ = (λk)∞k=1. Then the identity

lim
n→∞

(S̃n(g; θ))(2r)

n2r
=

(−1)(r+1)

2rπ
(g(θ+)− g(θ−))

is valid for every g ∈ ΛBV and each fixed θ ∈ [−π, π] if and only if condition ΛBV ⊆ HBV
holds.

Similar identities hold if we consider the integrated rather than the differentiated
Fourier series [4]. By Rn(x, f) we denote the n-th order tails of the Fourier series of
the function f, i.e.,

Rn(x, f) =

∞∑
k=n

(ak(f) cos kx+ bk(f) sin kx),

for n ∈ N.
For any function f, integrable on [−π, π], f (−r), r ∈ N0, is defined as follows

f (−r−1) ≡
∫
f (−r),

where f (0) ≡ f, and the constants of integration are successively determined by the
condition

π∫
−π

f (−r)(t)dt = 0.

Such results find their application in recovering edges in piecewise smooth functions with
finitely many jump discontinuities [2].

Here we note two results of Kvernadze, Hagstrom and Shapiro [4] which determine
the jumps of a 2π−periodic function of f ∈ Vp, 1 ≤ p < 2, class, with a finite number of
discontinuities, by means of the tails of its integrated Fourier series:

Theorem 2.4. Let r ∈ N0 and suppose the function f ∈ Vp, 1 ≤ p < 2, has a finite number
of discontinuities. Then:
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1. the identity

lim
n→∞

n2r+1R(−2r−1)
n (f ;x) =

(−1)r+1

(2r + 1)π
(f(x+)− f(x−))

is valid for each fixed x ∈ [−π, π];
2. there is no way to determine the jump at the point x ∈ [−π, π] of an arbitrary

function f ∈ Vp, p ≥ 1, by means of the sequence (R
(−2r−2)
n (f ; .)), n ∈ N.

Theorem 2.5. Let r ∈ N and suppose the function f ∈ Vp, 1 ≤ p < 2, has a finite number
of discontinuities. Then:

1. the identity

lim
n→∞

n2rR̃(−2r)
n (f ;x) =

(−1)r+1

2rπ
(f(x+)− f(x−))

is valid for each fixed x ∈ [−π, π];
2. there is no way to determine the jump at the point x ∈ [−π, π] of an arbitrary

function f ∈ Vp, p ≥ 1, by means of the sequence (R̃
(−2r−1)
n (f ; .)), n ∈ N.

Similar identity which determines the jump of a periodic function of Vp, 1 ≤ p < 2
class with a finite number of discontinuities, by means of the tails of its integrated Fourier-
Jacobi series, was proved in [8].

3. MAIN RESULTS

Theorem 3.1. Let α > −1, β > −1 and f ∈ HBV. Then the identity

lim
n→∞

R̃
(α,β)
n (f, x)

log n
=
f(x+ 0)− f(x− 0)

π

is valid for each fixed x ∈ (−1, 1).

Proof. In [9] it was proved that for f ∈ HBV, and α > −1, β > −1 relation:

lim
n→∞

S̃
(α,β)
n (f, x)

log n
= −f(x+ 0)− f(x− 0)

π

is valid for each fixed x ∈ (−1, 1).
If we now use the well-known identity (see [10]),

S̃(α,β)
n (f, x) = f(x)− R̃(α,β)

n (f, x) ,

we get

lim
n→∞

f(x)− R̃(α,β)
n (f, x)

log n
= −f(x+ 0)− f(x− 0)

π
.

Further, we have

lim
n→∞

f(x)

log n
− lim
n→∞

R̃
(α,β)
n (f, x)

log n
= −f(x+ 0)− f(x− 0)

π
.

As the first member on the left side of the last equality is tending to zero as n → ∞, we
get

lim
n→∞

R̃
(α,β)
n (f, x)

log n
=
f(x+ 0)− f(x− 0)

π
.

�
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Theorem 3.2. Let f ∈ L1(− 1
2 ,−

1
2 ) and 0 ≤ r < 1. If f (−

1
2 ,−

1
2 )

n (r, x) denotes the n-th
partial sum of the "harmonic" function (Poisson integral) of Fourier-Chebyshev series and
f̃
(− 1

2 ,−
1
2 )

n (r, x) denotes the n-th partial sum of the conjugate "harmonic" function (conjugate
Poisson integral) of Fourier-Chebyshev series, then for −1 < x < 1,

lim
n→∞

(
∂f

(− 1
2 ,−

1
2 )

n (r, x)

∂x
+

r√
1− x2

∂f̃
(− 1

2 ,−
1
2 )

n (r, x)

∂r

)
= 0.

Proof. Differentiating the expression for the n-th partial sum of the "harmonic" function
(Poisson integral) of Fourier-Chebyshev series:

f
(− 1

2 ,−
1
2 )

n (r, x) =

n∑
k=0

rkf̂(k)ω
(− 1

2 ,−
1
2 )

k R
(− 1

2 ,−
1
2 )

k (x) ,

with respect to x, we get

∂f
(− 1

2 ,−
1
2 )

n (r, x)

∂x
=

n∑
k=0

f̂(k)ω
(− 1

2 ,−
1
2 )

k

d

dx
(R

(− 1
2 ,−

1
2 )

k (x)) .

Here we will give a procedure for the general (α, β), so using [10, 4.21.7.] i.e.:

d

dx

[
P (α,β)
n (x)

]
=

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x),

we have:

∂f
(α,β)
n (r, x)

∂x
=

n∑
k=0

rkf̂(k)ω
(α,β)
k

d

dx

P
(α,β)
k (x)

P
(α,β)
k (1)

=

=

n∑
k=0

rkf̂(k)ω
(α,β)
k

d

dx
(P

(α,β)
k (x))

1

P
(α,β)
k (1)

=

=

n∑
k=0

rkf̂(k)ω
(α,β)
k

(k + α+ β + 1)

2

P
(α+1,β+1)
k−1 (x)

P
(α,β)
k (1)

=

= −1

2

n∑
k=0

(k + α+ β + 1)rkf̂(k)ω
(α,β)
k

P
(α+1,β+1)
k−1 (x)

P
(α,β)
k (1)

.

As P (α+1,β+1)
k−1 (1) =

(
k + α
k − 1

)
, we get

P
(α+1,β+1)
k−1 (1)

P
(α,β)
k (1)

=

 k + α
k − 1


 k + α

k

 =
k

α+ 1
.

So P (α,β)
k (1) =

P
(α+1,β+1)
k−1 (1)

k
α+1

, and we obtain

P
(α+1,β+1)
k−1 (x)

P
(α,β)
k (1)

=
P

(α+1,β+1)
k−1 (x)

P
(α+1,β+1)
k−1 (1)

· k

α+ 1
= R

(α+1,β+1)
k−1 (x) · k

α+ 1
.
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Now, we have

∂f
(α,β)
n (r, x)

∂x
=

n∑
k=1

k · (k + α+ β + 1)

2α+ 2
rkf̂(k)ω

(α,β)
k ·R(α+1,β+1)

k−1 (x) ,

and for α = β = −1

2

(3.1)
∂f

(− 1
2 ,−

1
2 )

n (r, x)

∂x
=

n∑
k=1

k2rkf̂(k)ω
(− 1

2 ,−
1
2 )

k R
( 1
2 ,

1
2 )

k−1 (x) .

According to (1.5)

f̃ (α,β)n (r, x) =
−1

2α+ 2

n∑
k=1

k · f̂(k)ω
(α,β)
k ·R(α+1,β+1)

k−1 (x)
√

1− x2 ,

so, for α = β = −1

2
we get

(3.2) f̃
(− 1

2 ,−
1
2 )

n (r, x) = −
n∑
k=1

k · rkf̂(k)ω
(− 1

2 ,−
1
2 )

k ·R( 1
2 ,

1
2 )

k−1 (x)
√

1− x2 .

Now, differentiating the identity (3.2) with respect to r we obtain

(3.3)
∂f̃

(− 1
2 ,−

1
2 )

n (r, x)

∂r
= −

n∑
k=1

k2 · rk−1f̂(k)ω
(− 1

2 ,−
1
2 )

k ·R( 1
2 ,

1
2 )

k−1 (x)
√

1− x2 .

Multiplying by r the identity (3.3) and dividing by
√

1− x2 we get

(3.4)
r√

1− x2
∂f̃

(− 1
2 ,−

1
2 )

n (r, x)

∂r
= −

n∑
k=1

k2 · rkf̂(k)ω
(− 1

2 ,−
1
2 )

k ·R( 1
2 ,

1
2 )

k−1 (x) .

Finally, adding (3.1) and (3.4), and letting n→∞ proves the result. �
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