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GERŠGORIN-TYPE LOCALIZATION SETS OF SOME
POLYNOMIAL EIGENVALUE PROBLEMS

DRAGANA GARDAŠEVIĆ1 AND VLADIMIR KOSTIĆ

ABSTRACT. Diagonalization and separation of variables, the problem of resonance, asy-
mptotics and stability are key factors of popularity of eigenvalues of matrices in science
and engineering. In that way, localization of spectra can simplify solving complex polyno-
mial eigenvalue problems arising in applications. In some cases, matrices might describe
one spectral pattern in complex plane and quite another if small perturbations are added.
In such cases, the localization of pseudospectra can be used for analysing transient be-
havior, sensitivity of the eigenvalues of a matrix polynomials to perturbations, etc. Poly-
nomial eigenvalue problems are highly represented in modern science, especially in the
field of vibro-acoustics, fluid mechanics, Markov chains and control theory. Here we give
the technique for constructing localization sets of spectra and pseudospectra for matrix
polynomials based on famous Geršgorin theorem. Such Geršgorin-type spectra and pseu-
dospectra localization sets for matrix polynomials will be presented and their applicability
will be analysed on several examples arised from problems in engineering.

1. INTRODUCTION

Studying acoustics of a car, quantum mechanics, design of buildings, ecology, stability
and bifurcation analysis of dynamical systems, stationary distribution of random pro-
cesses (of birth and death), control theory, stochastic models in telecommunications are
among numerous applications of eigenvalues in science and engineering [8]. The be-
havior of these and similar phenomena is depicted by systems of differential equations
of second and higher degree, which are approximated with matrix polynomials of the
appropriate order. In these applications, we are interested in studying behavior of one
or more eigenvalues inside or at the end of the spectrum, or number of eigenvalues on
a specific interval. In solving eigenvalue problems, it is enough to localize the spectrum,
which is computationally cheaper problem. Therefore, the localization of spectra has an
important role in solving eigenvalue problems.

In some cases, such as in the domains of structures with physical damping (viscoe-
lastic, hysteretic damping), rotational structures, vibro-acoustics, transient behaviour of
non normal matrices, pipe flow in hydrodynamic stability problem etc., when small per-
turbations are included, spectra analysis can be misleading. In these cases pseudospectra
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analysis may reveal more than spectra about certain aspects of the behavior of matrices
and operators, because it takes into account small perturbations of the observed system
[8]. Therefore, it is of the greatest importance to develop computationally cheap techni-
que that constructs pseudospectra localization sets.

Inspired by elegant and computationally cheep localization technique developed for
SEP and GEP and described and used in [5, 6], and NLEP [4] here we present it for PEP
and apply to several examples that arise from applications.

2. NOTATIONS AND DEFINITIONS

The polynomial eigenvalue problem (or, shortly, PEP) for analytic and regular matrix
polynomial Pm : Ω→ Cn,n on a simply connected domain Ω ⊆ C is to find discrete set of
solutions (z, v) for which holds:

(2.1) Pm(z)v = 0, v 6= 0,

where Pm(z) is matrix polynomial of the form:

Pm(z) = zmAm + zm−1Am−1 + ...+A0,

where Ai ∈ Cn,n, i = 0, . . .m, and z ∈ Ω and v ∈ Ker(Pm(z)) are eigenvalues and
corresponding (right) eigenvector, respectively. Nn(Ω) is the family of all such analytic
and regular matrix polynomials Pm on simply connected domain Ω. The set Λ(z) := {z ∈
C : det(Pm(z)) = 0} is called the spectrum of a matrix polynomial Pm, and, in the
case when small perturbations are included, the set of eigenvalues of a perturbed matrix
polynomial Pm is called the pseudospectrum of Pm. Analogously, the pseudoeigenvalues
are eigenvalues of a perturbed matrix polynomial Pm. When Ω is unbounded in C, let C∞
be one-point-compactification of the complex plane C whose geometrical representation
is the Riemann sphere. Having this in mind, we can present eigenvalues in infinity by
using the Moebius transform z → 1/z. We define∞ as an eigenvalue of Pm if there exists
ϕ ∈ Nn(Ω) and singular M ∈ Cn,n, such that

lim
k→∞

Pm(zk)

ϕ(zk)
= M 6= 0

for all unbounded sequences {zk}k∈N ⊆ Ω.
In this setting, we define multiplicities od eigenvalues of P as multiplicities of zero

eigenvalue of P̂m : Ω̂→ Cn,n, where Ω̂ := {0} ∪ {1/z : z ∈ Ω} and

P̂m(z) :=
Pm(1/z)

ϕ(1/z)
.

In other words,∞ is an eigenvalue of Pm if and only if 0 is an eigenvalue of P̂m , and the
multiplicities coincide.

In the case when small perturbations are included, the pseudospectrum localization
gives more precise answers to some (mentioned) questions. There are few definitions of
the pseudospectra and we use the one defined in [8]. Given ε > 0, the pseudospectrum
for matrix polynomial Pm is the set Λq,ε(Pm) = {z ∈ C : ||Pm(z)−1||−1 ≤ εq(|z|)},
where q(z) =

∑m
k=0 αkz

k, and αk are nonnegative parameters defined depending on the
measure of perturbations (αk ≡ 1, if the perturbations are measured in absolute sense,
and αk = ||Ak||, if the perturbations are measured in relative sense). For singular Pm,
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we use the convention ||P−1m ||−1 = 0 and assume Pm has only finite (pseudo)eigenvalues.
For calculating with infinite eigenvalues, one should use the technique defined in [7].

In the following, we will only consider regular PEP’s of the form (2.1), such that
det(Pm(z)) 6= 0. If Pm is singular, then the pseudospectra set for such Pm is C∪{∞}, and
no useful information for the pseudospectra of Pm can be obtained [3].

As our goal is to construct the spectra and the pseudospectra localization sets for matrix
polynomial Pm ∈ Nn(Ω), we use an elegant connection between famous Geršgorin the-
orem (Theorem 1.1, [9]) and the properties of some well-known classes of DD-matrices
(defined, for example in [2] and [9]). The localization technique we use in this paper is
based on a SDD property of a matrix:

Definition 2.1. The matrix A = [ai,j ] ∈ Cn,n is called an SDD matrix if and only if for every
(row) index i ∈ N := {1, 2, . . . , n}

|ai,i| > ri(A) :=
∑

j∈N\{i}

|ai,j |.

Now we define DD-type class of matrices K as the class of matrices for which all
nonzero diagonal entries, which is closed for increasing of moduli of diagonal entries
and decreasing of moduli of nondiagonal entries and arbitrary change of a complex argu-
ment of an arbitrary entry [4]. Then, we define SDD-type class of matrices, also defined
in [4], as a class that is open DD-type class and ∀α > 0, α ∈ R is αA ∈ K . (An open class
is if for every matrix A ∈ K, there exists an arbitrary small ε > 0, such that for every
matrix B ∈ Cn,n, |(A−B)i,j | < ε, for all i, j ∈ N , implies B ∈ K.) Using the properties of
some well known SDD-type classes of matrices and the Geršgorin theorem, we construct
some (pseudo)spectra localization sets for Pm.

Let Cn (as in the above) is a complex n-dimensional vector space of column vectors
x = [x1, x2, . . . , xn]T , where xi ∈ C, i = 1, 2, . . . , n, for an arbitrary n ∈ N. For arbitrary
n ∈ N, Cn,n is the collection of all n × n matrices with complex entries. A = [aij ]
is a matrix A ∈ Cn,n, with entries aij := (A)ij ∈ C, for all 1 ≤ j ≤ n. diag(A) :=
diag(a11, a22, . . . , ann), is the diagonal part of A and |A| = [|aij |] is a matrix of the moduli
of the elements of a matrix A. 〈A〉 := [mi,j ] ∈ Rn,n denotes the comparison matrix of
A, i.e. mi,j = |ai,i|, for i = j, and mi,j = −|ai,j |. N is a set of indices, I is identity
matrix and O is zero matrix. For given matrix polynomial Pm = [pij ], i, j ∈ N , the sum
of moduli of i-th deleted row of Pm is ri(z) =

∑
j 6=i

i,j∈N
|pij | the sum of moduli of i-th

deleted column of Pm is ci(z) :=
∑
j∈N\{i} |pji(z)|, while si(z) :=

∑
j 6=i

|pij(z)|+|pji(z)|
2 .

Also, for an arbitrary set of indices ∅ 6= S ⊆ N , rSi (z) :=
∑
j∈S\{i} |pij(z)|. Using these

preliminaries, in the following section we will construct Geršgorin-type localization sets
for eigenvalues of (2.1).

3. GERŠGORIN-TYPE LOCALIZATION SETS

Given a class K of square complex matrices of an arbitrary size, and matrix polynomial
Pm ∈ Nn(Ω), we define the set of complex numbers

ΘK(Pm) := {z ∈ Ω : Pm(z) 6∈ K} .
Having in mind the setup of one-point-compactification C∞, the set ΘK(Pm) can be de-

fined on C∞. Namely, if Ω is unbounded,∞ ∈ ΘK(Pm) if and only if for every unbounded
sequence {zk}k∈N ⊂ Ω, there exists k0 ∈ N, such that for all k ≥ k0, Pm(zk) 6∈ K.
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Using the characterization of S, O and H classes of matrices (given in [2] and [5]), for
given matrix polynomial Pm(z) = [pi,j(z)] ∈ Nn(Ω), Geršgorin-type localization sets for
Pm, the sets ΘS(Pm), ΘO(Pm) and ΘH(Pm), are characterized in the following way, as in
[4]:

(3.1) ΘS(Pm) =
⋃
i∈N

ΘS
i (Pm) =

⋃
i∈N
{z ∈ C : |pi,i(z)| ≤ ri(z)}

(3.2) ΘO(Pm) =
⋂

α∈[0,1]

⋃
i∈N

ΘO
i (Pm) =

⋂
α∈[0,1]

⋃
i∈N
{z ∈ C : |pi,i(z)| ≤ (ri(z)

α(ci(z))
1−α}

(3.3) ΘH(Pm) := {z ∈ C : µ(P (z)) ≥ 0},

where µ is left-most eigenvalue of 〈Pm(z)〉.

When small perturbations are included, combining Geršgorin theorem and the pro-
perties of some SDD-type classes, we get localization sets for pseudospectrum of Pm.
Here we construct these sets in infinity norm, which is very useful in some applications.
Regarding Lemma 1 (localization principle) in [6] and Lemma 2.1 in [7] and equality 2,
given µ : Cn,n → R such that for arbitrary matrix polynomial Pm holds

||Pm(z)−1||−1∞ ≥ µ(z),

the corresponding pseudospectra localization set for Pm is:

(3.4) Λq,ε(z) ⊆ Θµ
q,ε(Pm) := {z ∈ C : µ(z) ≤ εq(|z|)}

where q(z) =
∑m
k=0 αkz

k, and αk are nonnegative parameters defined in previous section.
Using the inequality (3.4), it is possible to consider different lower bounds µ for

||Pm(z)−1||−1∞ based on the properties of DD classes of matrices and construct the co-
rresponding pseudospectra localization sets in infinity norm. The first one is:

(3.5) ||Pm(z)−1||−1∞ ≥ µ1(z) := min
i∈N
{|pii(z)| −

∑
j 6=i

|pij(z)|}

Having in mind Lemma 2 and Theorem 1 in [6], given matrix polynomial Pm(z) =
[pij(z)] ∈ Cn,n, and (3.5), the corresponding pseudospectra localization for Pm is:

(3.6) Θµ1
q,ε(Pm) :=

⋃
i∈N

Θµ1,i
q,ε (Pm) =

⋃
i∈N
{z ∈ C : |pii(z)| ≤

∑
j 6=i

|pij(z)|+ εq(|z|)}

and µ1(Pm(z)) ≤ εq(|z|) holds true.

Next localization result uses the properties of doubly diagonal dominant (dSDD) ma-
trices (defined in [2, 9]), Lemma 3 and Theorem 2 in [6]:

(3.7) ||Pm(z)−1||−1∞ ≥ µ2(z) = min
|pii(z)||pjj(z)| −

∑
k 6=i |pik(z)|

∑
l 6=j |pjl(z)|

|pii(z)|+
∑
l 6=j |pjl(z)|

where minimum is counting trough every i 6= j for which |pii(z)|+
∑
l 6=j |plj(z)| 6= 0, and,

in the trivial case, for Pm(z) = 0, µ2(z) is defined to be zero.
The corresponding pseudospectra localization set for Pm is of the form:
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Θµ2
q,ε(P ) :=

⋃
i6=j

Θµ2,i
q,ε (z) =

⋃
i 6=j

{z ∈ C : |pii(z)|(|pjj(z)|−εq(|z|)) ≤
∑
j 6=l

|pjl(z)|(
∑
k 6=i

|pik|+εq(|z|)}

and µ2(P (z)) ≤ εq(|z|) holds true.
The set Θµ2

q,ε(Pm) localizes the pseudospectra of Pm, i.e., Λq,ε(z) ⊆ Θµ2
q,ε(Pm).

3.1. The properties of the set ΘK(Pm). The first property of Geršgorin-type localization
sets for matrix polynomial Pm ∈ Nn(Ω) comes from the definition of diagonal dominance
and the set ΘK(Pm). Originally, it is known as monotony property and is defined and
proved for nonlinear eigenvalue problem (NLEP) in [4]:

Theorem 3.1 (Monotony property for PEP). For given DD-type classes K1 and K2 and
matrix polynomial Pm ∈ Nn(Ω), m ≥ 2, the corresponding localization sets ΘK1(Pm) and
ΘK2(Pm) are standing in reverse inclusion than the inclusion of the classes, i.e., the narrower
DD-type class K is, the wider is the corresponding localization set ΘK(Pm):

K1 ⊆ K2 ⇒ ΘK1(Pm) ⊇ ΘK2(Pm).

It is well known that S ⊆ O ⊆ H, so, using Theorem 3.1 the relation:

ΘH(Pm) ⊆ ΘO(Pm) ⊆ ΘS(Pm)

holds for every polynomial Pm ∈ Nn(Ω).
Other properties, known as equivalence property (that claims that all the matrices

from a class K are regular and that for arbitrary Pm ∈ K, ΘK(Pm) ⊇ Λ(Pm)), isolation
property (that gives the number of eigenvalues in each component of the localization set),
the boundedness property (that gives the information about the boundedness of the set
ΘK(Pm) are also defined and proved for NLEP in [4]. Here, we give their formulaton for
PEP:

Theorem 3.2. Let Pm ∈ Nn(Ω) is analytic and regular matrix polynomial on a simply
connected domain Ω ⊆ C, that defines the observed NLEP. For the set ΘS(Pm), constructed
on the base of the properties of the class K, next conditions are fulfilled:

(1) Λ(Pm) ⊆ ΘS(Pm).
(2) If there exist closed connected sets U, V ⊆ Ω, such that Ω \ (U ∪V ) is connected and

for the corresponding localization set ΘS(Pm), holds:

ΘS(Pm) ⊆ U ∪ V,

then the number of eigenvalues of Pm in the set U and the number of the solutions
of the equations pii(z) = 0, i ∈ N coincide.

(3) For given positive homogeneity SDD-type class K, the set ΘS(Pm), is closed in C.
Moreover, if the domain Ω is unbounded, then Am ∈ K implies ΘK(Pm) is compact
in C.

Remark 3.1. The converse of the Theorem 3.2, item 3, is not always valid-see [4], page 183.

The property of positive homogeneity allows the properties of the localization sets (equi-
valence, isolation, monotony and boundedness) to be transferred to the localization sets
ΘS(Pm), ΘO(Pm) and ΘH, as direct corollaries of Theorem 3.2. Having this in mind,
Theorem 3.2 holds for the sets ΘO(Pm) and ΘH(Pm), too.
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4. EXAMPLES

Example 1. A bicycle problem is quadratic PEP arised from the dynamic behavior of
a Whipple bicycle model, a dynamical system where one of its key properties is due to a
feedback mechanism that is created by the design of the front fork [10]. The equations of
motion can be derived by keeping track of the balance of forces acting on the system:

J
d2φ

dt2
− Dv

b

dδ

dt
= mgh sinφ+

mv2h

b
δ,

where v is the forward speed of the bicycle. The Whipple model of the bicycle can be computed
by using the rigid-body dynamics of the front fork and frame. The linearized model (around
the upright position, with steering wheel straight) is given by:

C

[
φ̈

δ̈

]
+Bv

[
φ̇

δ̇

]
+ (K0 +K2v

2)

[
φ
δ

]
=

[
O
T

]
where C, B, A = K0+K2v

2 are 2×2 matrices that depend on the geometry and mass distri-
bution of the bicycle [10]. C is symmetric mass matrix, B is nonsymmetric damping matrix,
and the default forward speed v = 5m/s. The associated quadratic matrix polynomial is
P2(z) = z2C + zvB +A, with A,B,C ∈ C2,2 given in [1].
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FIGURE 1. Localization sets ΘS(P2) (a), ΘO(P2) (b) and ΘH(P2) (c) for NLEP bicycle

The sets ΘS(P2), ΘO(P2) and ΘH(P2) are shown in Figure 1, respectively. The leading
matrix C /∈ S and C /∈ O, so the sets ΘS(P2) and ΘO(P2) are unbounded in C and we
cannot apply item 3 of the Theorem 3.2. On the other side, C ∈ H, so the set ΘH(P2) is
bounded.These sets can be calculated analytically, because of the small format of the matrices
that describe this problem. The set ΘS(P2) = ΘS

1(P2) ∪ΘS
2(P2) (3.1), where:

ΘS
1(P2) = {z ∈ C : |z| · |z − 9.83| ≤ |0.29z2 + 2.1z + 23.4| },

ΘS
2(P2) = {z ∈ C : |z2 + 28.3z + 196.4| ≤ |7.8z2 − 14.3z − 85.6| }.

The sets ΘO(P2) (3.2) and ΘH(P2) (3.3)are more complicated in computational sense,
but can be calculated analogously, following the definitions of these sets.
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FIGURE 2. The set Θµi , i = 1, 2, for NLEP bicycle, measured with absolute (a) and

relative (b) perturbations, ε = 0.005
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The pseudospectra localization sets (defined with (3.6) and (3.7)) are shown in Figure
1, for perturbations measured in absolute (Figure 1) and relative sense (Figure 1), and
ε = 0.005.

Example 2. Closed loop system is quadratic PEP associated with closed-loop control sys-
tem with feedback gains 1 and 1 + α, designed to automatically achieve and maintain the
desired output condition by comparing it with the actual condition. These systems are used
in various industry applications (agriculture, chemical plants, quality control, nuclear power
plants, water treatment plants and environmental control) [11]. The associated quadratic
matrix polynomial P2(z) = z2C + zB + A, A,B,C ∈ C2,2, where default forward speed in
m/s is v = 5. The default value α = 1. The matrices defining this PEP are given in [1].
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FIGURE 3. Sets ΘS(P2) (a), ΘO(P2) (b), ΘH(P2) (c) for NLEP closed loop

Localization sets ΘS(P2), ΘO(P2) and ΘH(P2) are shown in Figures 2, 2 and 2, respecti-
vely. The leading matrix C and matrix A of this QEP are diagonal, i.e. SDD matrices, while
B /∈ S. As C ⊆ S ⊆ O ⊆ H, we can conclude (due to Theorem 3.2, item 3) that these
localization sets are compact in C.

As this problem is defined by 2×2 matrices, it is easy to present analiticallly the Geršgorin-
type localization set ΘS(P2) =

⋃2
i=1 ΘS

i (P2), where:

ΘS
1(P2) = {z ∈ C : |z − 0.71i| · |z + 0.71i| ≤ 2|z| },
ΘS

2(P2) = {z ∈ C : |z − 0.5| · |z + 0.5| ≤ |z|}.
On the other hand, the sets ΘO(P2) and ΘH(P2) are complicated in computational sense.
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FIGURE 4. The set Θµi , i = 1, 2, for NLEP closed loop, measured with absolute (a) and

relative (b) perturbations, ε = 0.1

The pseudospectra localization sets in infinity norm are shown in Figure 2, for perturba-
tions measured in absolute (Figure 2) and relative sense (Figure 2), and ε = 0.1.

Example 3. Plasma drift is cubic PEP, arose from the problem of design of Tokamak reactor,
a device that uses a powerful magnetic field to confine a hot plasma in the shape of a torus in
the process of modelling instabilities of drifts on the edge of plasma inside the reactor. From
2016, it is the leading candidate for a practical fusion reactor [12].
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FIGURE 5. The sets ΘS(P3) = ΘO(P3) (a), ΘH(P3) (c) for plasma drift NLEP

The associated cubic polynomial is: P3(z) = z3D+ z2C+ zB+A, for given A,B,C,D ∈
Cn,n. Only two values of n are allowed: n = 128 (default value) and n = 512. We will use
the default value of n for constructing the localization sets for P3. The matrices A,B,C,D
are given in [1], where D and C are diagonal matrices (i.e. SDD), and A, B are not SDD
matrices.
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FIGURE 6. The sets Θµi

q,ε(P3), i = 1, 2 for NLEP plasma drift, measured with absolute (a)
and relative (b) perturbations, ε = 0.1

As D is SDD-type, we expect that all sets (ΘS(P3), ΘO(P3), ΘH(P3)) give good compact
approximations of the eigenvalues of P3. This is illustrated in Figure 5. Matrix D ∈ S ⊆ O ⊆
H, so, according to Theorem 3.2, item 3, we can conclude that these sets are compact in C,
as Figure 5 suggests. As D ∈ S ⊆ O , it follows that ΘS(P3) = ΘO(P3) (Figure 3). Having in
mind the format of matrices that define this problem (n = 128), the sets ΘS(P3), ΘO(P3) and
ΘH(P3) must be treated numerically. The pseudospectra localization sets in infinity norm are
shown in Figure 6, for perturbations measured in absolute and relative sense and ε = 0.1.
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