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HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS

MILUTIN OBRADOVIC AND NIKOLA TUNESKI?

ABSTRACT. Let f be analutic in the unit disk D and normalized so that f(2) = z + a22? +
a3z> + - - . In this paper we give sharp bound of Hankel determinant of the second order
for the class of analytic unctions satisfying

mg{(fzﬁ)l+af%zﬁ

for0<a<land0<~vy<1.

<'yg (z € D),

1. INTRODUCTION AND PRELIMINARIES

Let A denote the family of all analytic functions in the unit disk D := {2z € C: |2| < 1}
and satisfying the normalization f(0) = 0 = f/(0) — 1.
A function f € A is said to be strongly starlike of order 8,0 < < 1 if, and only if,
2f'(2)
ar
’ e
We denote this class by S5. If 3 = 1, then Sf = S* is the well-known class of starlike

functions.
In [1] the author introduced the class I/ («a, A) (0 < awand A < 1) consisting of functions

f € A for which we have
2 14+

In the same paper it is shown that ¢/ («, \) C S* if

<Bg (» € D).

<A (z € D).

11—«

The most valuable up to date results about this class can be found in Chapter 12 from [4].

0< A<
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In the paper [2] the author considered univalence of the class of functions f € A

satisfying the condition
P 1+« ,
arg l<f(z)> ! (2)1

for0 < a < 1and 0 < v < 1, and proved the following theorem.
Theorem A. Let f € A, 0 < a < 2 and let

[ES

<71 (z € D)

(1.1 5

<nle)y  (z€D),

where

Then f € S}, where

2. MAIN RESULT

In this paper we will give the sharp estimate for Hankel determinant of the second
order for the class of analytic unctions f € A which satisfied the condition (1.1).

Definition 1. Let f € A. Then the ¢qth Hankel determinant of f is defined for ¢ > 1, and
n > 1by

QA ap+1  ---  Onig—1
Ap+1 An+42 e an+q
Hy(n) =
On4q—1 Qn4q --- QApy2qg—2

Thus, the second Hankel determinant is Hz(2) = asay — a3.

Theorem 1. Let f(z) = z+ag2®+azz®+- - - belongs to the class A and satisfy the condition
(1.1). Then we have the next sharp estimation:

2

2y

Hy(2)| = el < (2
|H2(2)| = |azay a3_(2_a)7

where 0 < o <2—v2and 0 <y < 1(a? — da + 2).

Proof. We can write the condition (1.1) in the form

2)\ ~(te) (AN
2.1) (JI(Z«)) f'(z) = (M) (= (1+ 2w(2) + 2% (2) +---)7),

where w is analytic in D with w(0) = 0 and |w(z)| < 1, z € D. If we denote by L and R
left and right hand side of equality (2.1), then we have

L= [1—(1+a)(a22+---)+(_(1;a)>(agz+-~-)2

—(1
+< ( ;a)>(a22+~..)3+...:| '(1+2022+3a322+4a423+.,,)
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and if we put w(z) = c12 + co2® + -+ :
R:1+’}/[2(612’4’0222+"')+2(Clz+6222+...)2+...]
+<;) [2(C1Z+6222+-~)+2(clz+02z2+...)2+...]2

+<g> [2(612’4—0222—|—'-')—|—2(612’—|—6222—|—-")2—|—"']3—|—"' .

If we compare the coefficients on z, 22, 2% in L and R, then, after some calculations, we
obtain

_ %
a2 = 1 acl7
_ 2y 23—a)y®
(2:2) O R (e EIC s S
ay = 2 (es + peres + vel)
3—« ’
where
25— a)y 1 2(a?—6a+17)y2
2.3 - = 27 and v= =-+: .

By using the relations (2.2) and (2.3), after some simple computations, we obtain

? —a)(3 -«
Hy(2) = u_;ﬁﬁ <0163 + picicy + (% —v)cf — (1(2—)(2)2)C§> ,

where
2y (@ — 10cr + 13)~?

MR- T B0 ape -

and from here

4 2
2] < s (Jellal + Pl
@y L, aB-a)
+ g_yl |Cl‘ +w|02‘ .

For the function w(z) = ¢12+ 222 +... (with |w(2)| < 1, z € D) the next relations is valid
(see, for example [3, p.128, expression (13)]):

@5 el <1, fesl <1 lerl?, fes(l— o) + @3] < (1= fea]?)? = Jeof.

We may suppose that a; > 0, which implies that ¢; > 0 and instead of relations (2.5) we
have the next relations

(2.6) 0<e <1, |02|§1—C%7 \03\§1—cf—

By using (2.6) for ¢; and c3, from (2.4) we have

1) < g [an -+ (S22 8 Yo
ncea] + ‘; . cﬂ |

Sincefor0<a<2—\/§wehave%2

from (2.7) after some calculations we obtain

2.7

1 . 2
5> Jr—lcl, then by using |ca] < 1 —¢f,
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(2.8) |Hy(2)| < GOig@F(cl)’
where

(2.9) F(c)) = (1(20“_)(2)20‘) + Ac? + Bei,
where )

Further, by using the assumptions of the theorem that 0 < o < 2 — V2 and 0 < v <
1(a?® — 4a + 2), we easily conclude that A < 0, while

(a? —10a+13)y? _ (a® —10a + 13)(a? —4a +2)% 13

0<n= 31—a)22-a) — 12(1 — )%(2 — a)? S
If we have that B < 0, then from (2.9) we obtain that
1-a)83-a)
F(er) < T2y
and if B > 0, then
l1-a)B3—a) |1 (1-a)3—-a)
F(Cl) S maX{F(O),F(l)} = max{(Q_a)z, g — U1 } = w,
since
(1-a)(3—a) 1

when0 < a<2—+v2and0 <y < %(az — 4o+ 2) (proven later). It means that in both
cases we have that
1-a)(3—a)
F < >~/ 7
(1) < 2-a)?

) < (52 )

2—«

which by (2.8) implies

We need to prove the inequality (2.10) for appropriate « and ~. First, if % —v <0, ie.
if 0 < vy < 3, then, since 0 < o < 2 — /2, we have
1I-a)3—a) 1

@-a2 273 "

which implies that (2.10) is true. In case v; > %, we have that inequality (2.10) is

equivalent to v
(1-a)(3—a) S (a? —10a + 13)4? 1
(2 — )2 31-a)22-a)2 3
The last inequality is equivalent with
2 _ (1 - a)?(4a? — 16 + 13)
7 a? — 10a + 13
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Since for 0 < o < 2 — v/2 we have v < 1(a? — 4a + 2), then for such a we have

Ju—y

72 < 1(042 —da +2)?

and from (2.10) it is sufficient to prove that
(1 —a)?(4a® — 16 + 13)
a? —10a+ 13
for 0 < a < 2 — v/2. The inequality (2.11) is equivalent to
(2.12)  (¢(a) :=)4(1 — a)*(4a® — 16a + 13) — (a? — 4a + 2)*(a? — 10« + 13) > 0,

where 0 < @ < 2— 2. Letsputa®? —4a+2=t. Then0 <t <2anda=2—2+1¢
and from (2.11) we have

1
(2.11) Z((XQ —da+2)* <

b1(t) == p(2—V2+1) = 3(2 +1) [304+ 19t — 2 — (20 + 6t) V2 + ] .

The function ¢, is continuous function in the interval [0, 2]. It is easily to check that
1
o (t) = 1 (68 + 34t — 3t — (42 + 15t)V2 + t

and

. 1{ 12 ]
t) = - |68 — 12t —45v2 +t — .
®) 8 V24t

iN ¢, the second and the third expression reach their minimum on the segment [0, 2] for
t = 0, while the last expression for t = 2. Thus

1 12 1
Yt)< = [68—-12-0—-45v2+0— —— | = = (62 — 45v/2) = —0.20... < 0,
0 <5 ( VIF0- ) L6245V

i.e, ¢} is an decreasing function from ¢} (0) = 17—10.5v/2 =2.15... > 0to ¢} (2) = -5 <
0, which implies that the function ¢ attains its maximum in the interval (0, 2), so that
$1(t) > min{¢1(0), ¢1(2)} = min{15 — 10v/2,0} = 0.

This means that the inequality given by (2.12) is true.
The result of Theorem 1 is the best possible as the functions f», defined with

(75)  #o-(E5)

shows. In this case we have that ¢c; = 1, ¢; = 0 when j # 2, and consequently, a> = a4 =

0, agz%and H2(2):a2a4—a§:*%- -
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