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PARTIAL SUM FOR UNIVALENT MEROMORPHIC FUNCTIONS OF COMPLEX
ORDER BASED ON BESSEL FUNCTION

SH.NAJAFZADEH AND DEBORAH OLUFUNMILAYO MAKINDE1

ABSTRACT. By considering the Bessel function, a new class of meromorphically univalent
functions is defined. The coefficient estimates, extreme points, radii properties and partial
sum concept on this class are obtained.

1. INTRODUCTION

Let
∑

donote the class of meromorphic functions of the form

(1.1) f(z) =
1

z
+

+∞∑
k=1

αkz
k−1

which are analytic in the puntured unit disk ∆∗ = {z ∈ C : 0 < |z| < 1}. Gasper and
Rahman [3] defined the q-derivative of f(z) introduced by (1.1) as follow:

(1.2) Dqf(z) :=
fq(z)− f(z)

(q − 1)z
, z ∈ ∆∗, 0 < q < 1,

where fq(z) = f(q.z).
From (1.2) and (1.1) we get

Dqf(z) = − 1

qz2
+

+∞∑
k=1

[k − 1]qakz
k−2, z ∈ ∆∗,

where,

[k − 1]q :=
1− qk−1

1− q
= 1 + q + ...+ qk−2.

As q → 1−, we conclude that [k − 1]q → k − 1 and so limq→1− Dqf(z) = f ′(z). If α ∈ C,
then the q-shifted factorials are defined by

(α; q) := 1, (α; q)n :=

n−1∏
k=0

(1− αqk), n ∈ N.

1corresponding author
2010 Mathematics Subject Classification. 30C45, 30D30.
Key words and phrases. Meromorphic univalent function, Bessel function, q-derivative, Convolution, Coeffi-

cient bounds, extreme point, Partial sum, Radii of starlikeness and Convexity.

7



8 SH.NAJAFZADEH AND D. O. MAKINDE

If |q| < 1, the above definition remains meaningful for n = ∞ as a convergent infinite
product

(α; q)∞ =

∞∏
j=0

(1− αqj).

According to the q-analogue of the gamma function

(qα; q)n =
Γq(α+ n)(1− q)n

Γq(α)
, n > 0,

where the q-gamma function is defined by

Γq(x) =
(q; q)∞(1− q)1−x

(qx; q)∞
, 0 < q < 1.

Also, we note that,

lim
q→1−

(qα; q)n
(1− q)n

= (α)n,

where,

(α)n =

{
1 , n = 0
α(α+ 1)(α+ 2)...(α+ n− 1), n ∈ N.

}
.

The q-analogue of Bessel function is defined by

Jν(z; q) =
(qν+1; q)∞

(q; q)∞

+∞∑
h=0

(−1)k

(q; q)k(qν+1; q)k
(
z

2
)2k+ν , 0 < q < 1.

Mostafa et al. in [4] introduced

Lν(z; q) :=
2ν(q; q)∞

(qν+1; q)∞(1− q)νzν/2+1
Jν(z1/2(1− q); q)

=
1

z
+

∞∑
k=1

(−1)k(1− q)2k

4k(q; q)k(qν+1; q)k
zk−1, z ∈ ∆∗.

In the same paper by using the familiar Hadamard product (convolution), they introduced
and studied the linear operator

Lq,ν :
∑
→
∑

defined by

(Lq,νf)(z) := Lν(z; q) ∗ f(z)

=
1

z
+

+∞∑
k=1

(−1)k(1− q)2k

4k(q; q)k(qν+1; q)k
akz

k−1, z ∈ ∆∗,(1.3)

where f ∈
∑

has the form (1.1).
As q → 1−, the operator Lq,ν reduces to operator Lν which was studied by Aoof et al.

[1] (see also [2]). It is convenient to write (Lq,νf)(z) = L(f).
A function f(z) belonging to the class

∑
is in the class

∑
(b,L) if it satisfies the condi-

tion

(1.4)
∣∣∣ zL(f)

z2[L(f)]′ + ( 1−b)
2 )z3[L(f)]′′

+
1

b

∣∣∣ < 1,

where b ∈ C∗ := C \ {0} and L(f) = (Lq,νf)(z) is defined by (1.3).



PARTIAL SUM FOR UNIVALENT MEROMORPHIC FUNCTIONS OF COMPLEX ORDER... 9

2. COEFFICIENT BOUNDS AND EXTREME POINTS

In this section we obtain coefficient inequality and extreme points for functions in∑
(b,L).

Theorem 2.1. The function f(z) of the form (1.1) belongs to
∑

(b,L) if and only if,

(2.1)
+∞∑
k=1

1
2 (−1)k(1− q)2k

4k(q; q)k(qν+1; q)k

[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]
ak < b2.

The result is sharp for the function F (z) given by

F (z) =
1

z
+

b2(4k)(q; q)k(qν+1; q)k
1
2 (−1)k(1− q)2k

[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]zk−1,

k=1,2,... .

Proof. Let f(z) ∈
∑

(b,L). Then the inequality (2.1) or equivalently∣∣∣bzL(f) + z2[L(f)]′ +
(
1−b
2

)
z3[L(f)]′′

b{z2[L(f)]′ +
(
1−b
2

)
z3[L(f)]′′}

∣∣∣ < 1

holds true. Therefore, by making use of (1.3) and (1.4) we have,∣∣∣∣∣∣
∑+∞
k=1

(−1)k(1−q)2k
4k(q;q)k(qν+1;q)k

[
(1− b)

(
1
2 (k − 1)(k − 2)− 1

)
+ k
]
akz

k

−b2 +
∑+∞
k=1

(−1)k(1−q)2k
4k(q;q)k(qν+1;q)k

[
b(k − 1)

(
1 +

(
1−b
2

)
(k − 2)

)]
akzk

∣∣∣∣∣∣ < 1

Since Re{z} ≤ |z| for all z,

Re


∑+∞
k=1

(−1)k(1−q)2k

4k(q;q)k(qν+1;q)k

[
(1−b)

(
1
2 (k−1)(k−2)−1

)
+k

]
akz

k

−b2+
∑+∞
k=1

(−1)k(1−q)2k

4k(q;q)k(qν+1;q)k

[
b(k−1)

(
1+
(

1−b
2

)
(k−2)

)]
akzk

 < 1.

By letting z → 1− through real values, we get
+∞∑
k=1

1
2 (−1)k(1− q)2k

4k(q; q)k(qν+1; q)k

[
(k − 1)(b+ 1)

[
(k − 2)(1− b) + 1

]
+ b
]
ak < b2.

Conversely, let (2.1) holds true. If we let z ∈ ∂∆∗, where ∂∆∗ denotes the boundary of
∆∗, then we have:∣∣∣∣∣∣bzL(f) + z2[L(f)]′ + (1−b)

2 z3[L(f)]′′

b
{
z2[L(f)]′ + (1−b)

2 z3[L(f)]′′
}

∣∣∣∣∣∣
≤

∑+∞
k=1

(−1)k(1−q)2k
4k(q;q)k(qν+1;q)k

[
(1− b)

(
1
2 (k − 1)(k − 2)− 1

)
+ k
]
|ak|

b2 −
∑+∞
k=1

(−1)k(1−q)2k
4k(q;q)k(qν+1;q)k

[
b(k − 1)

(
1 + ( 1−b

2 )(k − 2)
)]
|ak|

.

Thus, by the maxiamum modulus theorem, we conclude f(z) ∈
∑

(b,L). �

Remark 2.1. Theorem 2.1 shows that if f(z) ∈
∑

(b,L), then

|ak| ≤
4b2(q; q)1(qν+1; q)1

− 1
2 (1− q)2b

, k = 1, 2, ...,



10 SH.NAJAFZADEH AND D. O. MAKINDE

or equivalently,

(2.2) |ak| ≤
−8b(1− qν+1)

(1− q)
, k = 1, 2, ... .

Next we obtain extreme points for the class
∑

(b,L).

Theorem 2.2. The function f(z) of the form (1.1) belongs to
∑

(b,L) if and only if, it can
be expressed by

f(z) =

∞∑
k=0

λkfk(z), λk ≥ 0, k = 0, 1, ...,

where f0(z) =
1

z
,
∑∞
k=0 λk = 1 and

fk(z) =
1

z
+

2b24k(q; q)k(qν+1; q)k

(−1)k(1− q)2k
[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]
ak
zk,

k = 1, 2, ...,
∑∞
k=0 λk = 1.

Proof. Let

f(z) =

+∞∑
k=0

λkfk(z) = λ0f0(z)+

+∞∑
k=1

λk

1

z
+

2b24k(q; q)k(qν+1; q)k

(−1)k(1− q)2k
[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]
ak
zk


=

1

z
+

+∞∑
k=1

2b24k(q; q)k(qν+1; q)k

(−1)k(1− q)2k
[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]
ak
λkz

k.

Now, by using Theorem 2.1 we conclude that f(z) ∈
∑

(b,L). Conversely, if f(z) given
by (1.1) belong to

∑
(b,L), by letting λ0 = 1−

∑+∞
k=1 λk, where

λk =

1
2 (−1)k(1− q)2k

[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]

2b24k(q; q)k(qν+1; q)k
ak, k = 1, 2, ...

we conclude the required result. �

3. PARTIAL SUM AND RADII PROPERTIES

In this last section we show property of partial sum and obtain radii of starlikeness and
convexity.

Theorem 3.1. Let f(z) ∈
∑

and define

S1(z) =
1

z
, Sm(z) =

1

z
+

m−1∑
k=1

akz
k−1.
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If
∑+∞
k=1 σkak ≤ 1, where

σk =

1
2 (−1)k(1− q)2k

[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]

2b24k(q; q)k(qν+1; q)k
ak ,

then:

(3.1) Re

{
f(z)

Sm(z)

}
> 1− 1

σm
, Re

{
Sm(z)

f(z)

}
>

σm
1 + σm

.

Proof. Since
∑+∞
k=1 σkak ≤ 1, then by Theorem 2.1, f(z) ∈

∑
(b,L). Also, by k ≥ 1 it is

easy to see that {σk} is an increasing sequence. Therefore we get

(3.2)
m−1∑
k=1

ak + σm

+∞∑
k=m

ak ≤ 1.

Now, by putting

σm

[ f(z)

Sm(z)
−
(
1− 1

σm

)]
= Am(z) ,

and making use of (3.2) we get:

Re

{
Am(z)− 1

Am(z) + 1

}
≤
∣∣∣Am(z)− 1

Am(z) + 1

∣∣∣
=
∣∣∣ σmf(z)− σmSm(z)

σmf(z)− σmSm(z) + 2Sm(z)

∣∣∣
=
∣∣∣ σm

∑+∞
k=m akz

k−1

σm
∑+∞
k=m akz

k−1 + 2
(
1
z +

∑m−1
k=1 akz

k−1

∣∣∣
≤

σm
∑+∞
k=m |ak|

2−
∑m−1
k=1 −σm

∑+∞
k=m |ak|

≤ 1.

By a simple calculation we conclude

Re{AM (z)} > 0, therefore Re
{Am(z)

σm

}
> 0,

or equivalently Re
{
f(z)

Sm(z)
−
(
1− 1

σm

)}
> 0. This gives the first inequality in (3.1).

For the second inquality we consider

Bm(z) = (1 + σm)
[Sm(z)

f(z)
− σm

1 + σm

]
,

and by using (3.2) we have
∣∣∣Bm(z)− 1

Bm(z) + 1

∣∣∣ ≤ 1. Hence Re{Bm(z)} > 0, and therefore{Bm(z)− 1

1 + σm

}
> 0 or equivalently Re

{Sm(z)

f(z)
− σm

1 + σm

}
> 0. This shows the second

inequality in (3.1). �

Theorem 3.2. If f(z) ∈
∑

(b,L), then
(i) f is meromerphically univalent starlike of order η (0 < η < 1) in the disk |z| < R1,

where

R1 = inf
k

{ (−1)k(1− q)2k[(k − 1)(b+ 1)
(
(k − 2)(1− b) + 1

)
+ b](1− η)

2b24k(q; q)k(qν+1; q)k(k + 1− η)

} 1
k−1
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(ii) f is meromerphically univalent convex of order ξ(0 < ξ < 1) in |z| < R2, where

R2 = inf
k

{ (−1)k(1− q)2k[(k − 1)(b+ 1)
(
(k − 2)(1− b) + 1

)
+ b](1− ξ)

2b24k(q; q)k(qν+1; q)k(k + 1− ξ)

} 1
k−1

Proof. (i) It is enough to show that∣∣∣zf ′(z)
f(z)

+ 1
∣∣∣ < 1− η.

But ∣∣∣zf ′(z)
f(z)

+ 1
∣∣∣ =

∣∣∣ ∑+∞
k=1 kakz

k−1

1 +
∑+∞
k=1 akz

k−1

∣∣∣ ≤ ∑+∞
k=1 kak|z|k−1

1−
∑+∞
k=1 ak‖z|k−1

≤ 1− η,

or
+∞∑
k=1

kak|z|k−1 ≤ (1− η)− (1− η)

+∞∑
k=1

ak|z|k−1,

or
+∞∑
k=1

k + 1− η
1− η

ak|z|k−1 ≤ 1.

By using (2.2) we have
+∞∑
k=1

k + 1− η
1− η

ak|z|k−1 ≤

+∞∑
k=1

2b24k(q; q)k(qν+1; q)k(k + 1− η)

(−1)k(1− q)2k
[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]
(1− η)

|z|k−1 ≤ 1.

So it is enough to suppuse

|z|k−1 ≤
(−1)k(1− q)2k

[
(k − 1)(b+ 1)

(
(k − 2)(1− b) + 1

)
+ b
]
(1− η)

2b24k(q; q)k(qν+1; q)k(k + 1− η)
.

(ii) Since f(z) is convex if, and only if, zf ′(z) be starlike, by easy calculation we concude
the required result (ii). Hence the proof is complete. �
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