

PARTIAL SUM FOR UNIVALENT MEROMORPHIC FUNCTIONS OF COMPLEX ORDER BASED ON BESSEL FUNCTION

SH.NAJAFZADEH AND DEBORAH OLUFUNMILAYO MAKINDE¹

ABSTRACT. By considering the Bessel function, a new class of meromorphically univalent functions is defined. The coefficient estimates, extreme points, radii properties and partial sum concept on this class are obtained.

1. INTRODUCTION

Let \sum donote the class of meromorphic functions of the form

(1.1)
$$f(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} \alpha_k z^{k-1}$$

which are analytic in the puntured unit disk $\Delta^* = \{z \in \mathbb{C} : 0 < |z| < 1\}$. Gasper and Rahman [3] defined the q-derivative of f(z) introduced by (1.1) as follow:

(1.2)
$$D_q f(z) := \frac{f_q(z) - f(z)}{(q-1)z}, \qquad z \in \Delta^*, 0 < q < 1,$$

where $f_q(z) = f(q.z)$. From (1.2) and (1.1) we get

$$D_q f(z) = -\frac{1}{q^{z^2}} + \sum_{k=1}^{+\infty} [k-1]_q a_k z^{k-2}, \qquad z \in \Delta^*,$$

where,

$$[k-1]_q := \frac{1-q^{k-1}}{1-q} = 1+q+\ldots+q^{k-2}.$$

As $q \to 1^-$, we conclude that $[k-1]_q \to k-1$ and so $\lim_{q\to 1^-} D_q f(z) = f'(z)$. If $\alpha \in \mathbb{C}$, then the *q*-shifted factorials are defined by

$$(\alpha;q) := 1, \qquad (\alpha;q)_n := \prod_{k=0}^{n-1} (1 - \alpha q^k), \qquad n \in \mathbb{N}.$$

 $^{1} corresponding \ author$

²⁰¹⁰ Mathematics Subject Classification. 30C45, 30D30.

Key words and phrases. Meromorphic univalent function, Bessel function, q-derivative, Convolution, Coefficient bounds, extreme point, Partial sum, Radii of starlikeness and Convexity.

If |q| < 1, the above definition remains meaningful for $n = \infty$ as a convergent infinite product

$$(\alpha;q)_{\infty} = \prod_{j=0}^{\infty} (1 - \alpha q^j).$$

According to the q-analogue of the gamma function

$$(q^{\alpha};q)_n = \frac{\Gamma_q(\alpha+n)(1-q)^n}{\Gamma_q(\alpha)}, \qquad n > 0,$$

where the q-gamma function is defined by

$$\Gamma_q(x) = \frac{(q;q)_{\infty}(1-q)^{1-x}}{(q^x;q)_{\infty}}, \qquad 0 < q < 1.$$

Also, we note that,

$$\lim_{q \to 1^-} \frac{(q^{\alpha};q)_n}{(1-q)^n} = (\alpha)_n,$$

where,

$$(\alpha)_n = \left\{ \begin{array}{ll} 1 & , & n=0 \\ \alpha(\alpha+1)(\alpha+2)...(\alpha+n-1), & n \in \mathbb{N}. \end{array} \right\}.$$

The *q*-analogue of Bessel function is defined by

$$\mathcal{J}_{\nu}(z;q) = \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} \sum_{h=0}^{+\infty} \frac{(-1)^k}{(q;q)_k (q^{\nu+1};q)_k} (\frac{z}{2})^{2k+\nu}, \ 0 < q < 1.$$

Mostafa et al. in [4] introduced

$$\begin{aligned} \mathcal{L}_{\nu}(z;q) &:= \frac{2^{\nu}(q;q)_{\infty}}{(q^{\nu+1};q)_{\infty}(1-q)^{\nu}z^{\nu/2+1}}\mathcal{J}_{\nu}(z^{1/2}(1-q);q) \\ &= \frac{1}{z} + \sum_{k=1}^{\infty} \frac{(-1)^{k}(1-q)^{2k}}{4^{k}(q;q)_{k}(q^{\nu+1};q)_{k}}z^{k-1}, \qquad z \in \Delta^{*}. \end{aligned}$$

In the same paper by using the familiar Hadamard product (convolution), they introduced and studied the linear operator

$$\mathcal{L}_{q,
u}:\sum
ightarrow\sum
ightarrow$$

defined by

(1.3)
$$(\mathcal{L}_{q,\nu}f)(z) := \mathcal{L}_{\nu}(z;q) * f(z)$$
$$= \frac{1}{z} + \sum_{k=1}^{+\infty} \frac{(-1)^k (1-q)^{2k}}{4^k (q;q)_k (q^{\nu+1};q)_k} a_k z^{k-1}, \ z \in \Delta^*,$$

where $f \in \sum$ has the form (1.1). As $q \to 1^-$, the operator $\mathcal{L}_{q,\nu}$ reduces to operator \mathcal{L}_{ν} which was studied by Aoof et al. [1] (see also [2]). It is convenient to write $(\mathcal{L}_{q,\nu}f)(z) = \mathcal{L}(f)$. A function f(z) belonging to the class \sum is in the class $\sum(b, \mathcal{L})$ if it satisfies the condi-

tion

(1.4)
$$\left|\frac{z\mathcal{L}(f)}{z^{2}[\mathcal{L}(f)]' + (\frac{1-b}{2})z^{3}[\mathcal{L}(f)]''} + \frac{1}{b}\right| < 1,$$

where $b \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}$ and $\mathcal{L}(f) = (\mathcal{L}_{q,\nu}f)(z)$ is defined by (1.3).

2. Coefficient bounds and extreme points

In this section we obtain coefficient inequality and extreme points for functions in $\sum (b, \mathcal{L})$.

Theorem 2.1. The function f(z) of the form (1.1) belongs to $\sum(b, \mathcal{L})$ if and only if,

(2.1)
$$\sum_{k=1}^{+\infty} \frac{\frac{1}{2}(-1)^k (1-q)^{2k}}{4^k (q;q)_k (q^{\nu+1};q)_k} \left[(k-1)(b+1)((k-2)(1-b)+1) + b \right] a_k < b^2.$$

The result is sharp for the function F(z) given by

$$F(z) = \frac{1}{z} + \frac{b^2(4^k)(q;q)_k(q^{\nu+1};q)_k}{\frac{1}{2}(-1)^k(1-q)^2k\Big[(k-1)(b+1)\big((k-2)(1-b)+1\big)+b\Big]}z^{k-1},$$

Proof. Let $f(z) \in \sum(b, \mathcal{L})$. Then the inequality (2.1) or equivalently

$$\Big|\frac{bz\mathcal{L}(f)+z^2[\mathcal{L}(f)]'+\left(\frac{1-b}{2}\right)z^3[\mathcal{L}(f)]''}{b\{z^2[\mathcal{L}(f)]'+\left(\frac{1-b}{2}\right)z^3[\mathcal{L}(f)]''\}}\Big|<1$$

holds true. Therefore, by making use of (1.3) and (1.4) we have,

$$\left| \frac{\sum_{k=1}^{+\infty} \frac{(-1)^k (1-q)^{2k}}{4^k (q;q)_k (q^{\nu+1};q)_k} \left[(1-b) \left(\frac{1}{2} (k-1)(k-2) - 1 \right) + k \right] a_k z^k}{-b^2 + \sum_{k=1}^{+\infty} \frac{(-1)^k (1-q)^{2k}}{4^k (q;q)_k (q^{\nu+1};q)_k} \left[b(k-1) \left(1 + \left(\frac{1-b}{2} \right)(k-2) \right) \right] a_k z^k} \right| < 1$$

Since $Re\{z\} \leq |z|$ for all z,

$$Re\left\{\begin{array}{c} \frac{\sum_{k=1}^{+\infty} \frac{(-1)^{k} (1-q)^{2k}}{4^{k} (q;q)_{k} (q^{\nu+1};q)_{k}} \left[(1-b) \left(\frac{1}{2} (k-1) (k-2) - 1\right) + k \right] a_{k} z^{k}}{-b^{2} + \sum_{k=1}^{+\infty} \frac{(-1)^{k} (1-q)^{2k}}{4^{k} (q;q)_{k} (q^{\nu+1};q)_{k}} \left[b(k-1) \left(1 + \left(\frac{1-b}{2}\right) (k-2) \right) \right] a_{k} z^{k}} \right\} < 1.$$

By letting $z \to 1^-$ through real values, we get

$$\sum_{k=1}^{+\infty} \frac{\frac{1}{2}(-1)^k (1-q)^{2k}}{4^k (q;q)_k (q^{\nu+1};q)_k} \Big[(k-1)(b+1) \big[(k-2)(1-b)+1 \big] + b \Big] a_k < b^2.$$

Conversely, let (2.1) holds true. If we let $z \in \partial \Delta^*$, where $\partial \Delta^*$ denotes the boundary of Δ^* , then we have:

$$\left| \frac{bz\mathcal{L}(f) + z^{2}[\mathcal{L}(f)]' + \frac{(1-b)}{2}z^{3}[\mathcal{L}(f)]''}{b\left\{z^{2}[\mathcal{L}(f)]' + \frac{(1-b)}{2}z^{3}[\mathcal{L}(f)]''\right\}} \right| \\ \leq \frac{\sum_{k=1}^{+\infty} \frac{(-1)^{k}(1-q)^{2k}}{4^{k}(q;q)_{k}(q^{\nu+1};q)_{k}} \left[(1-b)(\frac{1}{2}(k-1)(k-2)-1) + k \right] |a_{k}|}{b^{2} - \sum_{k=1}^{+\infty} \frac{(-1)^{k}(1-q)^{2k}}{4^{k}(q;q)_{k}(q^{\nu+1};q)_{k}} \left[b(k-1)(1+(\frac{1-b}{2})(k-2)) \right] |a_{k}|}.$$

Thus, by the maxiamum modulus theorem, we conclude $f(z)\in \sum(b,\mathcal{L}).$

Remark 2.1. Theorem 2.1 shows that if $f(z) \in \sum(b, \mathcal{L})$, then

$$|a_k| \le \frac{4b^2(q;q)_1(q^{\nu+1};q)_1}{-\frac{1}{2}(1-q)^2b}, \qquad k=1,2,...,$$

or equivalently,

(2.2)
$$|a_k| \le \frac{-8b(1-q^{\nu+1})}{(1-q)}, \qquad k=1,2,\dots.$$

Next we obtain extreme points for the class $\sum(b, \mathcal{L})$.

Theorem 2.2. The function f(z) of the form (1.1) belongs to $\sum(b, \mathcal{L})$ if and only if, it can be expressed by

$$f(z) = \sum_{k=0}^{\infty} \lambda_k f_k(z), \qquad \lambda_k \ge 0, k = 0, 1, \dots,$$

where $f_0(z) = \frac{1}{z}$, $\sum_{k=0}^{\infty} \lambda_k = 1$ and

$$f_k(z) = \frac{1}{z} + \frac{2b^2 4^k (q;q)_k (q^{\nu+1};q)_k}{(-1)^k (1-q)^{2k} \Big[(k-1)(b+1) \big((k-2)(1-b)+1 \big) + b \Big] a_k} z^k,$$

 $k = 1, 2, \dots, \sum_{k=0}^{\infty} \lambda_k = 1.$

Proof. Let

$$\begin{split} f(z) &= \sum_{k=0}^{+\infty} \lambda_k f_k(z) = \lambda_0 f_0(z) + \\ &\sum_{k=1}^{+\infty} \lambda_k \left\{ \frac{1}{z} + \frac{2b^2 4^k(q;q)_k(q^{\nu+1};q)_k}{(-1)^k (1-q)^{2k} \Big[(k-1)(b+1)\big((k-2)(1-b)+1\big) + b \Big] a_k} z^k \right\} \\ &= \frac{1}{z} + \sum_{k=1}^{+\infty} \frac{2b^2 4^k(q;q)_k(q^{\nu+1};q)_k}{(-1)^k (1-q)^{2k} \Big[(k-1)(b+1)\big((k-2)(1-b)+1\big) + b \Big] a_k} \lambda_k z^k. \end{split}$$

Now, by using Theorem 2.1 we conclude that $f(z) \in \sum(b, \mathcal{L})$. Conversely, if f(z) given by (1.1) belong to $\sum(b, \mathcal{L})$, by letting $\lambda_0 = 1 - \sum_{k=1}^{+\infty} \lambda_k$, where

$$\lambda_k = \frac{\frac{1}{2}(-1)^k (1-q)^{2k} \Big[(k-1)(b+1) \big((k-2)(1-b) + 1 \big) + b \Big]}{2b^2 4^k (q;q)_k (q^{\nu+1};q)_k} a_k, \qquad k = 1, 2, \dots$$

we conclude the required result.

3. PARTIAL SUM AND RADII PROPERTIES

In this last section we show property of partial sum and obtain radii of starlikeness and convexity.

Theorem 3.1. Let $f(z) \in \sum$ and define

$$S_1(z) = \frac{1}{z},$$
 $S_m(z) = \frac{1}{z} + \sum_{k=1}^{m-1} a_k z^{k-1}.$

$$\begin{split} &If \sum_{k=1}^{+\infty} \sigma_k a_k \leq 1 \text{, where} \\ &\sigma_k = \frac{\frac{1}{2} (-1)^k (1-q)^{2k} \Big[(k-1)(b+1) \big((k-2)(1-b)+1 \big) + b \Big]}{2b^2 4^k (q;q)_k (q^{\nu+1};q)_k} a_k \,, \end{split}$$

then:

(3.1)
$$Re\left\{\frac{f(z)}{S_m(z)}\right\} > 1 - \frac{1}{\sigma_m}, \qquad Re\left\{\frac{S_m(z)}{f(z)}\right\} > \frac{\sigma_m}{1 + \sigma_m}$$

Proof. Since $\sum_{k=1}^{+\infty} \sigma_k a_k \leq 1$, then by Theorem 2.1, $f(z) \in \sum(b, \mathcal{L})$. Also, by $k \geq 1$ it is easy to see that $\{\sigma_k\}$ is an increasing sequence. Therefore we get

(3.2)
$$\sum_{k=1}^{m-1} a_k + \sigma_m \sum_{k=m}^{+\infty} a_k \le 1.$$

Now, by putting

$$\sigma_m \Big[\frac{f(z)}{S_m(z)} - \left(1 - \frac{1}{\sigma_m}\right) \Big] = \mathcal{A}_m(z) \,,$$

and making use of (3.2) we get:

$$Re\left\{\frac{\mathcal{A}_{m}(z)-1}{\mathcal{A}_{m}(z)+1}\right\} \leq \left|\frac{\mathcal{A}_{m}(z)-1}{\mathcal{A}_{m}(z)+1}\right| \\ = \left|\frac{\sigma_{m}f(z)-\sigma_{m}S_{m}(z)}{\sigma_{m}f(z)-\sigma_{m}S_{m}(z)+2S_{m}(z)}\right| \\ = \left|\frac{\sigma_{m}\sum_{k=m}^{+\infty}a_{k}z^{k-1}}{\sigma_{m}\sum_{k=m}^{+\infty}a_{k}z^{k-1}+2\left(\frac{1}{z}+\sum_{k=1}^{m-1}a_{k}z^{k-1}\right)\right| \\ \leq \frac{\sigma_{m}\sum_{k=m}^{+\infty}|a_{k}|}{2-\sum_{k=1}^{m-1}-\sigma_{m}\sum_{k=m}^{+\infty}|a_{k}|} \leq 1.$$

By a simple calculation we conclude

$$Re\{\mathcal{A}_M(z)\} > 0,$$
 therefore $Re\{\frac{\mathcal{A}_m(z)}{\sigma_m}\} > 0,$

or equivalently $Re\left\{\frac{f(z)}{S_m(z)} - \left(1 - \frac{1}{\sigma_m}\right)\right\} > 0$. This gives the first inequality in (3.1). For the second inquality we consider

$$\mathcal{B}_m(z) = (1 + \sigma_m) \left[\frac{S_m(z)}{f(z)} - \frac{\sigma_m}{1 + \sigma_m} \right]$$

and by using (3.2) we have $\left|\frac{\mathcal{B}_m(z)-1}{\mathcal{B}_m(z)+1}\right| \leq 1$. Hence $Re\{\mathcal{B}_m(z)\} > 0$, and therefore $\left\{\frac{\mathcal{B}_m(z)-1}{1+\sigma_m}\right\} > 0$ or equivalently $Re\left\{\frac{S_m(z)}{f(z)} - \frac{\sigma_m}{1+\sigma_m}\right\} > 0$. This shows the second inequality in (3.1).

Theorem 3.2. If $f(z) \in \sum (b, \mathcal{L})$, then

(i) f is meromerphically univalent starlike of order η ($0 < \eta < 1$) in the disk $|z| < R_1$, where

$$R_1 = \inf_k \left\{ \frac{(-1)^k (1-q)^{2k} [(k-1)(b+1)((k-2)(1-b)+1)+b](1-\eta)}{2b^2 4^k (q;q)_k (q^{\nu+1};q)_k (k+1-\eta)} \right\}^{\frac{1}{k-1}}$$

(ii) f is meromerphically univalent convex of order
$$\xi(0 < \xi < 1)$$
 in $|z| < R_2$, where

$$R_2 = \inf_k \left\{ \frac{(-1)^k (1-q)^{2k} [(k-1)(b+1)((k-2)(1-b)+1) + b](1-\xi)}{2b^2 4^k (q;q)_k (q^{\nu+1};q)_k (k+1-\xi)} \right\}^{\frac{1}{k-1}}$$

Proof. (i) It is enough to show that

$$\left|\frac{zf'(z)}{f(z)} + 1\right| < 1 - \eta.$$

But

$$\frac{zf'(z)}{f(z)} + 1 \Big| = \Big| \frac{\sum_{k=1}^{+\infty} k a_k z^{k-1}}{1 + \sum_{k=1}^{+\infty} a_k z^{k-1}} \Big| \le \frac{\sum_{k=1}^{+\infty} k a_k |z|^{k-1}}{1 - \sum_{k=1}^{+\infty} a_k ||z|^{k-1}} \le 1 - \eta,$$

or

$$\sum_{k=1}^{+\infty} ka_k |z|^{k-1} \le (1-\eta) - (1-\eta) \sum_{k=1}^{+\infty} a_k |z|^{k-1},$$

or

$$\sum_{k=1}^{+\infty} \frac{k+1-\eta}{1-\eta} a_k |z|^{k-1} \le 1.$$

By using (2.2) we have

 $\pm \infty$

$$\sum_{k=1}^{+\infty} \frac{k+1-\eta}{1-\eta} a_k |z|^{k-1} \leq \sum_{k=1}^{+\infty} \frac{2b^2 4^k (q;q)_k (q^{\nu+1};q)_k (k+1-\eta)}{(-1)^k (1-q)^{2k} \Big[(k-1)(b+1) \big((k-2)(1-b)+1 \big) + b \Big] (1-\eta)} |z|^{k-1} \leq 1.$$

So it is enough to suppuse

$$z|^{k-1} \le \frac{(-1)^k (1-q)^{2k} \Big[(k-1)(b+1) \big((k-2)(1-b)+1 \big) + b \Big] (1-\eta)}{2b^2 4^k (q;q)_k (q^{\nu+1};q)_k (k+1-\eta)}$$

(ii) Since f(z) is convex if, and only if, zf'(z) be starlike, by easy calculation we concude the required result (ii). Hence the proof is complete.

ACKNOWLEDGMENT.

The authors wish to thank the anonymous reviewer for the selfless and detailed efforts that added to quality of this work.

REFERENCES

- [1] M.K.AOOF, A.O.MOSTAFA, H.M.ZAYED: Convolution properties for some subclasses of meromorphic functions of complex order, Abst. Appl. Anal., (2015), 6 pages, Article ID 973613.
- [2] E.DENIZ, H.ORHAN, H.M. SRIVASTAVA: Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessed functions, Taiwanes J. Math. 15(2) (2001), 883 – 917.
- [3] G.GASPER, M.RAHMAN: Basic Hypergeometric Series, Combridge University press, Cambridge, 1990.
 [4] A.O. MASTAFA, M.K. AOUF, H.M. ZAYED, T. BULBOACA: Convolution conditions for subclasses of maximum minimum for subclasses of a subclasses of a subclasses.
- *meromorphic functions of complex order associated with basic Bessel functions*, J. of the Egyption Math. Soc., **2s** (2017), 286–290.

DEPARTMENT OF MATHEMATICS PAYAME NOOR UNIVERSITY P.O.Box 19395-3697,, THERAN, IRAN *E-mail address*: najafzadeh1234@yahoo.ie

DEPARTMENT OF MATHEMATICS OBAFEMI AWOLOWO UNIVERSITY 220005, ILE-IFE, OSUN STATE, NIGERIA *E-mail address*: funmideb@yahoo.com