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EQUIVARIANT LINEARISATION CONTACT-SYMPLECTIC OF SINGULAR
LAGRANGIAN-LEGENDRIAN FOLIATION PAIRS

YATMA MBODJI1 AND HAMIDOU DATHE

ABSTRACT. On a differential manifold (M2h+2k+1, ω, η) equipped to contact-symplectic
pair, we consider a restricted completely integrable Hamiltonian system pair with (k + h)
degrees of freedom whose first integrals are invariant under the contact-symplectic ac-
tion of a compact Lie group G. We prove that the singular Lagrangian-Legendrian folia-
tion pair associated to this restricted completely integrable Hamiltonian system is contact-
symplectically equivalent, in aG-equivariant way, to the linearised foliation pair in a neigh-
bourhood of a nondegenerate singular compact orbit pair.

1. INTRODUCTION

In this paper we study the geometry of integrable Hamiltonian systems. An integrable
Hamiltonian system on a 2n-dimensional symplectic manifold is given by (n) first inte-
grals fi with the property that integral is preserved by the Hamiltonian flow of the other
integrals. This condition is classically known as involutivity of the first integrals and can
be written in terms of the Poisson bracket as

{fi, fj} = 0.

The study of the integrability of such systems is relevant in many areas of mathematics
and has its own story. In June 29th of 1853 Joseph Liouville presented a communica-
tion entitled ”Sur l’intégration des équations différentielles de la Dynamique”. In the
resulting note [10] he relates the notion of integrability of the system to the existence of
n−integrals in involution with respect to the Poisson bracket attached to the symplectic
form. A lot of work has been done in the subject after Liouville. Let us outline some
of the remarkable achievements from a geometrical and topological point of view. Con-
sider a completely integrable Hamiltonian system. The Hamiltonian vector fields of the
Hamiltonian function fi define an involutive distribution. Let O be a regular compact
orbit of this distribution then this orbit is a Lagrangian submanifold. Moreover, it is a
torus and the neighbouring orbits are also tori. Those tori are called Liouville tori. This
is the topological contribution of a theorem which has been known in the literature as
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Arnold-Liouville theorem. The geometrical contribution of the above-mentioned theorem
ensures the existence of symplectic normal forms in the neighbourhood of a compact reg-
ular orbit. The works of Henri Mineur [11],[12],[13] already gave a complete description
of the Hamiltonian system in a neighbourhood of a compact regular orbit. That is why we
will refer to the classical Arnold-Liouville theorem as Liouville-Mineur-Arnold theorem.
Let recall that the theorem below:

Theorem 1.1. Given an completely integrable Hamiltonian system on symplectic manifold
(M2n, ω), and O a regular compact orbit; There is a symplectomorphism φ from a neigh-
bourhood U(O) of O in (M2n, ω) to (Dn × Tn,

∑n
i=1 dµi ∧ dβi) where (µi), 1 ≤ i ≤ n is a

coordinate on the ball Dn, and (βi), 1 ≤ i ≤ n is a periodic coordinate system on the torus
Tn such that φ∗F is the map which depend only on the coordinate φ∗(µi). The functions
φ∗βi are called angle variables and the functions φ∗(µi) are called action variables .

The existence of action-angle coordinates in a neighbourhood of a regular compact or-
bit provides a symplectic model for the Lagrangian foliation F determined by the Hamil-
tonian vector fields of the n−component functions fi of the moment map µ. In fact,
Liouville-Mineur-Arnold theorem entails a uniqueness result for the symplectic structures
making F into a Lagrangian foliation. In other words, if ω1 and ω2 are two symplec-
tic structures defined in a neighbourhood of O for which the foliation F is Lagrangian
then there exists a symplectomorphism preserving the foliation, fixing O and carrying
ω1 to ω2. So if the orbit is regular the existence of action-angle coordinates enables to
classify the symplectic germs, up to foliation-preserving symplectomorphism, for which
F is Lagrangian in a neighbourhood of a compact orbit. After this review for symplectic
linearisation in a neighbourhood of regular orbit, the following question arises: What
can be said about the corresponding classification problem for symplectic germs if the
completely integrable systems has singularities? This question is quite natural because
singularities are present in many well known examples of integrable systems. In fact, if
the completely integrable system is defined on a compact manifold then the singularities
cannot be avoided. The symplectic linearisation in a neighbourhood of an singular orbit
O with dimO > 0 is due to Ito in the analytic case [6]. Partial results in the smooth case
(with dimO = 1 in a manifold of dimension 4) were obtained by Currás-Bosch and Eva
Miranda in [4] and independently by Colin de Verdière and San Vu Ngoc in [3]. The final
result in any dimension was obtained by Nguyen Tien Zung and Eva Miranda in [14].
In [14] it is also included a G-equivariant version of the symplectic linearisation. Sym-
metries are present in many physical problems and therefore they show up in integrable
systems theory as well. Those symmetries are encoded in actions of Lie groups. A special
emphasis has been given to Hamiltonian actions of tori in symplectic geometry. Along
the way many results of symplectic uniqueness are obtained. A good example of this is
Delzant’s theorem [5] which enables to recover information of a compact 2n-dimensional
manifold by looking at the image of the moment map of a Hamiltonian torus action
which is, surprisingly, a convex polytope in Rn. A lot of contributions in the area of
Hamiltonian actions of Lie groups have been done ever since. Let us mention some of
the references of the large list of results in that direction: the works of Lerman and Tol-
man to extend those result to symplectic orbifolds [9] and the works of Karshon and
Tolman for complexity one Hamiltonian group actions [7],[8]. In this article we consider
a particular class of manifolds which have been called in the literature contact-symplectic
pairs. Contact-symplectic pairs were introduced by G.BANDE in [1], where they study
further differential objects associated to them. On a such manifolds we define a restricted
completely integrable Hamiltonian system pair, then prove an analogue to the symplectic
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linearisation result which was mentioned above but in the case of restricted completely
integrable Hamiltonian systems pairs in manifold equipped to contact pair. Precisely, we
show that for a given two contact-symplectic pairs (ω, η) and (ω′, η′) for which the system
is a restricted completely integrable Hamiltonian system pair in a neighbourhood of com-
pact nondegenerate orbit pair (O1,O2) there is a diffeomorphism preserving the system,
fixing (O1,O2), and sending (ω, η) on (ω′, η′). We also take into account the possible
symmetries of the system. Namely, we will show that in the case there exists a contact-
symplectic action of a compact Lie group G in a neighborhood of (O1,O2) preserving the
moment map, this linearisation can be carried out in an equivariant way.

2. PRELIMINARIES

In this section, we recall some basics definitions and properties for contact-symplectic
pairs.

2.1. Hamiltonian vector fields and Poisson bracket.

Definition 2.1. A contact-symplectic pair of type (k, h) on a manifold M2k+2h+1 of dimen-
sion (2k + 2h + 1) is a pair (ω, η) where η is pfaffian form and ω is a closed 2-form such
that:

η ∧ (dη)h ∧ ωk is a volume form on M2k+2h+1, and dηh+1 = 0, ωk+1 = 0.

The forms η and ω are so necessarily constant class 2h + 1 and 2k. For k = 0 we find
a contact structures, and for h = 0 the cosympletic structures. To a such structure are
naturally associated two distributions: the distribution of vector fields which annul η and
dη, and the distribution of vector fields which annul ω. This distributions are completely
integrable because the forms η and ω are constant class 2h + 1 and 2k. They determine
the characteristic foliations of η and ω, which we will note H and G.
The characteristic foliation of η is of dimension 2k and her leaves are symplectic manifolds
of symplectic structure associated ω. The characteristic foliation of ω is of dimension
(2h+ 1) and her leaves are contact manifold of contact form associated η.
The foliations H and G are hollowing out transversal and additional. On a Such manifolds
it exists a vector field Zη called the Reeb vector field satisfying η(Zη) = 1 and iZη (dηh ∧
ωk) = 0. Zη is tangent to characteristic foliation of ω and it is the Reeb vector field (in the
classical sense) of contact form induced by η on each leaf of this foliation(see[2]).

Example 1. (1) On R2k+2h+1 equipped to coordinates system
(x1, · · · , xk, y1, · · · , yk, p1, · · · , ph, q1, · · · , qh, z) the pair (ω, η) defined by:

ω =
∑k
i=1 dxi ∧ dyi, η =

∑h
i=1 pidqi + dz

is a contact-symplectic pair. The Reeb vector fields is Zη = ∂z.
(2) On T2 × S2 × S1 equipped to coordinates system (α, β, φ, θ0, θ1) the pair (ω, η)

defined by
η = cos(θ1)dφ+ sin(θ1)dθ0, ω = dα ∧ dβ

is a contact-symplectic pair of type (1, 1). The Reeb vector field is defined by Z = ∂θ1 .

Contrary to Riemannian manifolds, the contact-symplectic pairs have not local in-
variants. That is to do to theorem called the Darboux theorem (see[2]). It estab-
lishes an unique local model of contact-symplectic pairs. All contact-symplectic pair
on a manifold M2k+2h+1 induced an isomorphism of C∞(M2k+2h+1,R)-module [(η,ω) :

χ(M2k+2h+1) −→ Ω1(M2k+2h+1) defined by the following proposition.
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Proposition 2.1. Let (ω, η) be a contact-symplectic pair on M2k+2h+1.
The map [(η,α) : χ(M2k+2h+1) −→ Ω1(M2k+2h+1) defined by:

[(η,ω)(X) = η(X).η + iX(dη + ω), ∀X ∈ χ(M2k+2h+1)

is an isomorphism of C∞(M2k+2h+1,R)-module.

Proof. Observe that it suffices to show that the map [(η,ω) is injective.
Let (U, x1, · · · , xk, y1, · · · , yk, p1, · · · , ph, q1, · · · , qh, z) be a Darboux coordinates system
(see[2]) and X = Σki=1ai∂xi + Σki=1bi∂yi + Σhi=1ci∂pi + Σhi=1di∂qi + e∂z be a vectors field
on U . We assume that

[(η,ω)(X) = 0.

So we have

η(X).η(X) + iX(dη + ω)(X) = 0

η2(X) = 0

η(X) = 0.

Thus, we obtain iX(dη + ω) = 0. Consequently,

iX(dη + ω)(∂xi) = 0

bi = 0,(2.1)

iX(dη + ω)(∂yi) = 0

ai = 0,(2.2)

iX(dη + ω)(∂pi) = 0

di = 0,(2.3)

iX(dη + ω)(∂qi) = 0

ci = 0,(2.4)

η(X) = 0

e = 0.(2.5)

According to the relations (2.1), (2.2), (2.3), (2.4) and (2.5) we deduce that X = 0 and
later on the map [(η,ω) is injective. �

Thanks to this isomorphism, we can associate at every function f ∈ C∞(M2k+2h+1,R)
an unique vectors field gradf ∈ χ(M), called gradient of f , which is defined by

Definition 2.2. Let (M2k+2h+1, ω, η) be a contact-symplectic pair and f ∈ C∞(M2k+2h+1,R)
a function. The single vectors field gradf defined by

gradf = [−1(η,ω)(df) ,

is called gradient vectors field of f, . Likewise{
igradf (ω + dη) = df − Zη(f)η
η(gradf) = Zη(f).

We define also the Hamiltonian vectors field associated to f ∈ C∞(M2k+2h+1,R).
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Definition 2.3. Let (M2k+2h+1, ω, η) be a contact-symplectic pair and f ∈ C∞(M2k+2h+1,R)
a function. The single vectors field Xf defined by:

Xf = [−1(η,ω)(df − Zη(f)η) ,

is called Hamiltonian vectors field of f . Likewise,{
iXf (dη + ω) = df − Zη(f)η
η(Xf ) = 0

.

The gradient vectors field gradf and the Hamiltonian vector field Xf have the same
horizontal component and

(2.6) Xf = gradf if only if Zη(f) = 0 .

The Hamiltonian vectors fields which verify the relation (2.6) are called the restricted
Hamiltonian vectors fields. Moreover, the Hamiltonian vectors fields verifies the following
properties.

Property 2.1. For all f and g ∈ C∞(M2k+2h+1,R) we have:
(1) Xf+g = Xf +Xg.
(2) Xfg = fXg + gXf .
(3) If the Hamiltonians f and g are associated to the same Hamiltonian vector field X,

then the difference (f − g) is constant locally.

Proof. Let f, g ∈ C∞(M2k+2h+1,R). For the first property, we have

η(Xf+g)η + iXf+g (dη + ω) = d(f + g)

= df + dg

= η(Xf )η + iXf (dη + ω) + η(Xg)η + iXg (dα+ dη)

= η(Xf +Xg)η + iXf+Xg (dη + ω)

[(η,ω)(Xf+g) = [(η,ω)(Xf +Xg).(2.7)

Since the map [(η,ω) is an isomorphism, so according to the relation (2.7), we obtain
Xf+g = Xf +Xg. For the second property, we have

η(Xfg)η + iXfg (dη + ω) = d(fg)

= gdf + fdg

= g(η(Xf )η + iXf (dη + ω)) + f(η(Xg)η + iXg (dη + ω))

= η(gXf + fXg)η + igXf+fXg (dη + ω)

[(η,ω)(Xfg) = [(η,ω)(gXf + fXg).(2.8)

Since the map [(η,ω) is an isomorphism, so according to the relation (2.7), we obtain
Xfg = gXf + fXg. For the third property, we have:

d(f − g) = df − dg
= η(X)η + iX(dη + ω)− η(X)η + iX(dη + ω)

= 0 .

�

The proposition that follows, show that it exists a Poisson bracket {, } onC∞(M2k+2h+1,R)
such that the map (C∞(M2k+2h+1,R), {, }) −→ (χ(M2k+2h+1), [, ]) defined by f −→ Xf
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is a Lie algebra anti-homomorphism with respect to the Poisson bracket and the commu-
tator of vector fields when it is restricted to the set of Hamiltonian functions f satisfying
df(Zη) = 0.

Proposition 2.2. It exists a Poisson algebra structure {, } on C∞(M2k+2h+1,R) such that
for all f, g verifying df(Zη) = dg(Zη) = 0, we have

X{f,g} = −[Xf , Xg] .

Proof. We put

{f, g} = (dη + ω)(gradf, gradg).

If we take into account to the relation iXf (dη + ω) = igradf (dη + ω), we obtain

{f, g} = (dη + ω)(Xf , Xg).

Since ω and dη are bilinear and antisymmetric, then {, } is bilinear and antisymmetric.
For Leibniz identity, we consider f, g and h ∈ C∞. We have

{f, gh} = (ω + dη)(Xf , Xgh)

= (ω + dη)(Xf , gXh + hXg)

= (ω + dη)(Xf , gXh) + (ω + dη)(Xf , hXg)

= g(ω + dη)(Xf , Xh) + h(ω + dη)(Xf , Xg)

= g{f, h}+ h{f, g}
For Jacobi identity, we consider f, g and h ∈ C∞(M2k+2h+1). For all f ∈ C∞(M2k+2h+1,R),the
equation

iY (ω + dη) = df

has a unique well-defined solution when restricted to (ker η ∩ ker dη, ω) and (kerω, dη).
We denote by Yf (resp.Zf ) the Hamiltonian vector fields of function f with respect to the
symplectic structure ω on ker η ∩ ker dη (resp. dη on kerω) With all these information at
hand we can write

Xf = Yf + Zf

Thus, we obtain

{f, {g, h}} = (ω + dη)(Yf + Zf , Y{g,h} + Z{g,h})

= (ω + dη)(Yf , Y{g,h}) + (ω + dη)(Yf , Z{g,h}) + (ω + dη)(Zf , Y{g,h}).

But since Yf ,Y{g,h} are tangent to ker η ∩ ker dη and Zf ,Z{g,h} tangent to kerω. Therefore
we have

(dη + ω)(Yf , Y{g,h}) = ω(Yf , Y{g,h}), (dη + ω)(Zf , Z{g,h}) = dη(Zf , Z{g,h}).

and

(dη + ω)(Yf , Z{g,h}) = 0, (dη + ω)(Zf , Y{g,h}) = 0 .

We have:

{f, {g, h}} = ω(Yf , Y{g,h}) + dη(Zf , Z{g,h}).

= −ω(Yg, Y{h,f})− ω(Yh, Y{f,g})− dη(Zg, Z{h,f})− dη(Zh, Z{f,g})

= −(dη + ω)(Yg + Zg, Y{h,f} + Z{h,f})− (dη + ω)(Yh + Zh, Y{f,g} + Z{f,g})

= −(dη + ω)(Xg, X{h,f})− (dη + dω)(Xh, X{f,g})

= −{g, {h, f}} − {h, {f, g}} .
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Let f, g be a differential functions verifying df(Zη) = dg(Zη) = 0. We have

i[Xf ,Xg](dη + ω) = LXf iXg (dη + ω)− iXgLXf (dη + dω)

= LXf dg − iXgd(iXf (dη + ω))

= diXf dg − iXgd(df)

= d(dg(Xf ))

= −d{f, g}.
Thus we obtain,

X{f,g} = −[Xf , Xg].

�

Let us recall the notion of contact-symplectomorphism and contact-symplectic action.

Definition 2.4. Let (M,ω, η), (M ′, ω′, η′), be two contact-symplectic pairs. A diffeomor-
phism φ : M −→M ′ is called a contact-symplectomorphism, if{

φ?(ω′) = ω
φ?(η′) = η

.

Example 2. We consider M0 = S2 × T3 equipped to contact-symplectic pair ω = dθ ∧ dφ,
η = cos(θ0)dθ1 + sin(θ0)dθ2. The map ψt : M0 −→M0 defined by: for all (θ, φ, θ0, θ1, θ2) ∈
M0,

ψt(θ, φ, θ0, θ1, θ2) = (etθ,
φ

et
,
π

2
− θ0, θ2 − tπ, θ1 − t

π

2
)

is a contact-symplectic map.

Definition 2.5. Let (M,ω, η) be a contact-symplectic pairs. An action ρ : G×M −→M of
Lie group G is called contact-symplectic, if for all g ∈ G{

ρ?g(ω
′) = ω

ρ?g(η
′) = η

.

Example 3. We consider M0 = S2 × T3 equipped to contact-symplectic pair ω = dθ ∧ dφ,
η = cos(θ0)dθ1+sin(θ0)dθ2. The map ρ : S1×M0 −→M0 defined by: for all (θ, φ, θ0, θ1, θ2) ∈
M0,

ρt(θ, φ, θ0, θ1, θ2) = (etθ,
φ

et
, θ0, θ1 − tπ, θ2 − t

π

2
)

is a contact-symplectic action.

2.2. Completely integrable Hamiltonian systems pairs and Lagrangian-Legendrian
foliations pairs.

Definition 2.6. Let (M2k+2h+1, ω, η) be a contact-symplectic pair and f1, · · · , fk, g1 · · · , gh
(k + h)-Hamiltonian functions on (M2k+2h+1, η, ω). We say that (f1, · · · , fk, g1 · · · , gh) is
a restricted completely integrable Hamiltonian system pair if the following conditions are
verified:

(1) The Hamiltonian vector fields Xfi are tangent to G and the Hamiltonian vector
fields Xgi are tangent to H.

(2) dfi(Zη) = dgi(Zη) = 0 .
(3) {fi, fj} = {gi, gj} = {fi, gj} = 0 for all i, j.
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(4) The system (df1, · · · , dfk, dg1, · · · , dgh) is linearly independent almost everywhere.

The functions fi, gi are called first integrals of the integrable system. Given a restricted
completely integrable Hamiltonian system pair,there is a local Hamiltonian Rk+h-action
of momentum map µ = (f1, · · · , fk, g1, · · · , gh), and two foliations naturally attached to
it.

Proposition 2.3. Let (f1, · · · , fk, g1, · · · , gh) be a restricted completely integrable Hamil-
tonian system pair on contact-symplectic pair (M2k+2h+1, ω, η). Assume that p ∈M2k+2h+1

is a point for which dpf1 ∧ · · · ∧ dpfk ∧ dg1 ∧ · · · ∧ dgh 6= 0. Then the distributions D1 =<
Xf1 , · · · , Xfk > and D2 =< Xg1 , · · · , Xgh > are involutive and the tangent spaces at p to
leaves through p are respectively a Lagrangian subspace of (ker η ∩ ker dη(p), ω(p)) and a
Legendrian subspace of (kerω(p), η(p)) .

Proof. On the one hand, since [Xfi ;Xfj ] = −X{fi,fj} (see2.2), the condition {fi, fj} = 0
implies [Xfi , Xfj ] = 0 for all i, j and the distribution D1 is involutive. On the other hand,
since [Xgi ;Xgj ] = −X{gi,gj}, the condition {gi, gj} = 0 implies [Xgi , Xgj ] = 0 for all
i, j and the distribution D2 is also involutive. Let F and G be a leaves through at p of
distributions D1 and D2 respectively. From the definitions of Hamiltonian vectors field
and restricted completely integrable Hamiltonian system pair, for all X,X ′ ∈ TpF and
Y ∈ TpG we have η(Y ) = ω(X,X ′) = 0. . The condition dpf1∧· · ·∧dpfk∧dpg1∧· · ·∧dpgh 6=
0 implies that the Hamiltonian vector fields Xfi span an k-dimensional vector space at
the point p and the Hamiltonian vector fields Xgi span an h-dimensional vector space at
the point p. Therefore the tangent space at p of the leaf F is Lagrangian subspace to
(ker η ∩ dη(p), ω(p)) and the tangent space at p of the leaf G is Legendrian subspace to
(kerω(p), η(p)). �

In all we note F1 the foliation defined by D1 and F2 the foliation defined by D2. The
pair (F1,F2) is called the Lagrangian-Legendrian foliation pair attached to restricted in-
tegrable Hamiltonian system pair

Example 4. (1) On R2k+2h+1 equipped to standard contact-symplectic pair
ω =

∑k
i=1 dxi ∧ dyi, η =

∑h
i=1 pidqi + dz

The system f1 = x21 + y21 , · · · , fk = x2k + y2k, g1 = p21 + q21 , · · · , gh = p2h + q2h
is a restricted completely integrable Hamiltonian system pair. The foliation F1 is
generated by vector fields Xi = 2(yi∂xi − xi∂yi) for 1 ≤ i ≤ k and the foliation F2

is generated by vector fields Xi = 2(qi∂pi − pi∂qi) for 1 ≤ i ≤ h.
(2) On T3 × S2 equipped to contact-symplectic pair

η = cos(θ0)dθ1 + sin(θ0)dθ2, ω = dα ∧ dφ.
The system f1 = αφ, f2 = βθ is a restricted completely integrable Hamiltonian pair.
The foliation F is generated by X1 = α∂α− φ∂φ, X2 = β∂β − θ∂θ.

Definition 2.7. Let (f1, · · · , fk, g1, · · · , gh) be a restricted completely integrable Hamilton-
ian system pair on contact-symplectic pair (M2k+2h+1, ω, η) and ρ a contact-symplectic ac-
tion of compact Lie groupG on (M2k+2h+1, ω, η). We say that the system (f1, · · · , fk, g1, · · · , gh)
is invariant under action ρ if for all g ∈ G, fi ◦ ρg = fi.

Example 5. We consider M0 = S2 × T3 equipped to contact-symplectic pair ω = dθ ∧ dφ,
η = cos(θ0)dθ1+sin(θ0)dθ2. The map ρ : S1×M0 −→M0 defined by: for all (θ, φ, θ0, θ1, θ2) ∈
M0,

ρt(θ, φ, θ0, θ1, θ2) = (etθ,
φ

et
, θ0, θ1 − tπ, θ2 − t

π

2
)
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is a contact-symplectic action. The system (f, g) where f = θ × φ and g = θ1 − 2θ2 is a
restricted completely integrable Hamiltonian system pair invariant under action ρt

2.3. Nondegenerate singulars orbits pairs. Let (f1, · · · , fk, g1, · · · , gh) be a restricted
completely integrable Hamiltonian system pair of momentum map µ on contact pair
(M2k+2h+1, ω, η), p a point in M2k+2h+1, O1 the orbit of D1 through p, and O2 the orbit
of D2 through p. We denote by π1 : Rk+h −→ Rk and π2 : Rk+h −→ Rh the canonical
projections.

Definition 2.8. We say that (O1,O2) is singular orbit pair of type (r, s) if rank(dpπ1◦µ) = r
and rank(dpπ2 ◦ µ) = s with r < k, s < h.

Remark 2.1. If a point in orbit pair (O1,O2) is singular orbit pair of type (r, s) then all point
in (O1,O2) is singular of type (r, s). Because singularity is a property which is invariant
under the local Hamiltonian Rk+h-action.

Proposition 2.4. Let (O1,O2) be a singular compact orbit pair of type (r, s). We assume
that the first integrals fr+1, · · · , fk have a non-degenerate singularity in a Bott-Morse sense a
longO1 and the first integrals gs+1, · · · , gh have a nondegenerate singularity in a Boot-Morse
sense a long O2. Then it exist two triplets of natural numbers (ke, kh, kf), (ke′, kh′, kf ′),
where (ke+ke′) (resp.,(kh+kh′), (kf+kf ′)) is the number of component elliptic (respectively
hyperbolic, foyer-foyer) such that ke + kh + 2kf = k − r, ke′ + kh′ + 2kf ′ = h − s and a
group Γ attached to ((ke, kh, kf), (ke′, kh′, kf ′)).

The pair of triplets enters ((ke, kh, kf), (ke′, kh′, kf ′)) is called the pair of Williamson
type of (O1,O2) and Γ the twisting group attached to ((ke, kh, kf), (ke′, kh′, kf ′)).

Proof. Since the orbits O1, O2 are compact then the produce O1 × O2 is a closed of
M2k+2h+1. The ManifoldM2k+2h+1 being normal, then it exist a neighbourhood U around
(O1 ×O2) in M2k+2h+1 such that

U ∩ (O1 ×O2) = O1 ×O2.

Moreover, since the Reeb vector fields have not singularity then according to redressely
theorem its exist local coordinate system (U, x1, · · · , xk, y1, · · · , yk, p1, · · · , ph, q1, · · · , qh, z)
such that Zη = ∂z. Now, the pfaffian form η can be written as η = dz + η. Observe that
since Zη is the Reeb vector fields in particular we obtain

iZηdη = 0, iZηω.

Using Cartan’s formula LZηη = iZηdη + diZηη, LZηω = iZηω + diZηω we deduce that η
and ω does not depend to z.
Let N1, N2 be the submanifolds defined by

N1 : {p1 = · · · = ph = q1 = · · · = qh = z = 0} and
N2 : {x1 = · · · = xk = y1 = · · · = yh = 0}.

Observe that ω and η are respectively a symplectic and contact forms on N1 and N2

respectively. Thus, the equations systems{
iX(ω) = dfi − Zη(fi)η
η(X) = 0{
iX(dη) = dgi − Zη(gi)η
η(X) = 0
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have a unique well-defined solution when restricted to the sub manifolds (N1, ω) and
(N2, η) respectively. We denote respectively by Yfi and Zgi the solution of this equations
systems. With all these information at hand we can write Xfi = Yfi and Xgi = Zgi
where Xfi and Xgi are the Hamiltonian vector fields with respect to contact-symplectic
pair (η, ω). Observe that, the Hamiltonian vector fields Yf1 , · · · , Yfk define a restricted
completely integrable Hamiltonian system on (N1, ω) and the Hamiltonian vector fields
Zg1 , · · · , Zgh define a restricted completely integrable Hamiltonian system on (N2, η).
Indeed, since dη(Yfi , Yfj ) = ω(Zgi , Zgj ) = 0 we have

{fi, fj}N1
= ω(Yfi , Yfj )

= (dη + ω)(Xfi , Xfj )

= {fi, fj}
= 0

and

{gi, gj}N2 = dη(Zgi , Zgj )

= (dη + ω)(Xgi , Xgj )

= {gi, gj}
= 0

Moreover, O2 is a singular non degenerate compact orbit of rank s of restricted inte-
grable Hamiltonian system Zg1 , · · · , Zgh in (N2, η). Consequently, if we denote by M2 the
submanifold of N2 given by z = 0, we have Zg1 , · · · , Zgh is a completely integrable Hamil-
tonian system on symplectic manifold (M2, dη), O2|M2

a singular nondegenerate compact
orbit of rang s of this system. Thus, according to Eva.Miranda and Nguyen Tien Zung the-
orem (see[14]), there exists a finite group Γ2 and a triplet natural numbers (ke′, kh′, kf ′)
such that ke′ + kh′ + 2kf ′ = h− s. O1 is a singular nondegenerate compact orbit of rank
r of integrable Hamiltonian system Zg1 , · · · , Zgh in symplectic manifold (N1, ω). Thus,
according to Eva.Miranda and Nguyen Tien Zung theorem (see[14]), there exists a finite
group Γ1 and a triplet natural numbers (ke, kh, kf) such that ke + kh + 2kf = k − r. To
achieve this proposition we put Γ = Γ1 × Γ2. �

In the following section we study the contact-symplectic pair linearisation problem in
a neighbourhood of singular compact orbit pair (O1,O2).

3. LINEARISATION CONTACT-SYMPLECTIC IN A NEIGHBOURHOOD OF NONDEGENERATE

SINGULAR COMPACT ORBIT PAIR

In all that follows, (M2k+2h+1, ω, η) designate a contact-symplectic pair denoted by
(f1, · · · , fk, g1, · · · , gh), a restricted completely integrable Hamiltonian system pair on
(M2k+2h+1, ω, η), µ the momentum map, (F1,F2) the Lagrangian-Legendrian foliation
pair, (O1,O2) a singular compact orbit pair of type (r, s) with r < k, s < h. We assume
that, the first integrals fr+1, · · · , fk and gs+1, · · · , gh have a nondegenerate singularity in
the Morse-Bott sense along O1 and O2 respectively. Thus according to proposition 2.4,
there exists two triplets of natural numbers (ke, kh, kf),(ke′, kh′, kf ′) such that ke+ kh+
2kf = k − r and ke′ + kh′ + 2kf ′ = h − s. We recall the notion of linear model. Denote
by (x1, · · · , xr) a linear coordinate system of a small ball Dr of dimension r, (α1, · · · , αr)
a standard periodic coordinate system of the torus Tr, (y1, γ1, · · · , yk−r, γk−r) a linear
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coordinate system of a small ball D2(k−r) of dimension 2(k − r), (p1, · · · , ps) a linear
coordinate system of a small ball Ds of dimension s, (β1, · · · , βs) a standard periodic co-
ordinate system of the torus Ts, (q1, µ1, · · · , qh−s, µh−s, z2) a linear coordinate system of
a small ball D2(h−s)+1 of dimension 2(h− s) + 1. Consider the manifold

M2k+2h+1
0 = Dr × Tr × D2k−2r+1 × Ds × Ts × D2h−2s+1

with the standard contact-symplectic pair

ω0 = Σri=1dxi ∧ dαi + Σk−ri=1 dyi ∧ dγi, η0 = Σsi=1pidβi + Σh−si=1 pidµi + dz

and the following momentum map:

µ0 = (x1, · · · , xr, f0r+1
, · · · , f0k , p1, · · · , ps, g0s+1

, · · · , g0h)

where

f0i+k = y2i + γ2i , for, 1 ≤ i ≤ ke1,
f0i+k = yiγi, for, ke1 + 1 ≤ i ≤ ke1 + kh1,

f0i+k = yiγi+1 − yi+1γi, and

f0i+k+1
= yiγi + yi+1γi+1, for, i = ke1 + kh1 + 2j − 1, 1 ≤ j ≤ kf1

and

g0i+h = q2i + µ2
i , for, 1 ≤ i ≤ ke2,

g0i+k = qiµi, for, ke2 + 1 ≤ i ≤ ke2 + kh2,

g0i+k = qiµi+1 − qi+1µi, and

g0i+k+1
= qiµi + qi+1µi+1, for, i = ke2 + kh2 + 2j − 1, 1 ≤ j ≤ kf2.

We denote by (F01,F02) the linear Lagrangian-Legendrian foliation pair given respec-
tively by the orbits of the linear distributions D01 =< Xx1 , · · · , Xxr , Xf0r+1 , · · · , Xf0k >
and D02 =< Xp1 , · · · , Xps , Xg0s+1 , · · · , Xg0h > where Xxi , Xpi , Xf0i and Xg0i being re-
spectively the Hamiltonian vector fields of xi, pi, f0i and g0i in the contact-symplectic
pair model (M2k+2h+1

0 , ω0, η0). Let Γ be a group with a contact-symplectic action ρ(Γ)

on M2k+2h+1
0 , which preserves the momentum map µ0. We will say that the action

of Γ on M2k+2h+1
0 is linear if it satisfies the following property: Γ acts on the product

M2k+2h+1
0 componentwise; the action of Γ on Dr and Ds is trivial, its action on Tr and

Ts is by translations (with respect to the coordinate system (α1, · · · , αr),(β1, · · · , βs))
and its action on D2k−2r and D2h−2s+1 is linear (with respect to the coordinate system
(y1, γ1, · · · , yk−r, γk−r),(q1, µ1, · · · , qk−r, µk−r)). Suppose now that Γ is a finite group
with a free contact-symplectic action ρ(Γ) on M2k+2h+1

0 , which preserves the momentum
map and which is linear. Then we can form the quotient contact-symplectic pair manifold
M̃0 = M2k+2h+1

0 /Γ, with an integrable system on it given by the induced momentum
map as above:

µ0 = (x1, · · · , xr, f0r+1, · · · , f0k, p1, · · · , ps, g0s+1, · · · , g0h) .

The set pair ({xi = yi = γi = pi = qi = µi = βi = 0}, {xi = yi = γi = pi = qi = µi = αi =

0}) ⊂ M̃0 is a compact orbit pair of Williamson type ((ke1, kh1, kf1), (ke2, kh2, kf2)) of the
above system. We will call the above system on M̃0, together with its associated singular
Lagrangian-Legendrian foliation pair, the linear system (or linear model) of Williamson
pair type ((ke1, kh1, kf1), (ke2, kh2, kf2)) and twisting group Γ (or more precisely, twist-
ing action ρ(Γ)). We will also say that it is a direct model if Γ is trivial, and a twisted
model if Γ is non trivial.
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Now, under the above hypotheses, we can formulate and show, the symplectic lineari-
sation theorem for compact nondegenerate singular orbits pair of restricted integrable
Hamiltonian systems pair.

Theorem 3.1. Then there exists a finite group Γ and a contact-symplectomorphism φ defined
in a neighbourhood of (O1,O2) to (M2h+2k+1

0 /Γ, ω0, η0) such that:

(1) It sends (O1,O2) to (Tr,Ts) .
(2) It sends (F1,F2) to (F01,F02) .

Proof. Since the orbits O1, O2 are compact then the produce O1 × O2 is a closed of
M2k+2h+1. The ManifoldM2k+2h+1 being normal, then it exist a neighbourhood U around
(O1 ×O2) in M2k+2h+1 such that

U ∩ (O1 ×O2) = O1 ×O2.

Moreover, since the Reeb vector field have not singularity then according to redressely
theorem its exist local coordinate system (U, x1, · · · , xk, y1, · · · , yk, p1, · · · , ph, q1, · · · , qh, z)
such that Zη = ∂z. Now, the pfaffian form η can be written as η = dz + η. Observe that
since Zη is the Reeb vector fields in particular we obtain

iZηdη = 0, iZηω = 0.

Using Cartan’s formula LZηη = iZdη + diZηη, LZηω = iZdω + diZηω we deduce that η
and ω does not depend to z1 and z2 respectively. Let N1, N2 be the submanifold defined
by

N1 : {p1 = · · · = ph = q1 = · · · = qh = z = 0} and
N2 : {x1 = · · · = xk = y1 = · · · = yh = 0}.

Observe that ω and η are respectively a symplectic and contact forms on N1 and N2

respectively. Thus, the equations systems{
iX(ω) = dfi − Zη(fi)η
η(X) = 0{
iX(dη) = dgi − Zη(gi)η
η(X) = 0

have a unique well-defined solution when restricted to the symplectic and contact sub-
manifolds (N1, ω) and (N2, η) respectively. We denote respectively by Yfi and Zfi the
solution of this equations systems. With all these information at hand we can write
Xfi = Yfi and Xgi = Zgi where Xfi and Xgi are the Hamiltonian vector fields with
respect to contact-symplectic pair (ω, η). Observe that, the Hamiltonian vector fields
Yf1 , · · · , Yfk define a completely integrable Hamiltonian system on symplectic manifold
(N1, ω) and the Hamiltonian vector fields Zg1 , · · · , Zgh define a restricted completely in-
tegrable Hamiltonian system on (N2, η). Indeed, since dη(Yfi , Yfj ) = ω(Zgi , Zgj ) we have

{fi, fj}N1 = ω(Yfi , Yfj )

= (ω + dη)(Xfi , Xfj )

= {fi, fj}
= 0
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and

{gi, gj}N2
= dη(Zgi , Zgj )

= (ω + dη)(Xgi , Xgj )

= {gi, gj}
= 0

Moreover, O1|N1
is a singular non degenerate compact orbit of rank r of integrable Hamil-

tonian system Yf1 , · · · , Yfk in symplectic manifold (N1, ω) and O2 is a singular non de-
generate compact orbit of rank s of restricted integrable Hamiltonian system Zg1 , · · · , Zgh
in (N2, η). Consequently, if we denote by M2 the submanifold of N2 given by z = 0, we
have Zg1 , · · · , Zgh is a completely integrable Hamiltonian system on symplectic manifold
(M2, dη), and O2|M2

a singular non degenerate compact orbit of rang s of this system.
Thus, according to Eva.Miranda and Nguyen Tien Zung theorem (see[14]), there exists a
finite group Γ1 and a diffeomorphism φ taking the foliation F1 to the linear foliation F01

on (Dr×Tr×D2k−2r)/Γ1 and taking ω to ω0 which send O1|N1
to the torus Tr. Also,there

exists a finite group Γ2 and a diffeomorphism φ′ taking the foliation F2 to the linear fo-
liation F02 on (Ds × Ts × D2h−2s)/Γ2, taking dη to dη0 and sends O2|M2

to the torus Ts.
Now, we define the map φ′′ : U(O2|M2

)× D1 −→ (Ds × Ts × D2h−2s+1)/Γ2 by

φ′′(x, z) = (φ′(x), z), for all (x, z) ∈ U(O2|M2
)× D1.

Observe that since

φ′∗(dη0) = dη

then

φ′∗(η0 + dH) = η

this yields,

φ′′∗(η0 + dH) = dz + η.

Now, consider the path of pfaffian forms

ηt = dz +
∑s
i=1 pidβi +

∑h−s
i=1 qidµi + tdH.

Let ξt be the flow of vector field X = −HZη respectively. Note that as matter of fact

ξ1(xi, αi, yi, γi, pi, βi, qi, µi, z) = (xi, αi, yi, γi, pi, βi, qi, µi, z −H)

Thus, ξ∗1(ω) = ω0 and ξ∗1(η1) = η0. The functions ξ∗1(fi) and ξ∗1(gi) does not depend on t.
In fact, we have

LX(fi) = dfi(−HZη)

= −Hdfi(Zη)

= 0

and

LX(gi) = dgi(−HZη)

= −Hdgi(Zη)

= 0 .



28 Y.MBODJI AND H. DATHE

Thus, ξ∗1(fi) = fi and ξ∗1(gi) = gi. Now, we put Γ = Γ1 × Γ2 and consider the map
Φ : U(O1N1)× U(O2M2)× D1 −→ (Dr × Tr × D2k−2r × Ds × Ts × D2h−2s+1)/Γ by

Φ(x, y, z) = (ξ−11 ◦ φ(x), ξ−11 φ′′(y, z)), for all (x, y, z) ∈ U(O1|N1
)× U(O2|M2

)× D1.

This map is a contact-symplectomorphism. In fact, we have

Φ∗(ω0) = (ξ−11 ◦ φ)∗(ω0)

= φ∗ ◦ ξ−1∗1 ω0

= φ∗ω

= ω

and

Φ∗(η0) = (ξ−11 ◦ φ′′)∗(η0)

= φ′′∗ ◦ ξ−1∗1 η0

= φ′′∗η1

= η.

Moreover Φ∗(µ) is a map which depend only on the variable (x1 · · · , xr, p1 · · · , ps), Γ is
a finite group and Φ a contact-symplectomorphism taking the Lagrangian- Legendrian
foliation pair (F1,F2) to the linear Lagrangian-Legendrian foliation pair (F01,F02) on
M2k+2h+1

0 /Γ, and sends (O1,O2) to (Tr,Ts). This ends the prove of the theorem. �

This theorem permit to classify the contact-symplectic pair germs, up to foliation-
preserving contact-symplectomorphism, for which (F1,F2) is a Lagrangian-Legendrian fo-
liation pair in a neighbourhood of a singular nondegenerate compact orbit pair (O1,O2).
There is just one class of contact-symplectic pair germs for which (F1,F2) is a Lagrangian-
Legendrian foliation pair.

Theorem 3.2. If (ω′, η′) is another contact-symplectic pair for which (F1,F2) is a Lagrangian-
Legendrian foliation pair, then there exists a diffeomorphism φ defined in a neighbourhood
of (O1,O2) such that:

(1) It fix the orbit pair (O1,O2) .
(2) It preserves the foliation pair (F1,F2) .
(3) φ∗(η′) = η, φ∗(ω′) = ω .

Proof. According to theorem 3.1, it exists two diffeomorphism φ1, φ2 sending respec-
tively (ω, η) and (ω′, η′) to (ω0, η0), sending (F1,F2) to (F01,F02) and sending (O1,O2)
to (Tr,Ts). Now, we put φ2 ◦ φ−11 . It clear that φ2 ◦ φ−11 verified the conditions of theo-
rem. �

In this case we say that the contact-symplectic pairs are equivalent, and we note
(ω, η) ∼(F1,F2) (ω′, η′).

4. EQUIVARIANT LINEARISATION CONTACT-SYMPLECTIC IN A NEIGHBOURHOOD OF

NONDEGENERATE SINGULAR COMPACT ORBIT PAIR

In this section we consider a compact Lie group G acting on a contact model manifold
in such a way that preserves the n first integrals of the Reeb vector field and preserves the
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contact form as well. We want to prove that there exists a diffeomorphism in a neighbour-
hood of (O1,O2) preserving the (k+h) first integrals , preserving the contact form and lin-
earising the action of the group. This result is a consequence of the equivariant symplectic
linearisation theorem. The notion of linear action of a Lie group on the contact-symplectic
model manifold is analogous to the equivalent notion for the symplectic model manifold .
LetG be a group with a contact-symplectic action ρ(G) onM2k+2h+1

0 , which preserves the
momentum map µ0. We will say that the action of G on M2k+2h+1

0 is linear if it satisfies
the following property: G acts on the product M2k+2h+1

0 componentwise; the action of G
on Dr and Ds is trivial, its action on Tr and Ts is by translations (with respect to the coor-
dinate system (α1, · · · , αr),(β1, · · · , βs)) and its action on D2k−2r and D2h−2s+1 is linear
(with respect to the coordinate system (y1, γ1, · · · , yk−r, γk−r),(q1, µ1, · · · , qk−r, µk−r)).
A symplectic action of a compact group G on M0/Γ which preserves the momentum map
µ0 will be called linear if it comes from a linear symplectic action of G on M0 which
commutes with the action of Γ. Now, under the above notations and assumptions, we can
formulate and show our main result, which is the equivariant contact-symplectic lineari-
sation theorem for compact nondegenerate singular orbits pair of restricted integrable
Hamiltonian systems pair.

Theorem 4.1. Let ρ be a contact-symplectic action of compact Lie groupG on (M2h+2k+1
0 /Γ, ω0, η0)

which preserve the momentum map µ0. Then it exists a contact-symplectomorphism φ de-
fined in a neighbourhood of (Tr,Ts) in (M2h+2k+1

0 /Γ, ω0, η0) such that:

(1) φ fix (Tr,Ts)
(2) φ preserves (F01,F02)

(3) φ linearises the action ρ of G. That is to say φ ◦ ρg = ρ
(1)
g ◦ φ.

Proof. Let π1 : M2k+2h+1
0 /Γ −→ (Dr × Tr ×D2k−2r)/Γ ,π2 : M2k+2h+1

0 /Γ −→ (Ds × Ts ×
D2h−2s+1)/Γ be the canonical projections and J1 : (Dr×Tr×D2k−2r)/Γ −→M2k+2h+1

0 /Γ,
J2 : (Ds × Ts × D2h−2s+1)/Γ −→ M2k+2h+1

0 /Γ the canonical injection. Observe that the
map π1 ◦ ρg ◦ J1 and π2 ◦ ρg ◦ J2 define respectively a contact-symplectomorphism action
of G on ((Dr × Tr × D2k−2r)/Γ, ω0) and ((Ds × Ts × D2h−2s+1)/Γ, η0). In fact we have,

π1 ◦ ρe ◦ J1(x) = π1 ◦ ρe(x, 0)

= π1(x, 0)

= x,

π2 ◦ ρe ◦ J2(x) = π2 ◦ ρe(0, x)

= π2(0, x)

= x,

π1 ◦ ρgg′ ◦ J1(x) = π1 ◦ ρgg′(x, 0)

= π1 ◦ ρg ◦ ρg′(x, 0)

= π1 ◦ ρg(ρg′(x), ρg′(0))

= ρg ◦ ρg′(x)

= π1 ◦ ρg ◦ J1 ◦ π1 ◦ ρg′ ◦ J1(x)
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π2 ◦ ρgg′ ◦ J2(x) = π2 ◦ ρgg′(0, x)

= π2 ◦ ρg ◦ ρg′(0, x)

= π2 ◦ ρg(ρg′(0), ρg′(x))

= ρg ◦ ρg′(x)

= π2 ◦ ρg ◦ J2 ◦ π2 ◦ ρg′ ◦ J2(x)

and

(π1 ◦ ρg ◦ J1)∗ω0 = J∗1 ◦ ρ∗g ◦ π∗1ω0

= J∗1 ◦ ρ∗gω0

= J∗1ω0

= ω0.

(π2 ◦ ρg ◦ J2)∗η0 = J∗2 ◦ ρ∗g ◦ π∗2η0
= J∗2 ◦ ρ∗gη0
= J∗2 η0

= η0.

Moreover, the map π1◦ρg◦J1 and π2◦ρg◦J2 preserve respectively the induced momentum
map µ0 ◦ J1 et µ0 ◦ J2. The induced action ρ′ of G on (S = (Dr × Tr × D2k−2r)/Γ, ω0) is
a symplectic action. The induced action ρ′′ of G on (Ds ×Ts ×D2h−2s+1)/Γ can be stand
on a natural ways to a symplectic action of G on S′ = (Ds×Ts×D2h−2s+1×]ε, ε[)/Γ, ω′0 =
dt ∧ dz + dη0) that follow,

ρ̂′′ : (g, x, t) ∈ G× S′ 7−→ (π2 ◦ ρg ◦ J2(x), t) ∈ S′ .
On the manifold S and S′ we consider respectively the induced momentum map µ0 ◦ J1
and (µ0 ◦ J2, t). Thus we can applied the equivariant symplectic linearisation theorem
to obtain two symplectomorphism φ′ and φ̂′′ preserving respectively the momentum map
µ0◦J1 and (µ0◦J2, t), the orbits Tr and Ts and linearising the action ρ′ and ρ̂′′ . According
the definition of action ρ̂′′ and the momentum map (µ0 ◦ J2, t), the symplectomorphism
φ̂′′ descend to a diffeomorphism φ′′ on (Ds × Ts × D2h−2s+1)/Γ which linearise action
π2 ◦ ρg ◦ J2(x) and satisfied φ′′∗dη0 = dη0. Then

φ′′∗η0 = η0 + dH .

Finally the diffeomorphism,

ϕ(p1, · · · , ps, β1, · · · , βs, q1, µ1, · · · , qh−s, µh−s, z) =

= (p1, · · · , ps, β1, · · · , βs, q1, µ1, · · · , qh−s, µh−s, z −H)

linearise action π2 ◦ ρg ◦ J2(x) and satisfied

ϕ∗(η0 + dH) = η0.

Now, we consider the map φ = (φ′, ϕ). It clear that φ is a diffeomorphism verifying
conditions of theorem. �

This previous theorem permit us to obtain the following theorem.

Theorem 4.2. Let ρ be a contact-symplectic action of compact Lie groupG on (M2k+2h+1, ω, η)
preserving the momentum µ. Then it exists a contact-symplectomorphism φ in a neighbour-
hood (U(O1,O2)) of (O1,O2) in (M2k+2h+1, ω, η) to (M2k+2h+1

0 /Γ, ω0, η0), such that:
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(1) φ sends (F1,F2) to (F01,F02) .
(2) φ sends (O1,O2) to (Tr,Ts) .
(3) φ linearises the action ρ of G.That is to say φ ◦ ρg = ρ

(1)
g ◦ φ .

The following theorem permit us to classify the germs of contact-symplectic pairs via
a contact-symplectomorphism G-equivariant preserving the pair of foliation (F1,F2), for
which (F1,F2), is Lagrangian-Legendrian.

Theorem 4.3. If (ω′, η′) is an other contact-symplectic for which the foliation pair (F1,F2)
is Lagrangian-Legendrian, then it exist a diffeomorphism φ defined in a neighbourhood of
(O1,O2) such that:

(1) φ fix (O1,O2) .
(2) φ preserves (F1,F2) .

(3) φ linearises action ρg de G. That is to say φ ◦ ρg = ρ
(1)
g ◦ φ .

Proof. According to theorem 4.2, it exist two diffeomorphism φ1, φ2 sending respectively
(ω, η) and (ω′, η′) to (ω0, η0), sending (F1,F2) to (F01,F02), sending (O1,O2) to (Tr,Ts)
and linearising the action ρ of G. Now, we put φ2 ◦ φ−11 . It clear that φ2 ◦ φ−11 verified the
conditions of theorem. �

In this case, we say that the contact-symplectic pairs are G-equivalent, and we note
(ω, η)G ∼(F1,F2) (ω′, η′).
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