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COMPUTATIONAL AND ANALYTICAL SOLUTION OF NON-LINEAR SYSTEM OF
2-DIMENSIONAL TIME-FRACTIONAL NAVIER-STOKES EQUATION

FARYAL AIJAZ ANSARI AND ALI DINO JUMANI1

ABSTRACT. In this paper, we introduce an analytical and approximate technique to obtain
the solution of two dimensional time fractional order non linear Navier Stokes equation in
the Cartesian coordinates with a variable pressure, which is based on Fractional Sumudu
Transform method and its differential and integral properties. We give an illustrative appli-
cation to demonstrate the effectiveness and accuracy of the proposed method, where nu-
merical solutions and graphical representations show that the proposed method performs
extremely well in terms of efficiency and simplicity and it can be utilised to solve more
problems in the field of non-linear fractional differential equations. The results obtained
by the proposed technique indicate that the approach is easy to implement and computa-
tionally very attractive. The small size of computation contrary to the other schemes is its
strength.

1. INTRODUCTION

Fractional Calculus deals with the differential and integral operators with non-integral
powers. Noting that the integer-order differential operator is a local operator while the
fractional order differential operator is non-local, it means that the next state of a system
depends not only upon its current state but also upon all of its previous states. It is more
realistic and is one of the main reasons why the fractional calculus has become so popu-
lar. However in recent years extensive notice in fractional differential equations has been
motivated due to its abundant applications in the areas of science, physics, engineering
[1][2]. Numerous significant models are well described by fractional differential equa-
tions in fluid mechanics, electro-chemistry, electromagnetics, viscoelasticity, life sciences
and financial market [3][4][6][5][7]. Recently, numerous methods have drawn special
attention such as Homotopy Perturbation method [8], Adomian Decomposition method
[9], Reduced Differential transform method [10], Homotopy Analysis method [11] and
Modified Laplace Decomposition method [12]. In this given work, an analytical study
of nonlinear time-fractional model of Navier-Stokes equation of order q, 0 < q ≤ 1, is
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presented. The nonlinear time-fractional model of Navier-Stokes equation for an incom-
pressible fluid flow of kinematic viscosity µ0 and constant density ρ is given as follows
[13]:

Dq
τΨ + (Ψ · ∇)Ψ = −(

1

ρ
)∇ · p+ µ0∇2 ·Ψ in Ω× (0, T ], 0 < q ≤ 1.

This system is subject to the following conditions [14]:

Ψ · ∇ = 0 in Ω× (0, T ] with x ∈ Ω the compressibility condition ;

Ψ = Ψ(x), on Γrigid × (0, T ] is the boundary condition ;
Ψ(x, 0) = Ψ0(x) in Ω× (0, T ] is the initial condition ;

where Ψ(ψ, ν) is is the fluid velocity vector field with components ψ and ν at the point
(x, y) and time τ , (x, y) ∈ Ω ⊆ R2, Γrigid is the boundary of Ω, ∇ = ∂

∂x + ∂
∂y is gradient

operator and ∇2 =
∂2

∂x2
+
∂2

∂y2
is the Laplacian operator, p is the pressure, ρ is the density,

µ0 is the kinematic viscosity which is equal to the ratio µ0 =
η

ρ
. The objective of this

paper is to spread the application of the Fractional Sumudu Transform Method (FSTM)
[3][5] to acquire a solution of the 2-dimensional time-fractional nonlinear Navier-Stokes
equation in the cartesian coordinates with a variable pressure. This equation describes
many physical things such as ocean currents, liquid flow in pipes, blood flow and air flow
around the wings of an aircraft. The Fractional Sumudu Transform Method (FSTM) is a
combination of the Sumudu Transform method and its differential and integral properties.
The benefits of this technique is its capability for attaining exact and approximate analyt-
ical solutions. It is worth mentioning that the proposed technique is capable of reducing
the volume of the computational work as matched to the classical methods while still
keeping the high accurateness of the numerical outcome, the size reduction amounts to a
perfection of the performance of the approach. This paper is organised as follows. In Sec-
tion 2 some definitions regarding fractional calculus and Sumudu transform are given. In
Section 3 the solution of the time fractional order nonlinear Navier-Stokes equation with
a variable pressure is constructed using the FSTM method. In Section 4 our technique
is applied on a time fractional Navier-Stokes model, and graphical and numerical results
are presented. And in Section 5 conclusions are given.

2. BASIC DEFINITIONS OF FRACTIONAL CALCULUS AND SUMUDU TRANSFORM

In this section, we give some basic definitions and properties of Fractional Calculus
and Sumudu transforms, which will be used in this paper.

Definition 2.1. Let µ ∈ R and m ∈ N. A real valued function ψ : R+ → R belongs to Cµ
if there exists λ ∈ R, λ > µ and g ∈ C[0,∞) such that ψ(x) = xλg(x), for all x ∈ R+.
Moreover, ψ ∈ Cmµ if ψ(m) ∈ Cµ.

Definition 2.2. The Riemann-Liouville fractional integral operator of order q of a function
ψ(x) ∈ Cµ, µ ≥ −1 is given with:

Jqψ(x) =

{ 1
Γ(q)

∫ x
0

(x− τ)q−1ψ(τ)dτ, q > 0, x > 0

ψ(x), q = 0
.

The operator Jq has some properties for q and K is a real constant.
• JqK = K

Γ(q+1)x
q
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• J0ψ(x) = ψ(x)

Definition 2.3. The Caputo Fractional derivatives Dq of a function ψ(x) of any real number
q such that m− 1 < q ≤ m, m ∈ N, for x > 0 and ψ ∈ Cm−1 as

Dqψ(x) =

{
1

Γ(m−q)
∫ x

0
(x− τ)m−q−1ψ(m)(τ)dτ,

∂mψ(x)
∂xm , q = m

and has the following properties for m− 1 < q ≤ m,m ∈ N, µ ≥ −1 and ψ ∈ Cmµ
• DqJqψ(x) = ψ(x)

• JqDqψ(x) = ψ(x)−
∑m−1
k=0 ψ(k)(0)x

k

k! , for x>0.

Definition 2.4. In [15] a new integral transform, first proposed by Watugala in 1998, called
Sumudu Transform defined for functions of exponential order to solve engineering problems.
We consider functions in the set A defined by

A = {ψ(τ) : ∃M, t1, t2 > 0, |ψ(τ)| < Me
τ
tj , if τ ∈ (−1)j × [0,∞)} .

For a given function in the set A, the constant M must be finite, while t1 and t2 need not
simultaneously exist, and each may be infinite. Instead of being used as a power to the
exponential, the variable u in the Sumudu transform is used to factor the variable τ in the
argument of the function ψ. Specifically, for ψ(τ) in A, the Sumudu transform is defined by

F (u) = S[ψ(τ)] =

∫ ∞
0

1

u
e

−τ
u ψ(τ)dτ .

The existence and uniqueness of Sumudu transform was given in [16]. For more in-
formation and properties of Sumudu transform and its derivatives see [17]. The Sumudu
transform S[ψ(τ)] has some differential and integral properties as:

• The Sumudu transform S[ψ(τ)] of Riemann-Liouville fractional integral is given
as: (see [18])

S[Jqψ(τ)] = uqS[ψ(τ)] .

• The Sumudu transform S[ψ(τ)] of the Caputo fractional derivative is given as:
(see [19])

S[Dqψ(τ)] = u−qS[ψ(τ)]−
m−1∑
k=0

u−q+kψ(k)(0), m− 1 < q ≤ m.

• The inverse Sumudu transform is given by [19]

S−1[

m−1∑
k=0

ukψ(k)(0)] =

m−1∑
k=0

τkψ(k)(0)

Γ(k + 1)
.

Definition 2.5. G. M. Mittag-Leffler has developed a function for two parameters using series
expansion given by

Eq,r(x) =

∞∑
n=0

xn

Γ(qn+ r)
, (q > 0, r > 0) .
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3. ANALYSIS OF FRACTIONAL SUMUDU TRANSFORM METHOD ON 2- DIMENSIONAL TIME

FRACTIONAL ORDER NONLINEAR NAVIER STOKES EQUATION

In this section, the solution of nonlinear system of 2-dimensional time-fractional order
Navier-Stokes equation is presented. The time-fractional model of Navier-Stokes equation
for an incompressible fluid flow is the principal equation of computational fluid dynamics,
relating pressure and external forces acting on a fluid to the reaction of the fluid flow.
The Navier-Stokes and continuity equations are given as: The nonlinear system of time-
fractional model for 2-dimensional Navier-Stokes equations of order q, 0 < q ≤ 1 in
Cartesian co-ordinates are given as

(3.1) Dq
τψ + ψψx + νψy = −1

ρ
Px + µ0(ψxx + ψyy) ;

(3.2) Dq
τv + ψνx + ννy = −1

ρ
Py + µ0(νxx + νyy) .

Subject to the following conditions:
∂ψ

∂x
+
∂ν

∂y
= 0, incompressibility condition

Ψ(x, y, τ) = Ψ(b), , (x, y) ∈ Γ the boundary condition

(3.3) Ψ(x, y, 0) = fi(x, y), initial condition

where Ψ = (ψ, ν) = (ψ(x, y, τ), ν(x, y, τ)), (x, y) ∈ Ω ⊆ R2 also Γ is the boundary
condition of Ω for i = 1, 2, . . . and 0 < q ≤ 1. Dq

τ represents the Caputo fractional
derivative of order q, where q is the parameter telling the order of the time fractional
derivatives. In the case q = 1 the fractional equation reduces to the standard Navier-
Stokes equation. The Fractional Sumudu Transform Method FSTM shows a fractional
power series solution about the initial point τ = 0, defined as:

(3.4) ψ(x, y, τ) =

∞∑
n=0

fn(x, y)
τnq

Γ(qn+ 1)
;

(3.5) ν(x, y, τ) =

∞∑
n=0

gn(x, y)
τnq

Γ(qn+ 1)
;

P (x, y, τ) =

∞∑
n=0

Pn(x, y)
τnq

Γ(qn+ 1)
,

where 0 < q ≤ 1, x and y ∈ Ω. It is clear that ψ(x, y, τ) and ν(x, y, τ) satisfy the initial
conditions (3.3) which can be rewritten as :

ψ(x, y, 0) = f(x, y) ,

ν(x, y, 0) = g(x, y) .

Hence, we can obtain the initial guess approximation of ψ(x, y, τ) and ν(x, y, τ) as :

ψ0(x, y, 0) = f0(x, y) = f(x, y) ,

ν0(x, y, 0) = g0(x, y) = g(x, y) .

So equations (3.4) and (3.5) could be reformulated as:

ψ(x, y, τ) = f(x, y) +

∞∑
n=1

fn(x, y)
τnq

Γ(qn+ 1)
,
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ν(x, y, τ) = g(x, y) +

∞∑
n=1

gn(x, y)
τnq

Γ(qn+ 1)
.

Now operating with the proposed fractional Sumudu transform technique [3] [5] for
equations (3.1) and (3.2) as follow by using both sides of the Sumudu transform (3.1)
and (3.2) we get:

S[Dq
τψ(x, y, τ)] = S[−1

ρ
Px + µ0(ψxx + ψyy)− ψψx − νψy] ,

S[Dq
τν(x, y, τ)] = S[−1

ρ
Py + µ0(νxx + νyy)− ψνx − ννy] .

Operating the differential property of Sumudu transform:

S[ψ(x, y, τ)] = ψ(x, y, 0) + uqS[−1

ρ
Px + µ0(ψxx + ψyy)− ψψx − νψy] ,(3.6)

S[ν(x, y, τ)] = ν(x, y, 0) + uqS[−1

ρ
Py + µ0(νxx + νyy)− ψνx − ννy] .(3.7)

Using both sides, the inverse Sumudu (3.6) and (3.7) we have:

ψ(x, y, τ) = ψ(x, y, 0) + S−1[uqS[−1

ρ
Px + µ0(ψxx + ψyy)− ψψx − νψy]] ,

ν(x, y, τ) = ν(x, y, 0) + S−1[uqS[−1

ρ
Py + µ0(νxx + νyy)− ψνx − ννy]] .

Operating with the integral property of Sumudu transform

ψ(x, y, τ) = ψ(x, y, 0) + Jqτ [−1

ρ
Px + µ0(ψxx + ψyy)− ψψx − νψy] ,(3.8)

ν(x, y, τ) = ν(x, y, 0) + Jqτ [−1

ρ
Py + µ0(νxx + νyy)− ψνx − ννy] .(3.9)

The Sumudu transform decomposition admits a solution in the form

ψ(x, y, τ) =

∞∑
n=0

ψn(x, y, τ) ,(3.10)

ν(x, y, τ) =

∞∑
n=0

νn(x, y, τ) ,(3.11)

P (x, y, τ) =

∞∑
n=0

Pn(x, y, τ) .(3.12)

Substituting (3.10), (3.11) and (3.12) in (3.8) and (3.9) we get

∞∑
n=0

ψn(x, y, τ) = ψ(x, y, 0) + Jqτ [−1

ρ

∞∑
n=0

Pnx + µ0(

∞∑
n=0

ψnxx +

∞∑
n=0

ψnyy)−
∞∑
n=0

ψnψnx −
∞∑
n=0

νnψny]

∞∑
n=0

νn(x, y, τ) = ν(x, y, 0) + Jqτ [−1

ρ

∞∑
n=0

Pny + µ0(

∞∑
n=0

νnxx +

∞∑
n=0

νnyy)−
∞∑
n=0

ψnνnx −
∞∑
n=0

νnνny] ,
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where ψnψnx = φn(ψ), νnψny = ηn(ψ), ψnνnx = βn(ν) and νnνny = γn(ν) are nonlinear
terms, and the above equations become:

∞∑
n=0

ψn(x, y, τ) = ψ(x, y, 0) + Jqτ [−1

ρ

∞∑
n=0

Pnx + µ0(

∞∑
n=0

ψnxx +

∞∑
n=0

ψnyy)−
∞∑
n=0

φn(ψ)−
∞∑
n=0

ηn(ψ)]

∞∑
n=0

ν(x, y, τ) = ν(x, y, 0) + Jqτ [−1

ρ

∞∑
n=0

Pny + µ0(

∞∑
n=0

νnxx +

∞∑
n=0

νnyy)−
∞∑
n=0

βn(ν)−
∞∑
n=0

γn(ν)] ,

where the nonlinear terms decomposed by the method of [20]. The technique shows a
series solution for ψ(x, y, τ) and ν(x, y, τ), we obtain

ψ(x, y, τ) =

∞∑
n=0

ψn(x, y, τ)

= ψ(x, y, 0) + Jqτ [−1

ρ

∞∑
n=0

Pnx + µ0(

∞∑
n=0

ψnxx +

∞∑
n=0

ψnyy)−
∞∑
n=0

φn(ψ)−
∞∑
n=0

ηn(ψ)]

=

∞∑
n=0

fn(x, y)
τnq

Γ(qn+ 1)
;(3.13)

ν(x, y, τ) =

∞∑
n=0

νn(x, y, τ)

= ν(x, y, 0) + Jqτ [−1

ρ

∞∑
n=0

Pny + µ0(

∞∑
n=0

νnxx +

∞∑
n=0

νnyy)−
∞∑
n=0

βn(ν)−
∞∑
n=0

γn(ν)]

=

∞∑
n=0

gn(x, y)
τnq

Γ(qn+ 1)
.(3.14)

Equating the terms on both sides of (3.13) and (3.14), we get the following relation

ψ0(x, y, τ) = ψ(x, y, 0) = f0(x, y)

ψn+1(x, y, τ) = Jqτ [−1

ρ

∞∑
n=0

Pnx + µ0(

∞∑
n=0

ψnxx +

∞∑
n=0

ψnyy)−
∞∑
n=0

φn(ψ)−
∞∑
n=0

ηn(ψ)]

=

∞∑
n=1

fn(x, y)
τnq

Γ(qn+ 1)
;

ν0(x, y, τ) = ν(x, y, 0) = g0(x, y)

νn+1(x, y, τ) = Jqτ [−1

ρ

∞∑
n=0

Pny + µ0(

∞∑
n=0

νnxx +

∞∑
n=0

νnyy)−
∞∑
n=0

βn(ν)−
∞∑
n=0

γn(ν)]

=

∞∑
n=1

gn(x, y)
τnq

Γ(qn+ 1)
;
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and the functions (fn)n=0... and (gn)n=0... are given by:

f0 = ψ0(x, y, τ) = ψ(x, y, 0)

f1 = −1

ρ
P0x + µ0(f0xx + f0yy)− f0f0x − g0f0y

f2 = −1

ρ
P1x + µ0(f1xx + f1yy)− f1f0x − f0f1x − g1f0y − g0f1y

f3 = −1

ρ
P2x + µ0(f2xx + f2yy)− f2f0x − f1f1x − f0f2x − g2f0y − g1f1y − g0f2y

f4 = −1

ρ
P3x + µ0(f3xx + f3yy)− f3f0x − f2f1x − f1f2x − f0f3x − g3f0y − g2f1y − g1f2y − g0f3y

...

g0 = ν0(x, y, τ) = ν(x, y, 0)

g1 = −1

ρ
P0y + µ0(g0xx + g0yy)− f0g0x − g0g0y

g2 = −1

ρ
P1y + µ0(g1xx + g1yy)− f1g0x − f0g1x − g1g0y − g0g1y

g3 = −1

ρ
P2y + µ0(g2xx + g2yy)− f2g0x − f1g1x − f0g2x − g2g0y − g1g1y − g0g2y

g4 = −1

ρ
P3y + µ0(g3xx + g3yy)− f3g0x − f2g1x − f1g2x − f0g3x − g3g0y − g2g1y − g1g2y − g0g3y .

Now applying the boundary condition for finding the value of Pnx and Pny. The solution
of P (x, y, τ) in series form is defined as :

P (x, y, τ) = P0+P1
τ q

Γ(q + 1)
+P2

τ2q

Γ(2q + 1)
+P3

τ3q

Γ(3q + 1)
+P4

τ4q

Γ(4q + 1)
+. . .+Pn

τnq

Γ(nq + 1)
,

and that the solution ψ(x, y, τ) and ν(x, y, τ) in series form is defined as:

ψ(x, y, τ) = f0 + f1
τ q

Γ(q + 1)
+ f2

τ2q

Γ(2q + 1)
+ f3

τ3q

Γ(3q + 1)
+ f4

τ4q

Γ(4q + 1)
+ . . .+ fn

τnq

Γ(nq + 1)
,

ν(x, y, τ) = g0 + g1
τ q

Γ(q + 1)
+ g2

τ2q

Γ(2q + 1)
+ g3

τ3q

Γ(3q + 1)
+ g4

τ4q

Γ(4q + 1)
+ . . .+ gn

τnq

Γ(nq + 1)
.

4. APPLICATION AND NUMERICAL RESULTS

We discuss the implementation of our proposed method and investigate its accuracy
on 2-dimensional time-fractional order nonlinear Navier-Stokes equation. The simplicity
and accurateness of the proposed technique is shown through the following example.

4.1. Application. Our problem consists of the system (3.1) and (3.2), where 0 ≤ x ≤ π,
0 ≤ y ≤ π and subject to the following conditions:

ψ(x, y, 0) = − cos(x) sin(y) = f0(x, y)

ν(x, y, 0) = sin(x) cos(y) = g0(x, y) ,
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with the boundary conditions:

ψ(x, 0, τ) = 0(4.1)

ν(0, y, τ) = 0 .(4.2)

Now, operating with the proposed Fractional Sumudu transform technique, we obtained
the following relation:

ψ0(x, y, τ) = ψ(x, y, 0) = f0(x, y) = − cos(x) sin(y)

ψn+1(x, y, τ) = Jqτ [−1

ρ
P0x + µ0(ψnxx + ψnyy)− φn(ψ)− ηn(ψ)]

=

∞∑
n=1

fn(x, y)
τnq

Γ(qn+ 1)
,

ν0(x, y, τ) = ν(x, y, 0) = g0(x, y) = sin(x) cos(y)

νn+1(x, y, τ) = Jqτ [−1

ρ
P0y + µ0(νnxx + νnyy)− βn(ν)− γn(ν)]

=

∞∑
n=1

gn(x, y)
τnq

Γ(qn+ 1)
,

and the functions (fn)n=0... and (gn)n=0... are given by:

f0 = ψ0(x, y, τ) = ψ(x, y, 0) = − cos(x) sin(y)

g0 = ν0(x, y, τ) = ν(x, y, 0) = sin(x) cos(y) ;

f1 = −1

ρ
P0x + µ0(f0xx + f0yy)− f0f0x − g0f0y(4.3)

= −1

ρ
P0x + 2µ0 cos(x) sin(y) + sin(x) cos(x)

g1 = −1

ρ
P0y + µ0(g0xx + g0yy)− f0g0x − g0g0y(4.4)

= −1

ρ
P0y − 2µ0 sin(x) cos(y) + sin(y) cos(y) .

Now we apply boundary conditions (4.1) and (4.2) for finding the value of P0x and P0y.
The boundary conditions are:

ψ1(x, 0, τ) = 0 = f1(4.5)

ν1(0, y, τ) = 0 = g1 .(4.6)

Substituting (4.5) and (4.6) in (4.3) and (4.4) we have:

P0x = ρ sin(x) cos(x)(4.7)

P0y = ρ sin(y) cos(y) .(4.8)

Integrating equation (4.7) with respect to x, we get:

(4.9) P0(x, y) = −ρ
4

cos(2x) + θ1(y) ,

where θ1(y) is a function of y only and to find it, and differentiate the last equation with
respect to y, we get:

P0y = θ1(y) .
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Substitute this equation in (4.8), then integrate the resultant equation with respect to y,
we get

θ1(y) = −ρ
4

cos(2y) .

Now substitute this equation in (4.9), we get

P0(x, y) = −ρ
4

cos(2x) + cos(2y) ,

and substitute (4.7) and (4.8) in (4.3) and (4.4) we have:

f1 = 2µ0 cos(x) sin(y)

g1 = −2µ0 sin(x) cos(y) .

Now, for f2, f3, f4, . . . , fn and g2, g3, g4, . . . , gn we repeat the same process, we get

f2 = −1

ρ
P1x + µ0(f1xx + f1yy)− f1f0x − f0f1x − g1f0y − g0f1y

= −1

ρ
P1x − 4µ2

0 cos(x) sin(y)− 4µ0 sin(x) cos(x)

= −(−2µ0)2 cos(x) sin(y) ;

f3 = −1

ρ
P2x + µ0(f2xx + f2yy)− f2f0x − f1f1x − f0f2x − g2f0y − g1f1y − g0f2y

= −1

ρ
P2x + 8µ3

0 cos(x) sin(y) + 12µ2
0 sin(x) cos(x)

= −(−2µ0)3 cos(x) sin(y) ;

f4 = −1

ρ
P3x + µ0(f3xx + f3yy)− f3f0x − f2f1x − f1f2x − f0f3x − g3f0y − g2f1y − g1f2y − g0f3y

= −1

ρ
P3x − 16µ4

0 cos(x) sin(y)− 32µ3
0 sin(x) cos(x)

= −(−2µ0)4 cos(x) sin(y)

...

fn = −(−2µ0)n cos(x) sin(y), ∀n ≥ 0

g2 = −1

ρ
P1y + µ0(g1xx + g1yy)− f1g0x − f0g1x − g1g0y − g0g1y

= −1

ρ
P1y + 4µ2

0 sin(x) cos(y)− 4µ0 sin(y) cos(y)

= (−2µ0)2 sin(x) cos(y) ;

g3 = −1

ρ
P2y + µ0(g2xx + g2yy)− f2g0x − f1g1x − f0g2x − g2g0y − g1g1y − g0g2y

= −1

ρ
P2y − 8µ3

0 sin(x) cos(y) + 12µ2
0 sin(y) cos(y)

= (−2µ0)3 sin(x) cos(y) ;
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g4 = −1

ρ
P3y + µ0(g3xx + g3yy)− f3g0x − f2g1x − f1g2x − f0g3x − g3g0y − g2g1y − g1g2y − g0g3y

= −1

ρ
P3y + 16µ4

0 sin(x) cos(y)− 32µ3
0 sin(y) cos(y)

= (−2µ0)4 sin(x) cos(y)

...

gn = (−2µ0)n sin(x) cos(y), ∀n ≥ 0

Applying boundary conditions (4.1) and (4.2), the above mention same process for find-
ing the values of Pnx and Pny, then the term P (x, y, τ) in series form are given as:

P (x, y, τ) = −ρ
4

(cos(2x) + cos(2y)) + µ0ρ(cos(2x) + cos(2y))
τ q

Γ(q + 1)

−3µ2
0ρ(cos(2x) + cos(2y))

τ2q

Γ(2q + 1)
+ 8µ3

0ρ(cos(2x) + cos(2y))
τ3q

Γ(3q + 1)
+ . . .

So that the solutions ψ(x, y, τ) and ν(x, y, τ) in series form are defined as:

ψ(x, y, τ) = f0 + f1
τ q

Γ(q + 1)
+ f2

τ2q

Γ(2q + 1)
+ f3

τ3q

Γ(3q + 1)
+ f4

τ4q

Γ(4q + 1)
+ . . .+ fn

τnq

Γ(nq + 1)
,

ν(x, y, τ) = g0 + g1
τ q

Γ(q + 1)
+ g2

τ2q

Γ(2q + 1)
+ g3

τ3q

Γ(3q + 1)
+ g4

τ4q

Γ(4q + 1)
+ . . .+ gn

τnq

Γ(nq + 1)
.

Now, the solution ψ(x, y, τ) and ν(x, y, τ) in closed form is defined as:

ψ(x, y, τ) =

∞∑
n=0

ψn(x, y, τ) = − cos(x) sin(y)

∞∑
n=0

(−2µ0τ
q)n

Γ(nq + 1)

= − cos(x) sin(y)Eq,1(−2µ0τ
q) ;

ν(x, y, τ) =

∞∑
n=0

νn(x, y, τ) = sin(x) cos(y)

∞∑
n=0

(−2µ0τ
q)n

Γ(nq + 1)

= sin(x) cos(y)Eq,1(−2µ0τ
q) ;

where Eq,r(x) =

∞∑
n=0

xn

Γ(qn+ r)
, (q > 0, r > 0), denotes the Mittag-Leffler function of

two parameters. Setting for special condition q = 1, notice that E1,1(x) = ex, we have:

ψ(x, y, τ) = −e−2µ0τ cos(x) sin(y)

ν(x, y, τ) = e−2µ0τ sin(x) cos(y) ,

which is an exact solution of the classical Navier-Stokes equation for the velocity field.
The solution of velocity field of the classical Navier Stokes equation is given in Fig: 1 and
the solution of 2-dimensional nonlinear Navier-Stokes equation with time-fractional order
q = 1, 0.8, 0.5, 0.2 is given in Figs: 2, 3, 4 and 5, respectively. The solution of P (x, y, τ) of
the Navier-Stokes equation is given in Fig: 6, with time-fractional order q = 1, 0.8, 0.5, 0.2.

4.2. Numerical solution for the time-fractional Nonlinear Navier-Stokes equation.
In this section we will study the solutions of the time fractional nonlinear Navier-Stokes
equation numerically in order to validate the efficiency and accuracy of the Fractional
Sumudu Transform Method FSTM, at first we will demonstrate the plots of solutions of
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(A) 1-a (B) 1-b

FIGURE 1. The exact solution of ψ and ν of the classical Navier-Stokes
equation at τ = 0.5 with the parameter µ0 = 0.5.

(A) 2-a (B) 2-b

FIGURE 2. Solution of ψ and ν of Navier-Stokes equation at τ = 0.5 with
the parameters q = 1 and µ0 = 0.5.

(A) 3-a (B) 3-b

FIGURE 3. Solution of ψ and ν of Navier-Stokes equation at τ = 0.5 with
the parameters q = 0.8 and µ0 = 0.5.

ψ(x, y, τ) and ν(x, y, τ) for the exact solutions at q = 1 in Fig. 1 then for the approx-
imate solution of ψ(x, y, τ), ν(x, y, τ) and P (x, y, τ) at q = 1, 0.8, 0.5, 0.2, in Figs. 2-6.
And secondly we will show the absolute errors Eψ and Eν between exact solutions and
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(A) 4-a (B) 4-b

FIGURE 4. Solution of ψ and ν of Navier-Stokes equation at τ = 0.5 with
the parameters q = 0.5 and µ0 = 0.5.

(A) 5-a (B) 5-b

FIGURE 5. Solution of ψ and ν of Navier-Stokes equation at τ = 0.5 with
the parameters q = 0.2 and µ0 = 0.5.

approximate solutions at q = 1 and for different values of x, y and τ in Table 1. Table 1
shows the obtained errors for the approximate solutions of the fractional Navier-Stokes
equation compared with the exact solution at q = 1, where

Eψ = |ψexact − ψ|
Eν = |νexact − ν|

for the different values of x, y and τ . It is obvious that for short time interval there are
small errors.

5. CONCLUSION

In this paper, a concept of the Sumudu transform and its derivative properties is suc-
cessfully applied for 2-dimensional time-fractional order nonlinear Navier-Stokes equa-
tion with variable pressure by using Fractional Sumudu Transform Method FSTM [3][5].
The proposed method are free from discretization, perturbation or restrictive conditions.
However, the proposed method need very small size of computation in comparison with
RPS method [14], FRDTM [13] and HPTM [21]. We anticipate that this work is a step
towards extending applications of the FSTM method to solve fractional problems with
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(A) 6-a (B) 6-b

(C) 6-c (D) 6-d

FIGURE 6. Solution of P of Navier-Stokes equation at τ = 0.5 with the
parameters q = 1.0, 0.8, 0.5, 0.2 and µ0 = 0.5, ρ = 0.5.

TABLE 1

x y τ Eψ Eν
π
4

π
4 0.2 0.4093666666 0.12900e− 5

π
4

π
4 0.5 0.3033854166 0.1200868e− 3

π
4

π
4 0.9 0.2054187500 0.21339202e− 2

π
4

2π
3 0.2 0.5013697257 0.9123e− 6

π
4

2π
3 0.5 0.3715697333 0.849144e− 4

π
4

2π
3 0.9 0.2515855606 0.15089095e− 2

2π
3

π
4 0.2 0.2894659460 0.15801e− 5

2π
3

π
4 0.5 0.2145258855 0.1470759e− 3

2π
3

π
4 0.9 0.1452529911 0.26135078e− 2

2π
3

2π
3 0.2 0.3545219330 0.11173e− 5

2π
3

2π
3 0.5 0.26277394782 0.1039984e− 3

2π
3

2π
3 0.9 0.1778978560 0.18480291e− 2

boundary conditions. The achieved outcomes are calculated using the symbolic calcu-
lus software Maple 16. This scheme FSTM [3][5] is clearly very efficient and powerful
technique in finding the analytical solutions as well as numerical solutions of nonlinear
system of fractional differential equations.
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