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PERIODIC OSCILLATION FOR A FOUR-NODE NEURAL NETWORK MODEL WITH
DISCRETE AND DISTRIBUTED DELAYS

CHUNHUA FENG

ABSTRACT. This paper investigates the existence of periodic oscillations for a four-node
neural recurrent network with discrete and distributed delays. Three theorems are pro-
vided to guarantee the existence of periodic oscillations for this model by using Chafee’s
limit cycle criterion. The criteria for selecting of the parameters in this network are derived.
Some simulation examples are presented to demonstrate the correctness of the results.

1. INTRODUCTION

It is well known that the studies of the dynamics behavior such as oscillations, chaos
and bifurcations on neural systems are very important, and various interesting results
have been reported. In 2007, Zhao and Wang have considered the Hopf bifurcation for
the following two-neuron Cohen-Grossberg system with distributed delays [1]:{

x′1(t) = −a1(x1(t))[b1(x1(t))−
∑2
j=1 t1j

∫ +∞
0

Sj(s)xj(t− s)ds+ J1],

x′2(t) = −a2(x2(t))[b2(x2(t))−
∑2
j=1 t2j

∫ +∞
0

Sj(s)xj(t− s)ds+ J2].

The stability of bifurcating periodic solutions and the direction of Hopf bifurcation are
investigated by using the normal form theory and the center manifold theorem. Liao et
al. have studied the bifurcation of a two-neuron system with distributed delays in the
frequency domain as follows [2]:{

y′1(t) = −y1(t) + a1f(y2(t))− b2
∫ +∞
0

F (r)f(y2(t− r))dr,
y′2(t) = −y2(t) + a2f(y1(t))− b1

∫ +∞
0

F (r)f(y1(t− r))dr.
(1.1)

where F (r) = µ2re−µr(µ > 0) is a strong kernel, f(yi)(i = 1, 2) are activation functions.
By applying the frequency domain method and analyzing the associated characteristic
equation, the existence of bifurcation parameter for system (1.1) is determined. Huang
et al., [3] considered a two-neuron with four delays network modeled by the following
nonlinear differential system{

x′(t) = −x(t) + a11f(x(t− τ1)) + a12f(y(t− τ2)),
y′(t) = −y(t) + a21f(x(t− τ3)) + a22f(y(t− τ4)).

(1.2)
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By using the normal form method and the center manifold theory, the linear stability and
Hopf bifurcation including its direction and stability of the model (1.2) were established
by the authors. Ding et al., [4] extended two-neuron system to a three-node recurrent
neural network model with four discrete time delays as follows: x′1(t) = −x1(t) + f(x2(t− τ2)),

x′2(t) = −x2(t) + f(x3(t− τ4)),
x′3(t) = −x3(t) + af(x1(t− τ1)) + bf(x2(t− τ3)).

By means of the method of multiple time scales, the normal forms associated with Hopf-
zero bifurcation, non-resonant and resonant double Hopf bifurcations were derived. Ha-
jihosseini et al., see [5] generalized two-neuron system (1.1) to the following three-node
network model with distributed delay:

y′1(t) = −y1(t) +
∫ +∞
0

F (r) tanh(y2(t− r))dr,
y′2(t) = −y2(t) +

∫ +∞
0

F (r) tanh(y3(t− r))dr,
y′3(t) = −y3(t) + w1

∫ +∞
0

F (r) tanh(y1(t− r))dr + w2

∫ +∞
0

F (r) tanh(y2(t− r))dr.

where w1 and w2 are parameters, F (r) is a strong kernel. The authors have discussed
the Hopf bifurcation and stability of the bifurcating periodic solutions by taking µ as a
bifurcating parameter. For an inertial four-neuron network model

v′′1 (t) = −v′1(t)− µ1v1(t) + a1f(v3(t− τ)) + a2f(v4(t− τ)),
v′′2 (t) = −v′2(t)− µ2v2(t) + b1f(v3(t− τ)) + b2f(v4(t− τ)),
v′′3 (t) = −v′3(t)− µ3v3(t) + c1f(v1(t− τ)) + c2f(v2(t− τ)),
v′′4 (t) = −v′4(t)− µ4v4(t) + d1f(v1(t− τ)) + d2f(v2(t− τ)).

(1.3)

Ge and Xu, see [6] have discussed the local stability for the trivial solution. Stability
switches and fold-Hopf bifurcations are found to occur in model (1.3). Dynamical behav-
iors are qualitatively classified in the neighbor of fold-Hopf bifurcation point. Bifurcating
periodic solutions are expressed analytically in an approximate form (Xiao et al., see
[7]).
Motivated by the above models, in this paper, we will discuss the following four-node
neural network model with discrete and distributed delays:

x′1(t) = −r1x1(t) + β11f(x1(t− τ1)) + β13f(x3(t− τ3)) + β14f(x4(t− τ4))
+γ2

∫ +∞
0

F (r)f(x2(t− r))dr,
x′2(t) = −r2x2(t) + β21f(x1(t− τ1)) + β22f(x2(t− τ2)) + β24f(x4(t− τ4))

+γ3
∫ +∞
0

F (r)f(x3(t− r))dr,
x′3(t) = −r3x3(t) + β31f(x1(t− τ1)) + β32f(x2(t− τ2)) + β33f(x3(t− τ3))

+γ4
∫ +∞
0

F (r)f(x4(t− r))dr,
x′4(t) = −r4x4(t) + β42f(x2(t− τ2)) + β43f(x3(t− τ3)) + β44f(x4(t− τ4))

+γ1
∫ +∞
0

F (r)f(x1(t− r))dr.
(1.4)

where the passive decay rates ri(i = 1, 2, 3, 4) are positive constants. f(xi) are activation
functions, βij , γi(i, j = 1, 2, 3, 4) are nonzero constants and F (r) = µ2re−µr(µ > 0) is a
strong kernel. Model (1.4) is a four-node recurrent neural network which includes dis-
tributed delays. Reminding that Liao et al., discussed an eight degree equation by using
the bifurcating approach to deal with system (1.1) (see [2], equation (42), page 550), we
should investigate a sixteen degree algebraic equation if we want to follow their bifurcat-
ing method. It is extremely hard to deal with a sixteen degree algebraic equation when
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the βij , γi(i, j = 1, 2, 3, 4) are different real numbers. In order to discuss the existence of
periodic solutions for system (1.4), we adopt Chafee’s criterion [8]. Indeed, system (1.4)
is in accordance with Chafee’s criterion (we refer to the appendix of Feng and Plamon-
don [9], for more information) and, in this context, as for the class of time delay system
which has a unique unstable equilibrium point, all solutions of the system are bounded,
and this particular instability of the unique equilibrium point and the boundedness of the
solutions will force the system (1.4) to generate a limit cycle, namely, a periodic solution.

2. PRELIMINARIES

For the activation functions f(xi), we assume that f(xi), (i = 1, 2, 3, 4) are continuous
bounded differentiable functions, satisfying:

f(0) = 0, uf(u) > 0 (u 6= 0) .(2.1)

The general activation functions such as tanh(x), arctan(x) satisfy condition (2.1). Ac-
cording to the linear chain trick [10], for system (1.4) with the strong kernel
F (r) = µ2re−µr(µ > 0), we have:∫ +∞

0

F (r)f(xi(t− r))dr =

∫ +∞

0

µ2re−µrf(xi(t− r))dr

= µ2e−µt(t

∫ t

−∞
eµsf(xi(s))ds−

∫ t

−∞
seµsf(xi(s))ds) , (i = 1, 2, 3, 4) .(2.2)

From (2.2) we get:

d

dt
(

∫ +∞

0

F (r)f(xi(t− r))dr) =

= −µ
∫ +∞

0

µ2re−µrf(xi(t− r))dr + µ2e−µt
∫ t

−∞
e−µsf(xi(s))ds

= −µ
∫ +∞

0

F (r)f(xi(t− r))dr + µ2e−µt
∫ t

−∞
e−µsf(xi(s))ds .

Thus, taking the derivative on both sides of system (1.4), and setting f(xi(t−τi)) = f(xi)
(i = 1, 2, 3, 4) we obtain:

x′′1(t) = −r1x′1(t) + β11f
′(x1)x

′
1(t− τ1) + β13f

′(x3)x
′
3(t− τ3) + β14f

′(x4)x
′
4(t− τ4)

−µγ2
∫ +∞
0

F (r)f(x2(t− r))dr + γ2µ
2e−µt

∫ t
−∞ eµsf(x2(s))ds,

x′′2(t) = −r2x′2(t) + β21f
′(x1)x

′
1(t− τ1) + β22f

′(x2)x
′
2(t− τ2) + β24f

′(x4)x
′
4(t− τ4)

−µγ3
∫ +∞
0

F (r)f(x3(t− r))dr + γ3µ
2e−µt

∫ t
−∞ eµsf(x3(s))ds,

x′′3(t) = −r3x′3(t) + β31f
′(x1)x

′
1(t− τ1) + β32f

′(x2)x
′
2(t− τ2) + β33f

′(x3)x
′
3(t− τ3)

−µγ4
∫ +∞
0

F (r)f(x4(t− r))dr + γ4µ
2e−µt

∫ t
−∞ eµsf(x4(s))ds,

x′′4(t) = −r4x′4(t) + β42f
′(x2)x

′
2(t− τ2) + β43f

′(x3)x
′
3(t− τ3) + β44f

′(x4)x
′
4(t− τ4)

−µγ1
∫ +∞
0

F (r)f(x1(t− r))dr + γ1µ
2e−µt

∫ t
−∞ eµsf(x1(s))ds .

(2.3)



50 C. FENG

From (1.4), the system (2.3) can be written as the follows:

x′′1(t) = −r1x′1(t) + β11f
′(x1)x

′
1(t− τ1) + β13f

′(x3)x
′
3(t− τ3) + β14f

′(x4)x
′
4(t− τ4)

−µ(x′1(t) + r1x1(t)− β11f(x1)− β13f(x3)− β14f(x4)) + γ2µ
2e−µt

∫ t
−∞ eµsf(x2(s))ds,

x′′2(t) = −r2x′2(t) + β21f
′(x1)x

′
1(t− τ1) + β22f

′(x2)x
′
2(t− τ2) + β24f

′(x4)x
′
4(t− τ4)

−µ(x′2(t) + r2x2(t)− β21f(x1)− β22f(x2)− β24f(x4)) + γ3µ
2e−µt

∫ t
−∞ eµsf(x3(s))ds,

x′′3(t) = −r3x′3(t) + β31f
′(x1)x

′
1(t− τ1) + β32f

′(x2)x
′
2(t− τ2) + β33f

′(x3)x
′
3(t− τ3)

−µ(x′3(t) + r3x3(t)− β31f(x1)− β32f(x2)− β33f(x3)) + γ4µ
2e−µt

∫ t
−∞ eµsf(x4(s))ds,

x′′4(t) = −r4x′4(t) + β42f
′(x2)x

′
2(t− τ2) + β43f

′(x3)x
′
3(t− τ3) + β44f

′(x4)x
′
4(t− τ4)

−µ(x′4(t) + r4x4(t)− β42f(x2)− β43f(x3)− β44f(x4)) + γ1µ
2e−µt

∫ t
−∞ eµsf(x1(s))ds.

(2.4)

Noting that

d

dt
(µ2e−µt

∫ t

−∞
eµsf(xi(s))ds) = −µ(µ2e−µt

∫ t

−∞
eµsf(xi(s))ds)+µ

2f(xi(t)) , (i = 1, 2, 3, 4)

and taking the derivative again on both sides of system (2.4), we have:

x′′′1 (t) = −r1x′′1(t) + β11f
′′(x1)[x

′
1(t− τ1)]2 + β11f

′(x1)x
′′
1(t− τ1) + β13f

′′(x3)[x
′
3(t− τ3)]2

+β13f
′(x3)x

′′
3(t− τ3) + β14f

′′(x4)[x
′
4(t− τ4)]2 + β14f

′(x4)x
′′
4(t− τ4)− µ[x′′1(t) + r1x

′
1(t)

−β11f ′(x1)x′1(t− τ1)− β13f ′(x3)x′3(t− τ3)− β14f ′(x4)x′4(t− τ4)]
−µγ2µ2e−µt

∫ t
−∞ eµsf(x2(s))ds+ γ2µ

2f(x2(t)),

x′′′2 (t) = −r1x′′2(t) + β21f
′′(x1)[x

′
1(t− τ1)]2 + β21f

′(x1)x
′′
1(t− τ1) + β22f

′′(x2)[x
′
2(t− τ2)]2

+β22f
′(x2)x

′′
2(t− τ2) + β24f

′′(x4)[x
′
4(t− τ4)]2 + β24f

′(x4)x
′′
4(t− τ4)− µ[x′′2(t) + r2x

′
2(t)

−β21f ′(x1)x′1(t− τ1)− β22f ′(x2)x′2(t− τ2)− β24f ′(x4)x′4(t− τ4)]
−µγ3µ2e−µt

∫ t
−∞ eµsf(x3(s))ds+ γ3µ

2f(x3(t)),

x′′′3 (t) = −r3x′′3(t) + β31f
′′(x1)[x

′
1(t− τ1)]2 + β31f

′(x1)x
′′
1(t− τ1) + β32f

′′(x2)[x
′
2(t− τ2)]2

+β32f
′(x2)x

′′
2(t− τ2) + β33f

′′(x3)[x
′
3(t− τ3)]2 + β33f

′(x3)x
′′
3(t− τ3)− µ[x′′3(t) + r3x

′
3(t)

−β31f ′(x1)x′1(t− τ1)− β32f ′(x2)x′2(t− τ2)− β33f ′(x3)x′3(t− τ3)]
−µγ4µ2e−µt

∫ t
−∞ eµsf(x4(s))ds+ γ4µ

2f(x4(t)),

x′′′4 (t) = −r4x′′4(t) + β42f
′′(x2)[x

′
2(t− τ2)]2 + β42f

′(x2)x
′′
2(t− τ2) + β43f

′′(x3)[x
′
3(t− τ3)]2

+β43f
′(x3)x

′′
3(t− τ3) + β44f

′′(x4)[x
′
4(t− τ4)]2 + β44f

′(x4)x
′′
4(t− τ4)− µ[x′′4(t) + r4x

′
4(t)

−β42f ′(x2)x′2(t− τ2)− β43f ′(x3)x′3(t− τ3)− β44f ′(x4)x′4(t− τ4)]
−µγ1µ2e−µt

∫ t
−∞ eµsf(x1(s))ds+ γ1µ

2f(x1(t)) .

(2.5)

Also from (2.4), we have that:

γ2µ
2e−µt

∫ t

−∞
eµsf(x2(s))ds =

= x′′1(t) + r1x
′
1(t)− β11f ′(x1)x′1(t− τ1)− β13f ′(x3)x′3(t− τ3)

−β14f ′(x4)x′4(t− τ4) + µ(x′1(t) + r1x1(t)− β11f(x1)− β13f(x3)− β14f(x4)) .(2.6)

Next, we combine (2.5) and (2.6). By setting x5(t) = x′1(t), x6(t) = x′2(t), x7(t) =
x′3(t), x8(t) = x′4(t), x9(t) = x′′1(t), x10(t) = x′′2(t), x11(t) = x′′3(t), x12(t) = x′′4(t), we
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have the equivalent version of system (1.4) as follows:

x′1(t) = x5(t),
x′2(t) = x6(t),
x′3(t) = x7(t),
x′4(t) = x8(t),
x′5(t) = x9(t),
x′6(t) = x10(t),
x′7(t) = x11(t),
x′8(t) = x12(t),
x′9(t) = −µ2r1x1(t)− (µ2 + 2µr1)x5(t)− (2µ+ r1)x9(t) + 2µβ11f

′(x1)x5(t− τ1)
+2µβ13f

′(x3)x7(t− τ3) + 2µβ14f
′(x4)x8(t− τ4) + β11f

′(x1)x9(t− τ1)
+β13f

′(x3)x11(t− τ3) + β14f
′(x4)x12(t− τ4) + β11f

′′(x1)[x5(t− τ1)]2
+β13f

′′(x3)[x7(t− τ3)]2 + β14f
′′(x4)[x8(t− τ4)]2 + µ2β11f(x1)

+µ2β13f(x3) + µ2β14f(x4) + γ2µ
2f(x2(t)),

x′10(t) = −µ2r2x2(t)− (µ2 + 2µr2)x6(t)− (2µ+ r2)x10(t) + 2µβ21f
′(x1)x5(t− τ1)

+2µβ22f
′(x2)x6(t− τ2) + 2µβ24f

′(x4)x8(t− τ4) + β21f
′(x1)x9(t− τ1)

+β22f
′(x2)x10(t− τ2) + β24f

′(x4)x12(t− τ4) + β21f
′′(x1)[x5(t− τ1)]2

+β22f
′′(x2)[x6(t− τ2)]2 + β24f

′′(x4)[x8(t− τ4)]2 + µ2β21f(x1)
+µ2β22f(x2) + µ2β24f(x4) + γ3µ

2f(x3(t)),
x′11(t) = −µ2r3x3(t)− (µ2 + 2µr3)x7(t)− (2µ+ r3)x11(t) + 2µβ31f

′(x1)x5(t− τ1)
+2µβ32f

′(x2)x6(t− τ2) + 2µβ33f
′(x3)x7(t− τ3) + β31f

′(x1)x9(t− τ1)
+β32f

′(x2)x10(t− τ2) + β33f
′(x3)x11(t− τ3) + β31f

′′(x1)[x5(t− τ1)]2
+β32f

′′(x2)[x6(t− τ2)]2 + β33f
′′(x3)[x7(t− τ3)]2 + µ2β31f(x1)

+µ2β32f(x2) + µ2β33f(x3) + γ4µ
2f(x4(t)),

x′12(t) = −µ2r4x4(t)− (µ2 + 2µr4)x8(t)− (2µ+ r4)x12(t) + 2µβ42f
′(x2)x6(t− τ2)

+2µβ43f
′(x3)x7(t− τ3) + 2µβ44f

′(x4)x8(t− τ4) + β42f
′(x2)x10(t− τ2)

+β43f
′(x3)x11(t− τ3) + β44f

′(x4)x12(t− τ4) + β42f
′′(x2)[x6(t− τ2)]2

+β43f
′′(x3)[x7(t− τ3)]2 + β44f

′′(x4)[x8(t− τ4)]2 + µ2β42f(x2)
+µ2β43f(x3) + µ2β44f(x4) + γ1µ

2f(x1(t)) .

(2.7)

The linearized system of (2.7) can be written in a matrix form:

X ′(t) = AX(t) +BX(t− τ)(2.8)

where X(t) = [x1(t), x2(t), x3(t), · · · , x12(t)]T and
X(t− τ) = [x1(t− τ1), x2(t− τ2), x3(t− τ3), · · · , x11(t− τ3), x12(t− τ4)]T . Both A and B
are 12 × 12 matrices as follows:

A =



0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
a91 a92 0 0 a95 0 0 0 a99 0 0 0
0 a102 a103 0 0 a106 0 0 0 a1010 0 0
0 0 a113 a114 0 0 a117 0 0 0 a1111 0
a121 0 0 a124 0 0 0 a128 0 0 0 a1212


,
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B =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
b91 0 b93 b94 b95 0 b97 b98 b99 0 b911 b912
b101 b102 0 b104 b105 b106 0 b108 b109 b1010 0 b1012
b111 b112 b113 0 b115 b116 b117 0 b119 b1110 b1111 0
0 b122 b123 b124 0 b126 b127 b128 0 b1210 b1211 b1212


.

where a91 = −µ2r1, a92 = γ2µ
2α2, a95 = −(µ2 + 2µr1), · · · , a128 = −(µ2 + 2µr4), a1212 =

−(2µ+ r4), b91 = µ2β11α1, b93 = µ2β13α3, · · · , b1211 = β43α3, b1212 = β44α4.

Lemma 2.1. All solutions of system (1.4) are bounded.

Proof. From the condition (2.1), the activation functions are bounded, and assuming that
|f(xi)| ≤ Ni , (i = 1, 2, 3, 4), then we have:∣∣∣∣∫ +∞

0

F (r)f(xi(t− r))dr
∣∣∣∣ ≤ Ni ∫ +∞

0

µ2re−µrdr = Ni , (i = 1, 2, 3, 4) .

From (1.4), noting that ri(i = 1, 2, 3, 4) are positive real numbers, we obtain
d|x1(t)|
dt ≤ −r1|x1(t)|+ |β11|N1 + |β13|N3 + |β14|N4 + γ2N2,

d|x2(t)|
dt ≤ −r2|x2(t)|+ |β21|N1 + |β22|N2 + |β24|N4 + γ3N3,

d|x3(t)|
dt ≤ −r3|x3(t)|+ |β31|N1 + |β32|N2 + |β33|N3 + γ4N4,

d|x4(t)|
dt ≤ −r4|x4(t)|+ |β42|N2 + |β43|N3 + |β44|N4 + γ1N1.

Thus, 

|x1(t)| ≤
|β11|N1 + |β13|N3 + |β14|N4 + γ2N2

r1
,

|x2(t)| ≤
|β21|N1 + |β22|N2 + |β24|N4 + γ3N3

r2
,

|x3(t)| ≤
|β31|N1 + |β32|N2 + |β33|N3 + γ4N4

r3
,

|x4(t)| ≤
|β42|N2 + |β43|N3 + |β44|N4 + γ1N1

r4
.

This means that the solutions of system (1.4) are uniformly bounded. �

Lemma 2.2. If the matrix C =

 β11 γ2 β13 β14
β21 β22 γ3 β24
β31 β32 β33 γ4
γ1 β42 β43 β44

 is not a positive definite matrix,

then the system (1.4) has a unique equilibrium point.
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Proof. Note that system (2.7) is equivalent to system (1.4). An equilibrium point
x∗ = (x∗1, x

∗
2, x
∗
3, · · · , x∗12)T is a solution of the following algebraic equation:

x∗5 = 0,
x∗6 = 0,
x∗7 = 0,
x∗8 = 0,
x∗9 = 0,
x∗10 = 0,
x∗11 = 0,
x∗12 = 0,
−µ2r1x

∗
1 − (µ2 + 2µr1)x

∗
5 − (2µ+ r1)x

∗
9 + 2µβ11f

′(x∗1)x
∗
5 + 2µβ13f

′(x∗3)x
∗
7

+2µβ14f
′(x∗4)x

∗
8 + β11f

′(x∗1)x
∗
9 + β13f

′(x∗3)x
∗
11 + β14f

′(x∗4)x
∗
12

+β11f
′′(x∗1)[x

∗
5]

2 + β13f
′′(x∗3)[x

∗
7]

2 + β14f
′′(x∗4)[x

∗
8]

2 + µ2β11f(x
∗
1)

+µ2β13f(x
∗
3) + µ2β14f(x

∗
4) + γ2µ

2f(x∗2) = 0,
−µ2r2x

∗
2 − (µ2 + 2µr2)x

∗
6 − (2µ+ r2)x

∗
10 + 2µβ21f

′(x∗1)x
∗
5 + 2µβ22f

′(x∗2)x
∗
6

+2µβ24f
′(x∗4)x

∗
8 + β21f

′(x∗1)x
∗
9 + β22f

′(x∗2)x
∗
10 + β24f

′(x∗4)x
∗
12

+β21f
′′(x∗1)[x

∗
5]

2 + β22f
′′(x∗2)[x

∗
6]

2 + β24f
′′(x∗4)[x

∗
8]

2 + µ2β21f(x
∗
1)

+µ2β22f(x
∗
2) + µ2β24f(x

∗
4) + γ3µ

2f(x∗3) = 0,
−µ2r3x

∗
3 − (µ2 + 2µr3)x

∗
7 − (2µ+ r3)x

∗
11 + 2µβ31f

′(x∗1)x
∗
5 + 2µβ32f

′(x∗2)x
∗
6

+2µβ33f
′(x∗3)x

∗
7 + β31f

′(x∗1)x
∗
9 + β32f

′(x∗2)x
∗
10 + β33f

′(x∗3)x
∗
11

+β31f
′′(x∗1)[x

∗
5]

2 + β32f
′′(x∗2)[x

∗
6]

2 + β33f
′′(x∗3)[x

∗
7]

2 + µ2β31f(x
∗
1)

+µ2β32f(x
∗
2) + µ2β33f(x

∗
3) + γ4µ

2f(x∗4) = 0,
−µ2r4x

∗
4 − (µ2 + 2µr4)x

∗
8 − (2µ+ r4)x

∗
12 + 2µβ42f

′(x∗2)x
∗
6 + 2µβ43f

′(x∗3)x
∗
7

+2µβ44f
′(x∗4)x

∗
8 + β42f

′(x∗2)x
∗
10 + β43f

′(x∗3)x
∗
11 + β44f

′(x∗4)x
∗
12

+β42f
′′(x∗2)[x

∗
6]

2 + β43f
′′(x∗3)[x

∗
7]

2 + β44f
′′(x∗4)[x

∗
8]

2 + µ2β42f(x
∗
2)

+µ2β43f(x
∗
3) + µ2β44f(x

∗
4) + γ1µ

2f(x∗1) = 0.

(2.9)

Since x∗5 = 0, x∗6 = 0, · · · , x∗12 = 0, system (2.9) changes to:
−µ2r1x

∗
1 + µ2β11f(x

∗
1) + µ2β13f(x

∗
3) + µ2β14f(x

∗
4) + γ2µ

2f(x∗2) = 0,
−µ2r2x

∗
2 + µ2β21f(x

∗
1) + µ2β22f(x

∗
2) + µ2β24f(x

∗
4) + γ3µ

2f(x∗3) = 0,
−µ2r3x

∗
3 + µ2β31f(x

∗
1) + µ2β32f(x

∗
2) + µ2β33f(x

∗
3) + γ4µ

2f(x∗4) = 0,
−µ2r4x

∗
4 + µ2β42f(x

∗
2) + µ2β43f(x

∗
3) + µ2β44f(x

∗
4) + γ1µ

2f(x∗1) = 0.

(2.10)

System (2.10) can be written as follows:

CF (X∗) = DX∗(2.11)

where X∗ = (x∗1, x
∗
2, x
∗
3, x
∗
4)
T , F (X∗) = (f(x∗1), f(x

∗
2), f(x

∗
3), f(x

∗
4))

T , and the matrix D
is a diagonal matrix, D = diag(r1, r2, r3, r4). From condition (2.1), when x∗i > 0 then
f(x∗i ) > 0, when x∗i < 0 then f(x∗i ) < 0 , (i = 1, 2, 3, 4). Noting that ri > 0 , (i =
1, 2, 3, 4), and C is not a positive definite matrix. Therefore, on the one hand, the right
hand of (2.11) is greater than zero as x∗i > 0, its left hand is not guaranteed to be
greater than zero. On the other hand, while the right hand of (2.11) is less than zero
as x∗i < 0 , (i = 1, 2, 3, 4), its left hand cannot be proved to be less than zero. In this
context, condition f(0) = 0 implies that system (2.11), namely (2.9), has a unique zero
solution. Thus, system (1.4) has a unique equilibrium point and it is exactly the zero
point. Obviously, the zero point is not only the equilibrium point of (2.9) but also the
equilibrium point of (2.8). �
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We adopt the following norms of vectors and matrices in this paper [11]:

‖x(t)‖ =
12∑
i=1

|xi(t)| , ‖A‖ = max
1≤j≤12

12∑
i=1

|aij | , the measure µ(A) of a matrix A is defined by

µ(A) = lim
θ→0+

‖I + θA‖ − 1

θ
, which for the chosen norms reduces to µ(A) = max

1≤j≤12
[ajj +

12∑
i=1,i6=j

|aij |]. A > 0 (respectively, A < 0) which indicates that A is a positive (negative)

definite matrix.

Definition 2.1. The trivial solution of system (2.9) is unstable, if there exists at least one
component of the trivial solution which is unstable.

3. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 3.1. Assume that the system (1.4) has a unique equilibrium point for a given set
of parameters. If the following condition holds

(3.1) (‖ B ‖)eτ∗ exp(−τ∗|µ(A)|) > 1

where τ∗ = min{τ1, τ2, ..., τ4} , then the unique equilibrium point of the system (1.4) is
unstable and it generates a limit cycle, namely, a periodic solution.

Proof. According to Chafee’s criterion, we must prove that the unique equilibrium point
of system (1.4) is unstable. Since system (2.7) is an equivalent system of system (1.4),
we shall prove that the unique equilibrium point of system (2.7) which is exactly the zero
point is unstable. Noting that system (2.8) is a linearized version of system (2.7). Thus,
in order to prove the instability of the equilibrium point of system (2.7), first, we prove
that the equilibrium point is unstable in system (2.8).

Consider a special case of system (2.8) as follows:

X ′(t) = AX(t) +BX(t− τ∗)(3.2)

where τ∗ = min{τ1, τ2, τ3, τ4}. Noting that |xi(t)| = xi(t) as xi(t) > 0 and |xi(t)| = −xi(t)
as xi(t) < 0 , (i = 1, 2, · · · , 12). From (3.2), when each xi(t) > 0, we have:

d|X(t)|
dt

= AX(t) +BX(t− τ∗)

and each xi(t) < 0 one can obtain

d|X(t)|
dt

= A(−X(t)) +B(−X(t− τ∗)) ,

noting that a99 < 0, a1010 < 0, a1111 < 0, a1212 < 0. Therefore, we have:

d(
∑12
i=1 |xi(t)|)
dt

≤ µ(A)
12∑
i=1

|xi(t)|+ ‖ B ‖
12∑
i=1

|xi(t− τ∗)| .

Specially, for the scalar time delay differential equation:

(3.3)
dy(t)

dt
= µ(A)y(t)+ ‖ B ‖ y(t− τ∗) ,
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if the unique equilibrium of system (3.3) is stable, then the characteristic equation asso-
ciated with (3.3) given by:

(3.4) λ = µ(A)+ ‖ B ‖ e−λτ∗

will have a real negative root say λ0, and we have from (3.4):

|λ0| ≥‖ B ‖ e|λ0|τ∗ − |µ(A)| .

Using the formula ex ≥ ex for x ≥ 0 one can get

1 ≥ ‖ B ‖ e
|λ0|τ∗

|µ(A)|+ |λ0|
=
‖ B ‖ τ∗e−|µ(A)|τ∗e(|µ(A)|+|λ0|)τ∗

(|µ(A)|+ |λ0|)τ∗
≥ (‖ B ‖ eτ∗)e−τ∗|µ(A)| .

The last inequality contradicts Eq.(3.1). Hence, our claim regarding the instability of
the equilibrium point of system (3.3) is valid. Based on the comparison theorem of
differential equation, we have

∑12
i=1 |xi(t)| ≤ y(t). According to the definition of the

instability of the trivial solution, for an arbitrary ε > 0, there exists a sequence {tk}+∞1
such that |y(tk)| > ε, where y(t) represents the trivial solution of system (3.3). Since∑12
i=1 |xi(t)| ≤ y(t), this means that there exists a subsequence {tkj} of the sequence {tk}

such that
∑12
i=1 |xi(tkj )| = y(tkj ). Therefore, there exists at least one xi(t), and without

loss of generality, we assume that |x1(tkj )| >
ε

12
. Since ε is an arbitrary sufficiently small

positive number,
ε

12
is also an arbitrary sufficiently small positive number. Thus, x1(t) is

unstable. According to the definition 2.1, the instability of the component x1(t) implies
that the trivial solution of (3.2) is unstable.

Now we prove that the trivial solution of system (2.8) is also unstable. System (3.2)
is a special case of (2.8). Obviously, xi(t − τ∗) is equivalent to xi(t − τi)(τ∗ ≤ τi)(i =

1, 2, · · · , 12) as t(> 0) is sufficiently large. So, we still have |x1(tkj )| >
ε

12
as tkj is

sufficiently large (tkj > τ∗ + τ̃ , where τ̃ = max{τ1, τ2, τ3, τ4}). This means that the trivial
solution of system (2.8) is unstable. We can then prove that the trivial solution of system
(2.7) is unstable. Indeed, noting that system (2.8) is a linearized version of system (2.7),
in other words, system (2.7) is a disturbing system of (2.8). However, the disturbing
term only affects the final four equations of system (2.7). The solution x1(t) to x8(t)
are the same, both in system (2.7) and (2.8). From definition 2.1, the instability of
component x1(t) both in system (2.7) and (2.8) suggests that the trivial solution of system
(2.7)(thus the equivalent system (1.4)) is unstable. Since all solutions of system (1.4) are
bounded, the instability of the unique equilibrium point together with the boundedness
of the solutions lead system (1.4) to generate a limit cycle, namely, a periodic solution
based on Chafee’s criterion. �

Theorem 3.2. Assume that system (1.4) has a unique equilibrium point for given parame-
ters. If the following condition holds:

(3.5) ‖ B ‖ +µ(A) > 0

then the unique equilibrium point of system (1.4) is unstable. System (1.4) generates a limit
cycle, namely, a periodic solution.

Proof. We still prove that the trivial solution of system (3.2) is unstable. The characteristic
equation of system (3.4) is the following:

λ = µ(A)+ ‖ B ‖ e−λτ∗ ,
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namely

(3.6) λ− µ(A)− ‖ B ‖ e−λτ∗ = 0 ,

and there exists a positive characteristic root of equation (3.6) under the restrictive con-
dition (3.5). Indeed, let f(λ) = λ − µ(A)− ‖ B ‖ e−λτ∗ , then f(λ) is a continuous
function of λ. Obviously, f(0) = −(µ(A)+ ‖ B ‖) < 0, and while as λ > 0 is suf-
ficiently large, e−λτ∗ will be sufficiently small. Therefore, there exists a λ̃ > 0 such
that f(λ̃) = λ̃ − µ(A)− ‖ B ‖ e−λ̃τ∗ > 0. According to the well known Interme-
diate Value Theorem, there exists a positive value of λ say λ0, λ0 ∈ (0, λ̃) such that
λ0 − µ(A)− ‖ B ‖ e−λ0τ∗ = 0. In other words, equation (3.6) has a positive charac-
teristic root. Therefore, the trivial solution of system (3.3) is unstable. Similar to the
proof of Theorem 3.1, the unique equilibrium point of system (2.7) (or the equivalent
system (1.4)) is unstable. According to the Chafee’s criterion, system (1.4) has a limit
cycle, namely, a periodic solution. �

Theorem 3.3. Assume that system (1.4) has a unique equilibrium point for a given set of
parameters. Let α1, α2, · · · , α12 represent the eigenvalues of matrix A, and ρ1, ρ2, · · · , ρ12
the eigenvalues of matrix B, then if there exists one eigenvalue αj which is a positive real
number, then the unique equilibrium of system (1.4) is unstable. System (1.4) generates a
limit cycle, namely, a periodic solution.

Proof. Considering the system (3.2), its characteristic equation is as follows:

(3.7) det(λI12 −A−Be−λτ∗) = 0 ,

where I12 is a 12×12 identity matrix. Since the eigenvalues of matrixA are α1, α2, · · · , α12,
and the eigenvalues of matrix B are ρ1, ρ2, · · · , ρ12, equation (3.7) changes to the follow-
ing:

12∏
i=1

(λ− αi − ρie−λτ∗) = 0 .

Obviously, there is a ρj = 0. Without loss of generality, assuming that ρ1 = 0, and α1 is a
positive real eigenvalue, then we have

λ− α1 = 0 .

This means that there exists a positive eigenvalue of system (3.7), implying that the trivial
solution of system (3.2) is unstable. As we did for Theorem 3.1, one can prove that system
(1.4) has a limit cycle, namely, a periodic solution. �

4. SIMULATION RESULT

These simulations were performed by using the equivalent system (2.7) of (1.4). Firstly
we selected the activation function as f(x) = tanh(x). Then f ′(x) = 1−tanh2(x) , f ′′(x) =
2(tanh3(x)− tanh(x)), so f ′(0) = 1 , and f ′′(0) = 0 . The parameters µ = 0.58 , r1 = 0.15 ,
r2 = 0.25 , r3 = 0.36 , r4 = 0.24 ; β11 = 1.65 , β13 = 2.75 , β14 = 1.35 , β21 = 3.45 ,
β22 = 1.85 , β24 = 2.35 , β31 = 1.32 , β32 = 1.42 , β33 = 1.28 , β42 = 2.42 , β43 = 1.16 ,
β44 = 2.95; γ1 = 3.95 , γ2 = 1.25 , γ3 = 0.75 , γ4 = 0.64 . The characteristic values of matrix
C are 2.1832, 6.2940,−0.3736 ± 1.7074i. Therefore, C is not a positive definite matrix.
From Lemma 2.1, this system has a unique equilibrium point, namely, the zero point.
The characteristic values of matrix A are 0.2993,−1.2335, 0.1950 ± 0.3623i,−0.0886 ±
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0.6297i,−0.4730 ± 0.7303i,−0.8543 ± 0.6348i,−1.1320 ± 0.3673i. Obviously, there is a
positive characteristic value 0.2993 in matrix A. The solutions are oscillatory based on
Theorem 3.3 (see Fig.1). In order to see the effect of µ, we changed µ from 0.58
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Fig.1 Oscillation behavior of the solutions, delays: [1.5, 1.8, 2.2, 1.4], mu=0.58.
activation function: tanh(x).
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Fig.2 Oscillation behavior of the solutions, delays: [1.5, 1.8, 2.2, 1.4], mu=2.5.
activation function: tanh(x).
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to 2.5, keeping the other parameters as the above, the oscillation was maintained. In
this case, µ(A) = 9.375 and ‖ B ‖ +µ(A) > 0. The conditions of Theorem 3.2 were
satisfied. However, the oscillatory amplitude and frequency changed (see Fig.2). Then
we selected activation function as f(x) = arctan(x), keeping all parameters similar to
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those used to generate Fig.2, , we also have f ′(0) = 1 and f ′′(0) = 0 . We see that
the oscillatory frequency and amplitude remain the same (see Fig.3), implying that the
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Fig.3 Oscillation behavior of the solutions, delays: [1.5, 1.8, 2.2, 1.4], mu=2.5.
activation function: arctan (x).
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oscillatory behavior is just a little effected by the activation functions. However, when we
increase the time delays, the oscillatory frequency changes greatly (see Fig.4).
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Fig.4 Oscillation behavior of the solutions, delays: [4.5, 4.8, 5.2, 4.4], mu=2.5.
activation function: arctan(x).
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