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DECOMPOSING A GRAPH INTO TWO SUBGRAPHS
WITH PRESCRIBED PARITIES OF VERTEX DEGREES

MIRKO PETRUŠEVSKI1 AND RISTE ŠKREKOVSKI

ABSTRACT. Given a finite graphG and a parity 2-dimensional vector-function π = (π1, π2) :
V (G)→ {0, 1}×{0, 1}, a parity decomposition of (G, π) is an ordered 2-partition (E1, E2)

of E(G) such that the degree functions dG[Ei]
(i = 1, 2) of the subgraphs induced by the

partite sets are in parity accordance with the respective components of π, i.e., dG[Ei]
(v) ≡2

πi(v) for each vertex v ofG[Ei]. We show that the decision problem whether (G, π) admits
a parity decomposition is solvable in polynomial time. Contrarily, we conjecture that the
analogous decision problem involving a parity 3-dimensional vector-function and concern-
ing the existence of an adequate ordered 3-partition is not solvable in polynomial time.

1. INTRODUCTION

All considered graphs are finite, loops and multiple edges are allowed. For general
terminology and notation we refer the reader to [1] or to the end of this section. A graph
is said to be odd (resp. even) if all its vertex degrees are odd (resp. even). Recently, Kano
et al. [3] characterized the family of graphs that can be decomposed into (at most) two
odd subgraphs and gave a polynomial time algorithm for finding such a decomposition
or showing its non-existence. The same paper contains a structural characterization of
graphs that can be decomposed into an odd subgraph and an even subgraph. The present
article acts as a follow-up to [3]. Namely, we generalize the above mentioned results of
Kano et al. through the notion ’parity decomposition’ defined as follows.

Given a graphG, a parity 2-dimensional vector-function π is an arbitrary assignment π =
(π1, π2) : V (G)→ {0, 1}×{0, 1}. A parity decomposition of (G, π) is an ordered 2-partition
(E1, E2) of E(G) such that the degree functions dG[Ei] (i = 1, 2) of the subgraphs induced
by the partite sets are in parity accordance with the respective components of π, i.e., are
such that the congruence dG[Ei](v) ≡2 πi(v) holds for each vertex v of G[Ei]. We prove
that the decision problem whether (G, π) admits a parity decomposition is solvable in
polynomial time. Contrarily, we conjecture that the analogous decision problem involving
a parity 3-dimensional vector-function and dealing with the existence of an adequate
ordered 3-partition is not solvable in polynomial time.
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Incidentally, in the following two particular cases regarding π = (π1, π2), a parity
decomposition of (G, π) amounts to decomposing G into:

(1) two odd subgraphs, if π1 = π2 ≡ 1;
(2) an odd subgraph and an even subgraph if π1 ≡ 1 and π2 ≡ 0 (or vice versa).

Thus, our work here can be seen as a natural generalization of [3]. We postpone proofs
to the next section, and end this one with some common notions and facts that are used
throughout. The final section of the article conveys some possibilities for further related
work.

General terminology and notation. An ordered k-partition of a given set S is a family
(S1, S2, . . . , Sk) of (possibly empty) pairwise disjoint subsets Si ⊆ S whose union gives S.
An ordered k-partition of the edge set E(G) of a graph G can be equivalently interpreted
as an edge-colouring of G with the colour set [k] = {1, 2, . . . , k}, i.e., a (not necessarily
surjective) mapping E(G)→ [k]; namely, colour i is assigned to the edge e ∈ E(G) if and
only if e ∈ Si. For a subset S of V (G) ∪ E(G), G[S] denotes the subgraph of G induced
on S. The graph with no vertices (and hence no edges) is the null graph. For a vertex
v ∈ V (G), NG(v) is the set of neighbouring vertices of v and EG(v) is the set of incident
edges to v. The size of EG(v) (with every loop counted twice) is the degree dG(v), and v
is said to be an odd (resp. even) vertex of G if dG(v) is odd (resp. even).

If X and Y are (not necessarily disjoint) subsets of V (G), then E[X,Y ] denotes the
set of edges with one end in X and the other end in Y , and e(X,Y ) is their number. A
graph G is connected if for every partition of V (G) into two nonempty sets X and Y , it
holds that E[X,Y ] 6= ∅. The maximal connected subgraphs of a graph are its components
(of connectedness). The problem of determining the components of any given graph
is solvable in polynomial time. Given a graph G and an even-sized subset T of V (G),
a spanning subgraph H (of G) is called a T -join of G if T = Vo(H). The symmetric
difference of a T -join and an S-join is clearly a T ⊕ S-join (notation ⊕ denotes both the
symmetric difference of spanning subgraphs and of sets). Using this simple fact, it can be
readily deduced (see e.g. [5]) that every connected G admits a T -join; moreover, a T -join
of G can always be found in polynomial time.

2. RESULTS

Given a parity 2-dimensional vector-function π = (π1, π2), we distinguish between two
types of vertices v ∈ V (G) depending on the parity compliance (or non-compliance) of
the degree dG(v) with the sum π1(v) + π2(v): namely, the compliant vertices are those
v’s satisfying dG(v) ≡2 π1(v) + π2(v), whereas the non-compliant vertices are those v’s for
which the previous congruence fails to hold. Denote by C and N the respective subsets of
V (G), and let X and Y be the respective sets of components of G[N ] and G[C]. First we
single out two necessary conditions for parity decomposability of (G, π).

Proposition 2.1. If (G, π) admits a parity decomposition, then it holds that
(NC1) Each v ∈ N has π(v) 6= (0, 0);
(NC2) No X ∈ X intersects both π−1(0, 1) and π−1(1, 0).

Proof. Interpret any parity decomposition of (G, π) as an edge-colouring E(G) → {1, 2}.
Assume such an (adequate) edge-colouring is applied to G. The failure of (i) would imply
the existence of an odd vertex v of G such that π1(v) = π2(v) = 0. But then the local



DECOMPOSING INTO TWO SUBGRAPHS . . . 65

colouring of EG(v) is surely inadequate (no odd number can be written as a sum of two
even numbers). This contradiction establishes (NC1).

In order to demonstrate (NC2), start by observing that for every non-compliant vertex
v the edge set EG(v) is not dichromatic, i.e., at most one of the colours 1 and 2 appears
on the edges incident to v. Consequently, for every X ∈ X the edge set E[V (X), V (G)] is
monochromatic. Now, suppose there is such an X ∈ X that intersects both π−1(0, 1) and
π−1(1, 0), say v′ ∈ V (X) ∩ π−1(0, 1) and v′′ ∈ V (X) ∩ π−1(1, 0). Since v′, v′′ are clearly
even vertices of G, it must be that EG(v

′) is coloured entirely with 1 whereas EG(v
′′) is

coloured entirely with 2. However, this contradicts the monochromaticity of the edge set
E(X) (as E(X) ⊆ E[V (X), V (G)]). �

Whenever (NC1) and (NC2) are fulfilled, call (G, π) an appropriate pair. For every
such (G, π) we devise the following ad-hoc notation. Let X ′ and X ′′, respectively, de-
note the (mutually disjoint) collections of components X ∈ X that intersect π−1(0, 1)
and π−1(1, 0), and let X ′′′ = X\(X ′ ∪ X ′′). Thus, in view of (NC1), the set X ′′′ con-
sists of the components of G[N ] which intersect solely π−1(1, 1), and, in view of (NC2),
{X ′,X ′′,X ′′′} constitutes a 3-partition of X . We are ready to characterize parity decom-
posability for appropriate pairs.

Theorem 2.1. An appropriate pair (G, π) admits a parity decomposition if and only if there
exists a subset S ⊆ X ′′′ such that for each Y ∈ Y it holds that

(2.1) e(
⋃
X∈S

V (X), V (Y )) ≡2 |V (Y ) ∩ π−11 (1)|+ e(
⋃

X∈X ′
V (X), V (Y )) .

Proof. For each subset S ⊆ V (G), define S0 = S∩π−11 (0) and S1 = S∩π−11 (1). Assuming
that (G, π) admits a parity decomposition, consider the accompanying edge-colouring of
G with the colour set {1, 2}. As already observed (in the proof of Proposition 2.1), for
every X ∈ X the edge set E[V (X), V (G)] is monochromatic; moreover, for every X ∈ X ′
(resp. X ∈ X ′′) all edges incident to V (X) are coloured with 1 (resp. 2).

Define S to be the collection of those X ’s belonging to X ′′′ whose incident edges
are coloured with 1, and denote Sc = X ′′′\S. Thus, for each Y ∈ Y the whole set
E[

⋃
X∈S∪X ′ V (X), V (Y )] is coloured with 1, whereas whole ofE[

⋃
X∈Sc∪X ′′ V (X), V (Y )]

is coloured with 2. For each v ∈ V (G), let d1(v) denote the degree of v in the spanning
subgraph of G whose edge set is the colour class 1. Observe that for each v ∈ C, d1(v) is
even or odd depending on whether π1(v) equals 0 or 1. Therefore

e(
⋃

X∈S∪X ′
V (X), V (Y )) ≡2

∑
v∈V (Y )

d1(v)

=
∑

v∈V (Y )0

d1(v) +
∑

v∈V (Y )1

d1(v)

≡2 |V (Y )1| ,

which is equivalent to (2.1) (as S ∩ X ′ = ∅).

Proving the other direction, take S ⊆ X ′′′ such that (2.1) is fulfilled for each Y ∈ C, and
again let Sc be its set complement with respect to X ′′′. Colour with 1 the edges incident
to

⋃
X∈S∪X ′ V (X), and colour with 2 the edges incident to

⋃
X∈Sc∪X ′′ V (X). Thus, the

remaining uncoloured part of E(G) is the edge set of G[C]. Extend the colouring to E(Y )
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for each Y ∈ Y in the following manner. With the same meaning of d1(v), consider the
set TY defined by

TY = {v : v ∈ V (Y )1 and d1(v) is even} ∪ {v : v ∈ V (Y )0 and d1(v) is odd} ,

and observe that

(2.2) |V (Y )1| ≡2 |TY |+ e(
⋃

X∈S∪X ′
V (X), V (Y )) .

Indeed, the last congruence holds since

|V (Y )1| = |{v : v ∈ V (Y )1 and d1(v) is even}|
+ |{v : v ∈ V (Y )1 and d1(v) is odd}|

≡2 |{v : v ∈ V (Y )1 and d1(v) is even}|+
∑

v∈V (Y )1

d1(v)

≡2 |TY |+
∑

v∈V (Y )0

d1(v) +
∑

v∈V (Y )1

d1(v)

= |TY |+ e(
⋃

X∈S∪X ′
V (X), V (Y )) .

From (2.1) and (2.2) it follows that TY is even-sized. Colour with 1 the edges of an
arbitrary TY -join of Y , and colour with 2 the rest of E(Y ). This completes an edge-
colouring of G which corresponds to a parity decomposition of (G, π). �

The given characterization of parity decomposability can also be interpreted in terms
of solvability of a certain system of linear equations over the field GF (2).

Theorem 2.2. Given an appropriate pair (G, π), let G∗ be the simple bipartite graph con-
structed as follows: its partite sets are X ′′′ = {X1, X2, . . . , Xr} and C = {Y1, Y2, . . . , Ys},
and vertexXi is joined by an edge with vertex Yj if and only if e(V (Xi), V (Yj)) is odd. Relate
to each Xi a variable xi and consider the system (S) consisting of s linear equations over the
field GF (2) whose j-th equation (j = 1, 2, . . . , s) reads∑

Xi∈NG∗ (Yj)

xi ≡2 |V (Yj) ∩ π−11 (1)|+ e(
⋃

X∈X ′
V (X), V (Yj)) .

Then (G, π) admits a parity decomposition if and only if the system (S) is solvable.

Proof. Consider an arbitrary S ⊆ X ′′′, and define x(S) = (xi)
r
i=1 by setting xi = 1 if

Xi ∈ S, and xi = 0 otherwise. It suffices to observe that for any Y ∈ C, the subset S
satisfies (2.1) if and only if the r-tuple x(S) satisfies∑

Xi∈NG∗ (Y )

xi ≡2 |V (Y ) ∩ π−11 (1)|+ e(
⋃

X∈X ′
V (X), V (Y )) .

�

Since row reduction (also known as Gaussian elimination) is an efficient algorithm for
solving a system of linear equations over any given field (see e.g. [4]), Theorem 2.2 and
its proof imply the following:

Corollary 2.1. The decision problem whether (G, π) admits a parity decomposition, where
π is a parity 2-dimensional vector-function, is solvable in polynomial time. Moreover, in the
affirmative case, such a decomposition can be found in polynomial time.
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Let us end this section with a remark on the complexity of the analogous decision prob-
lem involving a 2-covering instead of a 2-partition. Namely, given a parity 2-dimensional
vector-function π for a graph G, a parity covering of (G, π) is an ordered 2-covering
(E1, E2) of E(G), i.e., a family of (possibly empty) sets E1, E2 satisfying E1∪E2 = E(G),
such that dG[Ei](v) ≡2 πi(v) for each vertex v of G[Ei] (i = 1, 2). Then, the decision
problem whether (G, π) admits a parity covering is NP-hard. Indeed, it is a well-known
fact (see e.g. [2]) that for an arbitrary cubic graph G the following three properties are
equivalent:

(i) G is a class 1 graph;
(ii) G admits a nowhere-zero 4-flow;

(iii) G can be covered by 2 even subgraphs.

Moreover, the decision problem whether G satisfies (i) is known to be NP-hard,
whereas (iii) is a particular instance of parity covering.

3. FURTHER WORK

The notion ’parity decomposition’ clearly does not rely on the parity vector-function
being 2-dimensional. Thus, given a graph G and an integral k ≥ 2, one may equally
well consider a parity k-dimensional vector-function π = (π1, . . . , πk) : V (G) → {0, 1}k
and study the existence of a parity decomposition of (G, π), i.e., an ordered k-partition
(E1, . . . , Ek) of E(G) such that the degree functions dG[Ei] (i = 1, . . . , k) of the subgraphs
induced by the partite sets are in parity accordance with the respective components of π.
(Note that we allow for some of the Ei’s to be empty.) It is our belief that for k = 3 this
decision problem is no longer solvable in polynomial time.

Conjecture 3.1. The decision problem whether (G, π) admits a parity decomposition, where
π is a parity 3-dimensional vector-function, is not solvable in polynomial time.
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