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ON THE NUMERICAL QUENCHING TIME AT BLOW-UP

KOFFI ACHILLE ADOU 1, KIDJÉGBO AUGUSTIN TOURÉ, AND ADAMA COULIBALY

ABSTRACT. This paper deals with the study of the numerical approxima-
tion for the following boundary value

vt = vxx + ε(1− v)−β , (x, t) ∈ Ω× (0, T ),

v(±1, t) = 0, t > 0,

v(x, 0) = v0(x) > 0, x ∈ Ω,

where Ω is a bounded domain in RN , β > 0, and ε > 0. By a trans-
formation, we obtain some conditions under which the solution vt of the
above problem blows up in finite time and estimate its semidiscrete blow-
up time. We also establish the convergence of the semidiscrete blow-up
time to the real one when the mesh size goes to zero. Finally, we give
some numerical experiments to illustrate our analysis.

1. INTRODUCTION

Consider the problem

vt − vxx = f(v) in (−1, 1)× (0, T ),

v(±1, t) = 0 if t ≥ 0,(1.1)

v(x, t) = v0(x) for |x| ≤ 1,
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where f(v) = ε
(1−v)β , β > 0, ε > 0, 0 ≤ v0 < 1, and v0(±1) = 0.

This type of reaction diffusion equation with a singular reaction term arises
in connection with the diffusion equation generated by a polarization phe-
nomena in ionic conductors, see [16, 25]. The problem can also be consid-
ered as a limiting case of models in chemical catalyst kinetics (Langmuir-
Hinshelwood model) or of models in enzyme kinetics, see [22, 5]. The
problem (1.1) has been extensively studied under assumptions implying
that the solution v(x, t) approaches one in finite time. The reaction term
then tends to infinity and the smooth solution ceases to exist. This phe-
nomenon is called quenching. For more general problems of parabolic
type, some results were obtained by several authors, see [1, 16, 11, 10,
9, 12, 13, 3, 15, 14, 7]. There is also a large number of partial differ-
ential equations of parabolic type whose solution for a given initial data
tends to infinity in finite time T . Such a phenomenon is called blow-up
and T is called the blow-up time. Blow-up is known to occur in various
equations including those in combustion theory, chemotaxis models and
equations describing crystalline formation involving curvature-driven mo-
tion, see [21, 2, 4, 23, 27, 26, 24]. The study of blow-up phenomena is
not only interesting from the mathematical point of view but also impor-
tant for deep understanding of the nature of the phenomena which those
equations describe. Throughout this paper we assume that v quenches at
finite time T , and that v0 is smooth and satisfies

v′′0 +
ε

(1− v0)β
≥ 0 ,

i.e., vt ≥ 0 at t = 0, where v′′0 is the second derivative of v0 with respect to
x. By means of transformation u = 1

(1−v) , the differential equation in (1.1)
becomes:

ut − uxx = −2ux
2

u
+ εu2+β in (−1, 1)× (0, T ),(1.2)

u(±1, t) = 1 if t ≥ 0,(1.3)

u(x, t) = u0(x) for |x| ≤ 1,(1.4)

where u0(x) =
1

1− v0(x)
≥ 1.

Blow-up of solutions of this problem is equivalent to the quenching of
solutions of 1.1 see([11, 1, 16, 17]). In [11], J.S. Guo has shown that
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the solution u of problem (1.2-1.4) blows up in finite time T , and that
u ≤ B(T − t)−γ, 0 ≤ t < T , for some positive constant B and γ = 1

β+1
, but

Compared with the theoretical study, numerical analysis of the blow-up
problem (1.2-1.4) does not seem to be explored enough. In the present
work, we consider semidiscrete problem based on uniform discretization
as in [6, 20, 12], but we are mainly concerned with its estimating the
blow-up time.

Let I be a positive integer, we set h = 2
I

and define the grid xi = ih− 1,
for i = 0, ..., I. Let δ2 denote the standard second order difference operator.
We approximate the solution u of the problem (1.2-1.4) by the solution
Uh(t) = (U0(t), U2(t), ..., UI(t))

T of the semidiscrete equations :

d

dt
Ui(t) = δ2Ui(t)− 2

(
δ0Ui(t)

)2
Ui(t)

+ εUβ+2
i (t),(1.5)

1 ≤ i ≤ I − 1, t ≥ 0,

U0(t) = UI(t) = 1, t ≥ 0,(1.6)

U0
i = ϕi ≥ 1, 0 ≤ i ≤ I,(1.7)

where:

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1, t ≥ 0 ,

δ0Ui(t) =
Ui+1(t)− Ui(t)

h
, 1 ≤ i ≤ I − 1, t ≥ 0 ,

ϕ0 = 1, ϕI = 1, ϕi = ϕI−1, 0 ≤ i ≤ I, δ+ϕi =
ϕi+1 − ϕi

h
,

δ+ϕi > 0, 0 ≤ i ≤ k − 1 ,

and k is the integer part of number I/2.
Our paper is written in the following manner. In the next section, we

give some properties concerning our semidiscrete scheme. Section 3 is
consecrated to the study of the convergence of the semidiscrete blow-up
time. In Section 4, we use an efficient algorithm to estimate the blow-up
time and give some numerical results to illustrate our analysis.
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2. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we give somme lemmas which will be used later. The
following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1. Let ah(t), bh(t) ∈ C([0, T ],RI+1) and let Vh(t) ∈ C1([0, T ],RI+1)

where bh(t)δ0Vh(t) ≤ 0, such that for all 0 ≤ i ≤ I,

d

dt
Vi(t)− δ2Vi(t) + bi(t)δ

0Vi(t) + ai(t)Vi(t) ≥ 0, t ∈]0, T [,(2.1)

V0(t) ≥ 0, VI(t) ≥ 0,

Vi(0) ≥ 0.

Then,

Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈]0, T [.

Proof. Let T0 < T and Define the vector Zh(t) = eγtVh(t) where γ is suf-
ficiently small such that (ai(t) − γ) > 0 for 0 ≤ i ≤ I, t ∈ [0, T0]. Let
m = min0≤i≤I,0≤t≤T0 Zi(t). Since, for i ∈ {0, . . . , I}, Zi(t) is a continuous
function on the compact [0, T0], there exist t0 ∈ [0, T0] and i0 ∈ {0, . . . , I}
such that m = Zi0(t0). We observe that

dZi0(t0)

dt
= lim

ε→0

Zi0(t0)− Zi0(t0 − ε)
ε

≤ 0, 0 ≤ i0 ≤ I,

(2.2)

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0, 1 ≤ i0 ≤ I − 1.

(2.3)

From (2.1),we obtain the following inequality

dZi0(t0)

dt
− δ2Zi0(t0) + bi0(t0)δ

0Zi0(t0) + (ai0(t0)− γ)Zi0(t0) ≥ 0.

It follows from (2.2)-(2.3) that (ai0(t0)− γ)Zi0(t0) ≥ 0, which implies that
Zi0(t0) ≥ 0 because (ai0(t0−γ) > 0. We deduce that Vh(t) ≥ 0 for t ∈ [0, T0]

and the proof is complete. �
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Lemma 2.2. Let Vh(t), Wh(t) ∈ C1([0, T ],RI+1) and f ∈ C0(R× R,R) such
that:

dVi(t)

dt
− δ2Vi(t) + V q

i (t)δ0Vi(t) + f(Vi(t), t) <

<
dWi(t)

dt
− δ2Wi(t) +W q

i (t)δ0Wi(t) + f(Wi(t), t),

V0(t) < W0(t), VI(t) < WI(t) t ∈]0, T [

Vi(0) < Wi(0), 0 ≤ i ≤ I.

Then Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈]0, T [.

Proof. Introduce the vector Zh(t) = Wh(t) − Vh(t). Let t0 the first t > 0

such that Zi(t) > 0 for t ∈ [0, t0[, 0 ≤ i ≤ I, but Zi0(t0) = 0 for a certain
i0 ∈ {0, ..., I}. We observe that

dZi0(t0)

dt
= lim

ε→0

Zi0(t0)− Zi0(t0 − ε)
ε

≤ 0, 0 ≤ i0 ≤ I

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0, 1 ≤ i0 ≤ I − 1 .

Therefore we have

dZi0(t0)

dt
− δ2Zi0(t0) +W q

i0
(t0)δ

0Zi0(t0) + qµq−1i0
(t0)Zi0(t0)δ

0Vi0(t0) +

f(Wi0(t0), t)− f(Vi0(t0), t) ≤ 0,

where µi0(t0) is an intermediate value between Wi0(t0) and Vi0(t0). But this
inequality contradicts the first strict differential inequality of the lemma
2.1 and the proof is complete. �

Lemma 2.3. Let Uh be the solution of problem (1.6–1.7). Then we have,

Ui(t) > 0 for 0 ≤ i ≤ I, t ∈]0, T [.

Proof. Assume that there exists a time t0 ∈]0, T [ such that Ui0(t0) = 0 for a
certain i0 ∈ {0, ..., I}. We remark that:

dUi0(t0)

dt
= lim

ε→0

Ui0(t0)− Ui0(t0 − ε)
ε

≤ 0, 0 ≤ i0 ≤ I,

δ2Ui0(t0) =
Ui0+1(t0)− 2Ui0(t0) + Ui0−1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 1,
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which implies:

dUi0(t0)

dt
− δ2Ui0(t0) + U q

i0
(t0)δ

0Ui0(t0)− εU
β+2
i0

(t0) < 0, 1 ≤ i0 ≤ I − 1,

But this inequality contradicts (1.6) and we obtain the desired result. �

The following lemma reveals that the solution Uh of the semidiscrete
problem is symetric and δ0Ui(t) is positive when i is between 0 and k − 1 .

Lemma 2.4. Let Uh be the solution of (1.6)-(1.7). Then for t ∈ (0, T ) we
have:

UI−i(t) = Ui(t), 0 ≤ i ≤ I and δ+Ui(t) > 0, 0 ≤ i ≤ k − 1.

Proof. Introduce the vector Vh(t) defined by Vi(t) = UI−i(t) for 0 ≤ i ≤ I.
It is not hard to see that Vh(t) is a solution of (1.6)-(1.7). It follows from
lemma 2.2 that Vh(t)= Uh(t). Now, define the vector Zh(t) such that

Zi(t) = Ui+1(t)− Ui(t), 0 ≤ i ≤ k − 1,

and let t0 be the first t > 0 such that Zi(t) > 0 for t ∈ [0, t0) but Zi0(t0) = 0.
Without loss of the generality, we assume that i0 is the smallest integer
which guarantees the equality. If i0 = 0 then we have U1(t0) = U0(t0) = 0,
which is a contradiction because from lemma 2.3, U1(t0) > 0. It is easy to
see that

(2.4)
dZi0(t0)

dt
− δ2Zi0(t0) = 0, if 1 ≤ i0 ≤ k − 1 .

On the other hand, we observe:

dZi0(t0)

dt
= lim

ε→0

Zi0(t0)− Zi0(t0 − ε)
ε

≤ 0,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
> 0, 1 ≤ i0 ≤ k − 2,

and we know if i0 = k − 1,

δ2Zk−1(t0) = δ2Uk(t0)− δ2Uk−1(t0)

=
Uk+1(t0)− 2Uk(t0) + Uk−1(t0)− Uk(t0) + 2Uk−1(t0)− Uk−2(t0)

h2
.

Since k is the integer part of the number I/2, using the fact that the discrete
solution is symmetric, we have either Uk+1(t) = Uk−1(t) or Uk+1(t) = Uk(t).
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In the both cases, we find that

δ2Zk(t0) =
Zk−2(t0)

h2
> 0.

The above inequalities imply that dZi0 (t0)

dt
− δ2Zi0(t0) < 0, which a contra-

diction because of (2.4) and the proof is complete. �

Lemma 2.5. Let Uh be the solution. Then, we have:

dUi(t)

dt
> 0 for 0 ≤ i ≤ I, t ∈]0, T [.

Proof. Consider the vector Zh(t) with Zi(t)= d
dt
Ui(t), 0 ≤ i ≤ I. Let t0 be

the first t > 0 such that Zi(t) > 0 for t ∈ [0, t0[ but Zi0(t0) = 0 for a certain
i0 ∈ {1, ..., I}. Whithout loss of the generality, we assume that i0 is the
smallest integer which satisfies the above equality. We get:

dZi0(t0)

dt
= lim

ε→0

Zi0(t0)− Zi0(t0 − ε)
ε

≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 1,

which implies that:

dZi0(t0)

dt
− δ2Zi0(t0) + U q

i0
(t0)δ

0Zi0(t0) + (qU q−1
i0

(t0)δ
0Ui0(t0)−

ε(β + 2)Uβ+1
i0

(t0))Zi0(t0) < 0, if 1 ≤ i0 ≤ I − 1 .

Therefore, we have a contradiction because of (1.6–1.7) and leads to the
desired result. �

The next theorem establishes that, for each fixed time interval [0, T ]

where u is defined, the solution of semidiscrete problem approximates u,
as h −→ 0.

Theorem 2.1. Assume that (1.2–1.4) has a solution u ∈ C4,1([−1, 1]×[0, T ])

and the initial condition ϕh at (1.7) satisfies:

‖ϕh − uh(0)‖∞ = o(1), as h→ 0,

where uh(t) = (u(x0, t), ..., u(xI))
T , t ∈ [0, T ]. Then, for h sufficiently small,

problem (1.6)-(1.7) has a unique solution Uh ∈ C1([0, T ],RI+1) such that

max
t∈[0,T ]

‖Uh(t)− uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + h2), h→ 0.
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The proof of the theorem of convergence of the solution Uh is similar to
those given in [19, 18], so we omit it here.

3. CONVERGENCE OF SEMIDISCRETE BLOW-UP TIME

In this section, under some assumptions we show that the semidiscrete
solution Uh of problem (1.6–1.7) blows up in a finite time then we estimate
its semidiscrete blow-up time and we prove that this time converges to the
real one when the mesh size goes to zero.

Lemma 3.1. Let Uh ∈ RI+1 such that Uh > 0. Then, we have

δ2Uβ
i ≥ βUβ−1

i δ2Ui for 0 ≤ i ≤ I, β > 0.

Proof. Using Taylor’s expansion, we obtain:

δ2Uβ
0 = βUβ−1

0 δ2U0 + (U1 − U0)
2β(β − 1)

h2
θβ−20 ,

δ2Uβ
i = βUβ−1

i δ2Ui + (Ui+1 − Ui)2
β(β − 1)

2h2
θβ−2i + (Ui−1 − Ui)2

β(β − 1)

2h2
ξβ−2i ,

1 ≤ i ≤ I − 1,

δ2Uβ
I = βUβ−1

I δ2UI + (UI−1 − UI)2
β(β − 1)

2h2
θβ−2i ,

where θi is an intermediate value between Ui and Ui+1 and ξi is an inter-
mediate value between Ui−1 and Ui. Using the fact that Uh > 0, we have
the desired result. �

Theorem 3.1. Let Uh be the solution Uh of problem (1.6–1.7). Suppose that
there exists a positive integer λ such that:

(3.1) δ2ϕi − γiδ0ϕi + εϕβ+2
i ≥ λϕβ+2

i , 0 ≤ i ≤ I.

Then, the solution Uh of problem (1.6–1.7) blows up in a finite time T hb and
we have the following estimate :

Ui(t) ≤ B(T hb − t)−γ ,

for 0 ≤ t < T hb , 0 ≤ i ≤ I , and a positive constant B.
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Proof. Let [0, T hb [ be the maximal time interval on which ‖Uh(t)‖∞ < ∞.
Our aim is show that T hb is finite and satisfies the above inequality. We
introduce the vector Jh(t) such that:

Ji(t) =
d

dt
Ui(t)− λUβ+2

i (t), 0 ≤ i ≤ I, t ≥ 0.

Then we have:

d

dt
Ji − δ2Ji =

d

dt

( d
dt
Ui − λUβ+2

i

)
− δ2

( d
dt
Ui − λUβ+2

i

)
.

Using lemma 3.1, a straightforward calculation gives:

d

dt
Ji−δ2Ji+4

δ0Ui
Ui

δ0Ji+
(
ε(β+2)Uβ+1

i +2
(δ0Ui
Ui

)2)
Ji ≥ λβ(β+1)Uβ

i (δ0Ui)
2 .

Setting γi = 4
δ0Ui
Ui

and bi = −

(
ε(β + 2)Uβ+1

i + 2

(
δ0Ui
Ui

)2
)

we obtain:

d

dt
Ji − δ2Ji + γiδ

0Ji + biJi ≥ λβ(β + 1)Uβ
i (δ0Ui)

2 ≥ 0.

From (3.1), we observe that:

Ji(0) = δ2Ui(0)− γi(0)δ0Ui(0) + εUβ+2
i (0)− λUβ+2

i (0) ≥ 0, 0 ≤ i ≤ I.

We deduce from lemma 2.1 that Jh(t) ≥ 0 for t ∈ [0, T hb ), which implies
that

dUi(t)

dt
≥ λUβ+2

i (t), 0 ≤ i ≤ I, t ≥ 0.

Integrating the above inequality over (t, T hb ), we arrive at

T hb − t ≤
1

λ

(
Ui(t)

)−(β+1)

β + 1
,(3.2)

which implies that: Ui(t) ≤ B(T hb − t)−γ where B =
(
λ(β + 1)

)−γ
and

γ =
1

β + 1
, completing the proof. �

Remark 3.1. The inequality (3.2) implies that:

T hb − t0 ≤
1

λ

‖Uh(t0)‖−(β+1)
∞

β + 1
if 0 ≤ t0 < T hb .
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Theorem 3.2. Suppose that the solution of (1.2)–(1.4) blows up in a finite
time Tb such that u ∈ C4,1([0, 1]× [0, T [,R) and the initial condition at (1.7)
satisfies

‖ϕh − uh(0)‖∞ = o(1) as h→ 0.

Assume that there exists a positive constant λ such that:

δ2ϕi − γiδ0ϕi + εϕβ+2
i ≥ λϕβ+2

i , 0 ≤ i ≤ I.

Then the solution Uh of (1.6)–(1.7) blows up in a finite time T hb and

lim
h→0

T hb = Tb.

Proof. Let ε > 0. There exists a positive constante N such that:

1

λ

y−(β+1)

(β + 1)
≤ ε

2
<∞ for y ∈ [N,+∞[.(3.3)

Since lim
t→Tb

max
x∈[0,1]

|u(x, t)| = +∞, then there exists T1 such that:

|T1 − Tb| ≤
ε

2
and ‖u(x, t)‖∞ ≥ 2N for t ∈ [T1, Tb].

Let T2 =
T1 + Tb

2
, then sup

t∈[0,T2]
|u(x, t)| < ∞ . It follows from Theorem 2.1

that sup
t∈[0,T2]

|Uh(t)− uh(t)|∞ ≤ N . Applying the triangular inequality, we get

‖Uh(t)‖∞ ≥ ‖uh(t)‖∞ − ‖Uh(t)− uh(t)‖∞,

which implies ‖Uh(t)‖∞ ≥ N for t ∈ [0, T2]. From theorem 3.1, Uh(t) blows
up in a finite time T h. We deduce from remark 3.1 and (3.3) that

|Tb − T hb | ≤ |Tb − T2|+ |T2 − T hb | ≤
ε

2
+

1

λ

‖Uh(T2)‖−(β+1)
∞

β + 1
≤ ε ,

which completes the proof. �
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4. NUMERICAL EXPERIMENTS

In this section, we estimate the numerical blow-up time and present
some numerical results to the blow-up time of (1.2)-(1.4) with initial con-

dition ϕ(x) =
1

1− u(x)
where u(x) = 0.001 ∗

(
1 − ex

2−1 + 0.5 ∗ cos(
π

2
x)
)

by using the algorithm proposed by C. Hirota and K. Ozawa [4]. The
main idea of this method is to transform the ODE into a tractable form
by the arc length transformation technique and to generate a linearly con-
vergent sequence to the blow-up time. The sequence is then accelerated
by the Aitken ∆2 method. The present method is applied to the blow-up
problems of PDEs by discretising the equations in space and integrating
the resulting ODEs by an ODE solver, see [4, 12, 14, 15]. For our ex-
periments we use the DOP54, see [8], and we set the three tolerances
parameters AbsTol = RelTol = 1.d15, InitialStep = 0. Then we define
our geometric sequence s` by s` = 215.2`, (` = 0, 1, ..., 12). And finally to
show that T hb converges actually to T , we varied I, ε and β. In the fol-
lowing, we present some tables containing the numerical blow-up times,
values of I, the steps and the orders of the approximations correspond-
ing to meshes of 16, 32, 64, 128, 256, 512, and 1024 and some figures
to illustrate our analysis. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Table 1 : Numerical blow-up times, numbers of iterations, and orders of
the approximations for ε = 6, β = 3

I T hb Steps s

16 0.0416756045 1652 -
32 0.0416703945 1981 -
64 0.0416692123 2229 2.13
128 0.0416689256 2470 2.04
256 0.0416688545 2977 2.01
512 0.0416688367 5117 2.01

1024 0.0416688323 14890 2.01
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Table 2 : Numerical blow-up times, numbers of iterations, and orders of
the approximations for ε = 9, β = 0.86

I T hb Steps s

16 0.059813403 2310 -
32 0.059793630 2648 -
64 0.059788614 2955 1.97

128 0.059787359 3229 1.99
256 0.059787046 3813 2.00
51 0.059786969 7060 2.02

1024 0.059786950 21084 2.02

Table 3 : Numerical blow-up times, numbers of iterations, and orders of
the approximations for ε = 10, β = 0.86

I T hb Steps s

16 0.0538100852 2332 -
32 0.053795621 2684 -
64 0.053791808 2998 1.93

128 0.053790856 3308 2.00
256 0.053790619 3444 2.00
512 0.053790560 6660 2.00

1024 0.053790546 192522 2.06

Remark 4.1. From these tables, we can assure the convergence of T hb to the
blow-up time of the solution of (1.2-1.4), since the rate of convergence is
near 2, which is just the accuracy of the difference approximation in space.
For other illustrations, we also give some plots. From the Figures below, we
can observe the rapidly growing behaviour of the solution and the blow-up
point of the semidiscrete solution, which is in agreement with the theoretical
results, see [11].
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Figure 1 :Evolution of the semidiscrete solution for I = 64, ε = 6, β = 3

Figure 2 :Evolution of the semidiscrete solution for
I = 256, ε = 9, β = 0.86
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