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OSCILLATORY SOLUTIONS ON A SIX-NEURON INERTIAL NEURAL
SYSTEM WITH MULTIPLE DELAYS

CHUNHUA FENG

ABSTRACT. In this paper, a six-neuron inertia neural system with multi-
ple delays is investigated. By means of mathematical analysis method,
some sufficient conditions to guarantee the existence of oscillatory solu-
tion for the model are obtained. Computer simulations are provided to
demonstrate the proposed results.

1. INTRODUCTION

In the last few years, bifurcation analysis on various neural networks has
been investigated and many excellent and interesting results have been
obtained [1],[5]. For example, Wang et al. have discussed a simplified
six-neuron of two-layer neural network model with delays [1]:

x′1(t) = −k1x1(t) + c14f14(x4(t− τ1) + c15f15(x5(t− τ1),
x′2(t) = −k2x2(t) + c24f24(x4(t− τ1) + c25f25(x5(t− τ1) + c26f26(x6(t− τ1),
x′3(t) = −k3x3(t) + c35f35(x5(t− τ1) + c36f36(x6(t− τ1),
x′4(t) = −k4x4(t) + c41f41(x1(t− τ2) + c42f42(x2(t− τ2),
x′5(t) = −k5x5(t) + c51f51(x1(t− τ2) + c52f52(x2(t− τ2) + c53f53(x3(t− τ2),
x′6(t) = −k6x6(t) + c62f62(x2(t− τ2) + c63f63(x3(t− τ2).

(1.1)
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Set τ = τ1 + τ2, ui(t) = xi(t − τ2)(1 ≤ i ≤ 3), uj(t) = xj(t), 4 ≤ j ≤ 6,,
and ki = k(1 ≤ i ≤ 6), then the linearized system of model (1.1) is the
following:



u′1(t) = −ku1(t) + a1u4(t− τ) + b1u5(t− τ),

u′2(t) = −ku2(t) + c1u4(t− τ) + a2u5(t− τ) + b2u6(t− τ),

u′3(t) = −ku3(t) + c2u5(t− τ) + a3u6(t− τ),

u′4(t) = −ku4(t) + a1u1(t) + b1u2(t),

u′5(t) = −ku5(t) + c1u1(t) + a2u2(t) + b2u3(t),

u′6(t) = −ku6(t) + c2u2(t) + a3u3(t).

By means of matrix decomposition method, the Hopf bifurcation analysis
has been investigated. Based on the normal form method and the center
manifold theorem, the explicit formulas about the stability of the bifurcat-
ing periodic solution and the direction of the Hopf bifurcation are estab-
lished. Chen et al. have studied a simplified three layer-neural network
model described by the following system [2]:



x′1(t) = −kx1(t) + c13f13(y1(t− τ3) + c14f14(y2(t− τ3),
x′2(t) = −kx2(t) + c23f23(y1(t− τ3) + c24f24(y2(t− τ3),
y′1(t) = −ky1(t) + c31f31(x1(t− τ1) + c32f32(x2(t− τ1)+

+c35f35(z1(t− τ4) + c36f36(z2(t− τ4),
y′2(t) = −ky2(t) + c41f41(x1(t− τ1) + c42f42(x2(t− τ1)+

+c45f45(z1(t− τ4) + c46f46(z2(t− τ4),
z′1(t) = −kz1(t) + c53f53(y1(t− τ2) + c54f54(y2(t− τ2),
z′2(t) = −kz2(t) + c63f63(y1(t− τ2) + c64f64(y2(t− τ2).

By analyzing its associated characteristic equation, local stability and the
existence of Hopf bifurcation of the system are investigated. By using the
normal form method and center manifold theorem, formulas to determine
the direction of the Hopf bifurcation and the stability of bifurcating peri-
odic solution are obtained. Xu et al. have studied the follwoing six-neuron
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BAM neural network model with delays [3]:



x′1(t) = −µ1x1(t) + c11f11(y1(t− τ4)) + c12f12(y2(t− τ4)) + c13f13(y3(t− τ4)),
x′2(t) = −µ2x2(t) + c21f21(y1(t− τ5)) + c22f22(y2(t− τ5)) + c23f23(y3(t− τ5)),
x′3(t) = −µ3x3(t) + c31f31(y1(t− τ6)) + c32f32(y2(t− τ6)) + c33f33(y3(t− τ6)),
y′1(t) = −µ4y1(t) + c41f41(x1(t− τ1)) + c42f42(x2(t− τ2)) + c43f43(x3(t− τ3)),
y′2(t) = −µ5y2(t) + c51f51(x1(t− τ1)) + c52f52(x2(t− τ2)) + c53f53(x3(t− τ3)),
y′3(t) = −µ6y3(t) + c61f61(x1(t− τ1)) + c62f62(x2(t− τ2)) + c63f63(x3(t− τ3)).

(1.2)

In order to analyze the existence of bifurcating periodic solution, the au-
thors assume that τ1 + τ4 = τ2 + τ5 = τ3 + τ6 = τ in model (1.2). By
analyzing the associated characteristic transcendental equation, the linear
stability of the model and Hopf bifurcation are demonstrated. Recently,
Ge and Xu [4], have investigated the following four-neuron inertial neural
system with multiple delays:


v′′1(t) = −v′1(t)− µ1v1(t) + a1f(z1(t− τ1)) + a2f(z2(t− τ1)),
v′′2(t) = −v′2(t)− µ2v2(t) + b1f(z1(t− τ2)) + b2f(z2(t− τ2)),
z′′1 (t) = −z′1(t)− µ3z1(t) + c1f(v1(t− τ3)) + c2f(v2(t− τ4)),
z′′2 (t) = −z′2(t)− µ4z2(t) + d1f(v1(t− τ3)) + d2f(v2(t− τ4)).

(1.3)

Under the condition τ1 + τ3 = τ2 + τ4 = τ in model (1.3), and set the new
state variables w1(t) = v1(t − τ3), w2(t) = v2(t − τ4), w3(t) = z1(t), w4(t) =

z2(t), model (1.3) is equivalent to only one delay system. The linear sta-
bility of the model is investigated and Hopf bifurcation of the trivial equi-
librium point is demonstrated. Periodic solutions bifurcating from the triv-
ial equilibrium point are obtained analytically by using the perturbation
scheme without the normal form method and center manifold theory.
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Motivated by the above models, in this paper we will study the following
six-neuron inertial neural system with multiple delays:



v′′1(t) = −r1v′1(t)− µ1v1(t) + c11f11(z1(t− σ21)) + c12f12(z2(t− σ22))
+c13f13(w1(t− σ31)) + c14f14(w2(t− σ32)),

v′′2(t) = −r2v′2(t)− µ2v2(t) + c21f21(z1(t− σ21)) + c22f22(z2(t− σ22))
+c23f23(w1(t− σ31)) + c24f24(w2(t− σ32)),

z′′1 (t) = −r3z′1(t)− µ3z1(t) + c31f31(v1(t− σ11)) + c32f32(v2(t− σ12))
+c33f33(w1(t− σ31)) + c34f34(w2(t− σ32)),

z′′2 (t) = −r4z′2(t)− µ4z2(t) + c41f41(v1(t− σ11)) + c42f32(v2(t− σ12))
+c43f43(w1(t− σ31)) + c44f44(w2(t− σ32)),

w′′1(t) = −r5w′1(t)− µ5w1(t) + c51f51(v1(t− σ11)) + c52f52(v2(t− σ12))
+c53f53(z1(t− σ21)) + c54f54(z2(t− σ22)),

w′′2(t) = −r6w′2(t)− µ6w2(t) + c61f61(v1(t− σ11)) + c62f62(v2(t− σ12))
+c63f63(z1(t− σ21)) + c64f64(z2(t− σ22)).

(1.4)

We pointed out that both τ1 + τ4 = τ2 + τ5 = τ3 + τ6 = τ in model (1.2)
and τ1 + τ3 = τ2 + τ4 = τ in model (1.3) are special cases. If time delays
σij, i = 1, 2, 3, j = 1, 2, are different values in model (1.4), one can hard
to use bifurcation method because the existence of bifurcating points in
a complex transcendental equation is extremely not easy to find. In this
paper we use mathematical analysis method to discuss the existence of
oscillatory solution for model (1.4).

For convenience, let σ11 = τ1, σ12 = τ3, σ21 = τ5, σ22 = τ7, σ31 = τ9, σ32 =

τ11, model (1.4) can be rewritten as the following equivalent system:



x′1(t) = x2(t),

x′2(t) = −r1x2(t)− µ1x1(t) + c11f11(x5(t− τ5)) + c12f12(x7(t− τ7))
+c13f13(x9(t− τ9)) + c14f14(x11(t− τ11)),

x′3(t) = x4(t),

x′4(t) = −r2x4(t)− µ2x3(t) + c21f21(x5(t− τ5)) + c22f22(x7(t− τ7))
+c23f23(x9(t− τ9)) + c24f24(x11(t− τ11)),

x′5(t) = x6(t),
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x′6(t) = −r3x6(t)− µ3x5(t) + c31f31(x1(t− τ1)) + c32f32(x3(t− τ3))
+c33f33(x9(t− τ9)) + c34f34(x11(t− τ11)),

x′7(t) = x8(t),

x′8(t) = −r4x8(t)− µ4x7(t) + c41f41(x1(t− τ1)) + c42f32(x3(t− τ3))
+c43f43(x9(t− τ9)) + c44f44(x11(t− τ11)),

x′9(t) = x10(t),

x′10(t) = −r5x10(t)− µ5x9(t) + c51f51(x1(t− τ1)) + c52f52(x3(t− τ3))
+c53f53(x5(t− τ5)) + c54f54(x7(t− τ7)),

x′11(t) = x12(t),

x′12(t) = −r6x12(t)− µ6x11(t) + c61f61(x1(t− τ1)) + c62f62(x3(t− τ3))
+c63f63(x5(t− τ5)) + c64f64(x7(t− τ7)).

(1.5)

where the activation functions fij(xk)(i = 1, 2, · · · , 6, j = 1, · · · , 4, k =

1, 3, · · · , 11) are continuous bounded differentiable functions, satisfying:

fij(0) = 0, ufij(u) > 0(u 6= 0).(1.6)

The general activation functions such as tanh(x), arctan(x) satisfy condi-
tion (1.6). The linearized system of (1.5) at origin is the following:



x′1(t) = x2(t),

x′2(t) = −r1x2(t)− µ1x1(t) + b11x5(t− τ5) + b12x7(t− τ7)
+b13x9(t− τ9) + b14x11(t− τ11),

x′3(t) = x4(t),

x′4(t) = −r2x4(t)− µ2x3(t) + b21x5(t− τ5) + b22x7(t− τ7)
+b23x9(t− τ9) + b24x11(t− τ11),

x′5(t) = x6(t),

x′6(t) = −r3x6(t)− µ3x5(t) + b31x1(t− τ1) + b32x3(t− τ3)
+b33x9(t− τ9) + b34x11(t− τ11),

x′7(t) = x8(t),

x′8(t) = −r4x8(t)− µ4x7(t) + b41x1(t− τ1) + b42x3(t− τ3)
+b43x9(t− τ9) + b44x11(t− τ11),
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x′9(t) = x10(t),

x′10(t) = −r5x10(t)− µ5x9(t) + b51x1(t− τ1) + b52x3(t− τ3)
+b53x5(t− τ5) + b54x7(t− τ7),

x′11(t) = x12(t),

x′12(t) = −r6x12(t)− µ6x11(t) + b61x1(t− τ1) + b62x3(t− τ3)
+b63x5(t− τ5) + b64x7(t− τ7).

(1.7)

where bij = cijf
′
ij(0),v i = 1, · · · , 6 , j = 1, · · · , 4. The matrix form of system

(1.7) can be written as:

X ′(t) = AX(t) +BX(t− τ) ,

where X(t) = [x1(t), x2(t), · · · , x12(t)]T , X(t − τ) = [x1(t − τ1), 0, x3(t −
τ3), 0, · · · , 0, x11(t − τ11), 0]T . Both A = (aij)12×12 and B = (bij)12×12 are
12× 12 matrices as follows:

A = (aij)12×12 =



0 1 0 0 · · · 0 0

−µ1 −r1 0 0 · · · 0 0

0 0 0 1 · · · 0 0

0 0 −µ2 −r2 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1

0 0 0 0 · · · −µ6 −r6


,

B = (bij)12×12 =



0 0 0 0 0 0 · · · 0 0

0 0 0 0 b11 0 · · · b14 0

0 0 0 0 0 0 · · · 0 0

0 0 0 0 b21 0 · · · b24 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · 0 0

b61 0 b62 0 b63 0 · · · 0 0


.

Definition 1.1. The trivial solution of system (1.4) is unstable, if there exists
at least one component of the trivial solution which is unstable.
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Lemma 1.1. Assume that µi > 0(i = 1, 2, · · · , 6), matrix C is not a positive
definite matrix, then the system (1.5) has a unique equilibrium point, where:

C = (cij)6×6 =



0 0 c11 c12 c13 c14

0 0 c21 c22 c23 c24

c31 c32 0 0 c33 c34

c41 c42 0 0 c43 c44

c51 c52 c53 c54 0 0

c61 c62 c63 c64 0 0


.

Proof. An equilibrium point x∗ = [x∗1, x
∗
2, · · · , x∗12]T of system (1.5) is a con-

stant solution of the following algebraic equation:

x∗2 = 0,

−r1x∗2 − µ1x
∗
1 + c11f11(x

∗
5) + c12f12(x

∗
7) + c13f13(x

∗
9) + c14f14(x

∗
11) = 0,

x∗4 = 0,

−r2x∗4 − µ2x
∗
3 + c21f21(x

∗
5) + c22f22(x

∗
7) + c23f23(x

∗
9) + c24f24(x

∗
11) = 0,

x∗6 = 0,

−r3x∗6 − µ3x
∗
5 + c31f31(x

∗
1) + c32f32(x

∗
3) + c33f33(x

∗
9) + c34f34(x

∗
11) = 0,

x∗8 = 0,

−r4x∗8 − µ4x
∗
7 + c41f41(x

∗
1) + c42f32(x

∗
3) + c43f43(x

∗
9) + c44f44(x

∗
11) = 0,

x∗10 = 0,

−r5x∗10 − µ5x
∗
9 + c51f51(x

∗
1) + c52f52(x

∗
3) + c53f53(x

∗
5) + c54f54(x

∗
7) = 0,

x∗12 = 0,

−r6x∗12 − µ6x
∗
11 + c61f61(x

∗
1) + c62f62(x

∗
3) + c63f63(x

∗
5) + c64f64(x

∗
7) = 0.

(1.8)

From condition (1.6) we have fij(0) = 0. This means that zero is an equi-
librium point of system (1.5). From system (1.8), x∗2i = 0(i = 1, 2, · · · , 6).

System (1.8) reduced to the following:

µ1x
∗
1 = c11f11(x

∗
5) + c12f12(x

∗
7) + c13f13(x

∗
9) + c14f14(x

∗
11),

µ2x
∗
3 = c21f21(x

∗
5) + c22f22(x

∗
7) + c23f23(x

∗
9) + c24f24(x

∗
11),

µ3x
∗
5 = c31f31(x

∗
1) + c32f32(x

∗
3) + c33f33(x

∗
9) + c34f34(x

∗
11),

µ4x
∗
7 = c41f41(x

∗
1) + c42f32(x

∗
3) + c43f43(x

∗
9) + c44f44(x

∗
11),

µ5x
∗
9 = c51f51(x

∗
1) + c52f52(x

∗
3) + c53f53(x

∗
5) + c54f54(x

∗
7),

µ6x
∗
11 = c61f61(x

∗
1) + c62f62(x

∗
3) + c63f63(x

∗
5) + c64f64(x

∗
7).

(1.9)
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Noting that condition (1.6) implies that fij(x∗k) > 0 when x∗k > 0, and
fij(x

∗
k) < 0 when x∗k < 0. Since µi > 0(i = 1, 2, · · · , 6), when we select

x∗k > 0, one can not guarantee that the right hand of system (1.9) is a
positive number since C is not a positive definite matrix. The same as
when we select x∗k < 0, one can not ensure that the right hand of system
(1.9) is a negative number. Therefore, system (1.5), namely system (1.4)
has a unique equilibrium point, it is exactly the zero point. �

Lemma 1.2. Assume that ri > 0, µi > 0(i = 1, 2, · · · , 6), then all solutions
of system (1.4) are bounded.

Proof. From condition (1.6), the activation functions fij(xk) are bounded.
Let Ni = |ci2fi2 + ci3fi3 + ci4fi4|, i = 1, 2, · · · , 6, then we have:

v′′1(t) ≤ −r1v′1(t)− µ1v1(t) +N1,

v′′2(t) ≤ −r2v′2(t)− µ2v2(t) +N2,

z′′1 (t) ≤ −r3z′1(t)− µ3z1(t) +N3,

z′′2 (t) ≤ −r4z′2(t)− µ4z2(t) +N4,

w′′1(t) ≤ −r5w′1(t)− µ5w1(t) +N5,

w′′2(t) ≤ −r6w′2(t)− µ6w2(t) +N6.

Since ri > 0, µi > 0 (i = 1, 2, · · · , 6), the eigenvalues of the equations

λ2 + riλ + µi = 0 will be
−ri ±

√
r2i − 4µi

2
(i = 1, 2, · · · , 6). Therefore, we

get |vi(t)| ≤ e−rit + Ni(i = 1, 2), |zi(t)| ≤ e−rit + Ni(i = 3, 4), and |wi(t)| ≤
e−rit +Ni(i = 5, 6) if r2i − 4µi < 0, or |vi(t)| ≤ e−(ri−

√
r2i−4µi)t +Ni(i = 1, 2),

|zi(t)| ≤ e−(ri−
√
r2i−4µi)t +Ni(i = 3, 4), and |wi(t)| ≤ e−(ri−

√
r2i−4µi)t +Ni(i =

5, 6) if r2i − 4µi > 0 . This means that the solutions of system (1.4) (or
system (1.5) ) are bounded. �

In this paper we adopt the following norms of vectors and matrices [6]:

‖x(t)‖ =
12∑
i=1

|xi(t)| , ‖D‖ = max
1≤j≤12

12∑
i=1

|dij|, the measure µ(D) of a matrix

D is defined by µ(D) = lim
θ→0+

‖I + θD‖ − 1

θ
, which for the chosen norms

reduces to µ(D) = max
1≤j≤12

[djj +
12∑

i=1,i 6=j

|dij|]. D > 0 (respectively, D < 0)

which indicates that D is a positive (negative) definite matrix.
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Lemma 1.3. For each eigenvalue λ of matrix A ∈ Rn×n, the inequality holds:

(1.10) Reλi(A) ≤ µ(A), i ∈ {1, 2, · · · , n.}

Proof. See [7]. �

2. EXISTENCE OF OSCILLATORY SOLUTIONS

Theorem 2.1. Assume that the conditions of Lemma 1.1 and Lemma 1.2
hold. Let α1, α2, · · · , α12 represent the eigenvalues of matrixA, and β1, β2, · · · , β12
the eigenvalues of matrix B. If there exists one eigenvalue, say α1 which is a
positive real number or is a positive real part of a complex number, then the
unique equilibrium of system (1.5) is unstable, implying that the equilibrium
of system (1.4) is unstable, and system (1.4) generates a limit cycle, namely,
a periodic solution.

Proof. It is known that the trivial solution of the linearized system (1.7)
is unstable, then the trivial solution of original system (1.5) is unstable.
Therefore, for proving the instability of the trivial solution of system (1.5)
we only need to prove the instability of the trivial solution of system (1.7).
Considering an auxiliary equation of the system (1.7) as follows:

(2.1) X ′(t) = AX(t) +BX(t− τ∗)

where 0 < τ∗ � 1(τ∗ < min{τ1, τ3, · · · , τ9, τ11}), X(t − τ∗) = [x1(t −
τ∗), 0, x3(t− τ∗), 0, · · · , 0, x11(t− τ∗), 0]T . Based on the property of delayed
differential equation, if the trivial solution of (2.1) is unstable then the
trivial solution of system (1.7) is unstable, see [8]. Thus in the following
we discuss the instability of the trivial solution of system (2.1). Since the
eigenvalues of matrix A are α1, α2, · · · , α12, and the eigenvalues of matrix
B are β1, β2, · · · , β12, system (2.1) has the following characteristic equa-
tion:

12∏
i=1

(λ− αi − βie−λτ∗) = 0 .

Since there exist six row entries of matrix B are zeros, so there is a char-
acteristic value, say β1 = 0. then we have

λ− α1 − β1e−λτ∗ = λ− α1 = 0 .
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This means that there exists a eigenvalue which is positive number or a
positive real part of a complex number of system (2.1), implying that the
trivial solution of system (2.1) is unstable. This suggests that the trivial
solution of system (1.7) (or system (1.4)) is unstable. The instability of
trivial solution with the boundedness of the solution will force system (1.4)
to generate a limit cycle, namely, a periodic solution. �

Theorem 2.2. Assume that the conditions of Lemma 1.1 and Lemma 1.2
hold. Let γ1, γ2, · · · , γ12 represent the eigenvalues of matrix (A + B), and
β1, β2, · · · , β12 the eigenvalues of matrix B. If there exists one eigenvalue, say
γ1 which is a positive real number or is a positive real part of a complex
number, then the unique equilibrium of system (1.7) is unstable, implying
that the equilibrium of system (1.5) is unstable, and system (1.5) (or (1.4))
generates a limit cycle, namely, a periodic solution.

Proof. Similar to the proof of Theorem 2.1, we can rewrite the system
(1.10) as follows:

(2.2) X ′(t) = (A+B)X(t) +B[X(t− τ∗)−X(t)] .

Since the eigenvalues of matrix (A + B) are γ1, γ2, · · · , γ12, and the eigen-
values of matrix B are β1, β2, · · · , β12, system (2.2) has the following char-
acteristic equation:

12∏
i=1

(λ− γi + βi − βie−λτ∗) = 0 .

Now from β1 = 0. we have

(2.3) λ− γ1 + β1 − β1e−λτ∗ = λ− γ1 = 0 .

This means that there exists a eigenvalue which is positive number or a
positive real part of a complex number of system (2.3), implying that the
trivial solution of system (2.3) is unstable. This suggests that the trivial
solution of system (1.5) (or system (1.4)) is unstable. The instability of
trivial solution with the boundedness of the solution will force system (1.4)
to generate a limit cycle, namely, a periodic solution. �
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Theorem 2.3. Assume that the conditions of Lemma 1.1 and Lemma 1.2
hold. If the following condition holds:

(2.4) 0 < µ(A)+ ‖ B ‖ ,

then the unique equilibrium of system (1.5) is unstable, implying that the
equilibrium of system (1.4) is unstable, and system (1.4) generates a limit
cycle, namely, a periodic solution.

Proof. We must prove that the unique equilibrium point of auxiliary system
(2.1) is unstable. The characteristic equation associated with system (2.1)
is the following:

det(λI12 − A−Be−λτ∗) = 0 ,

where I12 is a 12× 12 identity matrix. Set:

Φ(λ) = det(λI12 − A−Be−λτ∗) .

If the trivial solution of auxiliary system (2.1) is unstable, based on Theo-
rem 2.1 there exists a root of Φ(λ) satisfying Re(λ) > 0. From lemma 1.3,
we get:

0 < Re(λ) ≤ µ(A+Be−λτ∗)

= lim
θ→0+

‖I + θ(A+Be−λτ∗)‖ − 1

θ

≤ µ(A) + ‖B‖ max
1≤k≤12

|e(−λkτ∗)|

≤ µ(A) + ‖B‖ .

Thus, condition (2.4) holds. The trivial solution of auxiliary system (2.1)
is unstable, implying that the trivial solution of system (1.5) (or system
(1.4)) is unstable. The instability of trivial solution with the boundedness
of the solution will force system (1.4) to generate a limit cycle, namely, a
periodic solution. The proof is completed. �

3. SIMULATION RESULT

These simulations were performed by using the equivalent system (1.5)
of (1.4). Firstly we selected the activation function as f(x) = arctan(x).
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Fig 1. Oscillation of the solutions, delays: 1.8, 1.2, 1.6, 1.4, 1.5, 1.4. 
Activation function: arctan(x).
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Oscillation of the solutions, delays: 1.8, 1.2, 1.6, 1.4, 1.5, 1.4.
Activation function: arctan(x).
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Then f ′(x) =
1

1 + x2
, so f ′(0) = 1. The parameters r1 = 0.25, r2 = 0.23, r3 =

0.24, r4 = 0.28, r5 = 0.22, r6 = 0.26; µ1 = 0.24, µ2 = 0.28, µ3 = 0.24, µ4 =

0.25, µ5 = 0.27, µ6 = 0.22, c11 = −0.35, c12 = 0.45, c13 = −0.36, c14 =

0.48, c21 = −0.25, c22 = 0.75, c23 = −0.32, c24 = 0.78, c31 = 0.65, c32 =

−0.25, c33 = 0.55, c34 = −0.35, c41 = 0.15, c42 = −0.38, c43 = 0.18, c44 =

0.76, c51 = 0.25, c52 = −0.26, c53 = 0.35, c54 = −0.35, c61 = 0.45, c62 =

−0.36, c63 = 0.48, c64 = −0.46. The characteristic values of matrix C are
0.2863,−0.5555,−0.0928 ± 0.9337i, 0.2274 ± 0.3164i. Therefore, C is not a
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positive definite matrix. From Lemma 1.1, the system has a unique equilib-
rium point, namely, the zero point. Obviously, µ(A) = 0.78 > 0. Therefore,
0 < µ(A) + ‖B‖. When time delays are selected as 1.8, 1.2, 1.6, 1.4, 1.5, 1.4,

based on Theorem 2.3, the system has an oscillatory solution (see Fig 1).
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Fig 2. Oscillation of the solutions: delays: 3.8, 3.2, 3.6, 3.4, 3.5, 3.4.
Activation function: arctan(x). 

(a) Solid line: x
1
(t), dashed line: x

2
(t), dotted line: x

3
(t).

0 50 100 150 200
−4

−2

0

2

4

(b) Solid line: x
4
(t), dashed line: x

5
(t), dotted line: x

6
(t).

0 50 100 150 200

−10

0

10

 Oscillation of the solutions, delays: 3.8, 3.2, 3.6, 3.4, 3.5, 3.4.
Activation function: arctan(x).
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In order to see the effect of time delays, we increase time delays as
3.8, 3.2, 3.6, 3.4, 3.5, 3.4, we see the oscillatory behavior still maintained
(see Fig 2), but the oscillatory frequency and amplitude are changed.

When we change ri as r1 = 0.75, r2 = 0.33, r3 = 0.64, r4 = 0.78, r5 =

0.32, r6 = 0.96, the other parameters are the same as in Fig 2, then eigen-
values of A+B are: 0.2620± 0.6526i, 0.0431± 0.5335i, −0.1299± 0.6980i,
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−0.8776,−0.0896,−1.0147± 0.7412i,−0.5669± 0.4729i, based on Theorem
2.2, the system has an oscillatory solution. Only the oscillatory frequency
and amplitude are slightly different from Fig 2, see Fig 3.
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Fig 3. Oscillation of the solutions, r
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=0.96.

Activation function: arctan(x), delays: 2.8, 2.2, 2.6, 2.4, 2.5, 2.4.
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Activation function: arctan(x), delays: 2.8, 2.2, 2.6, 2.4, 2.5, 2.4.
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In Fig 4, we use tanh(x) as the activation function, we still have f ′(0) =

1− tanh2(0) = 1. The other parameters are the same as in Fig 3, we see the
oscillatory behavior almost the same as the activation function arctan(x).
This means that the activation functions do not affect the oscillatory be-
havior too much (see Fig 4).



OSCILLATORY SOLUTIONS ON A SIX-NEURON . . . 101

0 50 100 150 200

−5

0

5

Fig 4. Oscillation of the solutions, r
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=0.96.

Activatifuhnction: tanh(x), delays: 2.8, 2.2, 2.6, 2.4, 2.5, 2.4.
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Activation function: tanh(x), delays: 2.8, 2.2, 2.6, 2.4, 2.5, 2.4.
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4. CONCLUSION

In this paper, we have discussed the dynamical behavior of a six-neuron
inertia neural model with time delays. The existence of a limit cycle which
is easy to check, as compared to the general bifurcating method. Some
simulations are provided to indicate the effectness of the criterion. Time
delays only affect the oscillatory frequency when there exists a limit cycle
of the system.
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