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D-OPTIMAL MINIMAX CRITERION FOR TWO-LEVEL FRACTIONAL
FACTORIAL SPLIT PLOT DESIGNS

A. J. SAKA 1, A. A. OLOSUNDE, AND B. B. ADEOYE

ABSTRACT. In this paper, the D-optimal minimax criterion of two-level
fractional factorial split-plot designs were constructed and a general form
of the loss function for the criterion was provided. This was used in
searching for optimal designs. The optimum designs were obtained via
the algorithm developed in python programming language among many
designs constructed. As such, the resulting designs are called D-optimal
minimax two-level fractional factorial split plot designs. The efficiency
of D-optimal minimax designs was felt when compared with both A- and
D-optimal designs.

1. INTRODUCTION

Factorial designs are useful to study the effects of two or more factors
with their interactions effects in an experiment. In every complete trial or
replicate of an experiment, all possible combinations of the levels of the
factors are investigated. As the numbers of factors increase, the numbers
of runs required for a full replicate of the design rapidly outgrows the
resources of experimenters. As such, fractional factorial designs are then
employed to screen the factors and identify those with significant effects.
At times, it may be impossible to perform the trial in a complete random
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form, due to costs, nature of the process or experimental venue, this results
in fractional factorial (FF) designs with randomization restrictions and this
give rise to fractional factorial split-plot (FFSP) designs.

Fractional factorial split-plot designs are used in industrial experiments
where some factors may require larger experimental units than others or
their levels are more difficult to change. This design is also applicable to
industrial experiments with multiple processing stages where the levels of
the factors are assigned at different stages. For more examples see [9], [8]
and [10].

In the design of experiments, optimal designs is a group of experimental
designs that are the best with respect to a statistical criterion. An Op-
timal design uses the best factor levels combinations, that are selected
from reducing the experimental runs in the original design. Optimal de-
sign enables parameters to be estimated without bias and with minimum
variance. An alternative criterion called the maximal rank-minimum aber-
ration criterion for selecting optimal fractional factorial split plot designs
was suggested by [11]. The study also shown how this alternative criterion
performed in terms of selecting the optimal designs and making compari-
son to the minimum aberration criterion.

Researchers such as [1, 2, 4] and [11] used the minimum aberration cri-
terion to rank fractional factorial split plot designs, and also [6] introduced
the minimum secondary aberration to distinguish between non-isomorphic
minimum aberration fractional factorial split plot design designs.

Meanwhile, [5] ranked the designs based on the maximum number of
clear two factor interactions (2FI’s). These criteria are based on the effect
of hierarchal principle; (i) lower order effects are more likely to be sig-
nificant than higher order ones, (ii) factorial effects of the same-order are
equally likely to be important. Also, [3] ranked fractional factorial split
plot designs using the D-optimality criterion.

The minimum aberration criterion produces optimal design that mini-
mizes the alias of the important effects. Although the minimum aberration
criterion and the D-optimal criterion are mostly used for constructing op-
timal fractional factorial split-plot designs, the optimal designs selected by
the two criteria may have large mean square error (MSE). The minimum
aberration criterion focuses on minimizing the bias of the estimation but
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less concerns about minimizing the variances and covariances. In [12],
construction of foldovers of two-level fractional factorial split-plot designs
were considered and a catalog of optimal foldover plans for initial mini-
mum aberration fractional factorial split-plot designs consisting of 16 and
32 runs were equally provided. Some theoretical results to construct FFSP
designs with weak minimum aberration, which further shown that quite a
few of them are also minimum aberration designs was discussed by [13].
Therefore, the optimal fractional factorial split-plot design constructed by
this criterion may have higher mean square error due to higher variances
or covariances of the estimation. On the contrary, the D-optimal criterion
aims to minimize the variances and covariances but does not consider the
bias of the estimation.

In this paper, the focus is on regular two-level fractional factorial split
plot designs, where the factors are classified into two, that is hard to
change and easy to change also refer to as whole plot factors and sub-
plot factors respectively. Importantly, the D-optimal minimax criterion
proposed by [7] for two-level fractional factorial design is extended to
construct two-level fractional factorial split plot design for estimating the
parameters of the design and compare the D-optimal minimax design with
the existing designs. The D-optimal minimax criterion considered the vari-
ance, covariance and the bias of the estimator if the model is misspecified,
that is there are some significant effects that are not included in the model.
This is a model-based criterion which minimizes the largest determinant
of the mean squared error of the generalized least square estimator. When
there is limited resources to run the full replicate of the factorial design
and also the experiment cannot be performed in a completely random or-
der, the D-optimal minimax criterion is used to select the best treatment
combinations for optimal fractional factorial split plot designs.

2. LINEAR MODEL AND D-OPTIMAL MINIMAX CRITERION

Let S be a 2k factorial design involving k factors F1, · · · , Fk each at two
level coded as −1 and +1 where N = 2k runs is the total number of runs
in a full factorial design. Let H denote the N×N design matrix for the full
factorial design whose first column is all ones for the grand mean term and
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the other N − 1 columns represent all the main effects and the interaction
effects. Suppose that among the k factors there are k1 whose level are hard
to change (i.e whole plot) and k2 = (k− k1) factors are easy to change (i.e
subplot). A fractional factorial split plot design D with n runs may be
selected from N when it is not feasible to run the full factorial experiment
in a complete random order.
Let R be a requirement set containing t effects which usually includes main
effects and some interaction effects, then the linear model for R is

(2.1) Y = X1β1 + Zγ + ε

where Y is the n × 1 vector of response, X1 represents the n × t design
matrix, β is the t× 1 vector of mean and factor effects, Z is an n× b matrix
which indicates the whole plot each run belongs to, γ is the b × 1 vector
of random whole plots error and ε is the n × 1 vector of random subplot
errors. It is assumed that γ and ε are independent and have mean zero and
variance- covariance matrix σ2

γIn and σ2
ε In respectively.

Under these assumptions, the covariance matrix of the reponses, Y is

(2.2) Σ = σ2
ε (In + dZZT)

where d = σ2
γ/σ

2
ε . If the entries of Y are grouped by whole plots, then

equation (2.2) can be written as the n× n block diagonal matrix

Σ = diag[Σ1...Σb] ,

where Σi = σ2
ε (Ini

+ d1ni
1′ni

) for i = 1, 2, . . . , b, and ni is the number of
subplot. The generalised least square estimator of β is:

(2.3) β̂1 = (XT
1 Σ−1X1)

−1XT
1 Σ−1Y ,

and the variance-covariance matrix of β̂1 is:

Cov(β̂1) = (XT
1 Σ−1X1)

−1 .

If there exist significant effects that are not included in R, the model can
be written as

(2.4) Y = X1β1 + X2β2 + Zγ + ε ,

where X2 is the model matrix for the effects not in R, and β2 is the un-
known parameter vector of effects not in R .
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When n = N , we define
V1 = HT

1 H1

V2 = HT
2 H2

where H1 is the N × p submatrice of H which represents those effects that
are in the requirement set R and H2 is the N × (N − p) submatrix of H

which represents those effect that are not in R. since the column of H are
orthogonal. We have:

HTH = diag[V1V2] .

The unknown parameter vector β2 is assumed to satisfy the condition
1

N
βT2 V2β2 ≤ α2 .

For two level fractional factorial designs,

V1 = HT
1 H1 = NI

V2 = HT
2 H2 = NI,

then we have the length of the unknown parameter vector β2 to be ‖β2‖ ≤
α. If α = 0, the model is correct. When the model is misspecified, α > 0,
then the generalized least squares estimate of β̂1 is biased.

bias(β̂1) = E(β̂1)− β1 = (XT
1 Σ−1X1)

−1XT
1 Σ−1X2β2 .

Then, the mean square error of β̂1 is:

MSE(β̂1,X1, β2) = cov(β̂1) + bias(β̂1)bias(β̂1)
T

= (XT
1 Σ−1X1)

−1 + (XT
1 Σ−1X1)

−1XT
1 Σ−1X2β2β

T
2 XT

2 Σ−1X1(X
T
1 Σ−1X1)

−1 .

To search for an optimal fractional factorial split plot, we proposed a D-
optimal minimax criterion based on the MSE of the generalized least
squares estimate, we define the loss function D with respect to the re-
quirement set R as:

(2.5) LR(D) = max
β2≤α2

detMSE(β̂1,X1, β2) .

The loss function in equation (2.5) equals

(2.6) LR(D) =
1 + (N − λmin(XT

1 Σ−1X1))

det (XT
1 Σ−1X1)

,

where λmin(XT
1 Σ−1X1) is the smallest eigenvalue of (XT

1 Σ−1X1) .
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3. ALGORITHM AND OPTIMAL DESIGNS

3.1. Algorithm. Below are the procedures required in the constructions
to obtain optimal designs with run size as n selected from N :

(i) Select the numbers of factors;
(ii) Select the number of generators;

(iii) Select the number of wholeplot factors;
(iv) Select the number of subplot factors;
(v) Select the numbers of designs you want to generate;

(vi) Generate random designs with desired run size and design matrix;
(vii) Generate the covariance matrix Σ;

(viii) Compute the loss function, check for the minimum value of all the
designs generated; and

(ix) the design with the minimum loss funcion is chosen as the best or
optimal design.

The algorithm above was developed into a programme, which further gen-
erates the designs and finally search for the optimum designs .

3.2. Optimal Designs. The algorithm in Section 3 is applied to construct
optimal fractional factorial split plot designs for various requirement sets.
The value for the A-optimal A(D) and D-optimal D(Dn) criteria are com-
pared with the loss function value LR(D). Codes were written in Python
program to compute the optimal designs. The resulting designs are repre-
sented using numbers 1, 2 · · · , N where N = 2k, k1 is the number of whole
plot factors,k2is the number of subplot factors, p1 is the number generators
for the whole plot and p2 is the number of generators for the subplot. We
represent the whole plot factors with capital letters A − H and the sub-
plot factors with small letters p − u. To search for the D-optimal minimax
fractional factorial split plot design. We set α = 1 and d = 1.

Example 1. Construction of fractional factorial split plot design with five
factors and R = ( the set of all the main effects). For a fractional factorial
split plot design with five factors, the requirement set R is the set of all the
main effects. The number of effects in the requirement set R is t = 5, and
N = 25 = 32. The optimal designs constructed are presented in Table 1. The
D-optimal minimax designs are also A-optimal and D-optimal.
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TABLE 1. Optimal Design for R = ( all main effects)

Design Run k1 k2 p1 p2 Trt. Comb. A(D) D(Dn)
1+t LR(D)1+t

size n
1 16 3 2 0 1 5,6,7,10 92.0 10.2971 0.1478

11,12,16,18
19,20,21,24
25,29,30,31

2 16 2 3 0 1 3,5,6,8,9 176.6 11.3285 0.1555
12,18,19,20
21,23,25,26

30,31,32

Example 2. Construction of fractional factorial split plot design with five
factors and R = (the set of all the main effects and some interaction effects.)
For a fractional factorial split plot design with five factors, the requirement
set R is the set of all the main effects and some interaction effects. Table 2
shows the results for

(i) run size n = 16 with R = (A,B,C, p, q, AC,Ap); and
(ii) run size n = 16 with R = (A,B, p, q, r, AB,Ap)

The D-optimal minimax designs constructed are also D-optimal designs but
not A-optimal.

TABLE 2. Optimal Design for R = ( all main effects and some
interaction effects)

Design Run k1 k2 p1 p2 Trt. Comb. A(D) D(Dn)
1+t LR(D)1+t R

size n
3 16 3 2 0 1 3,4,5,6,8 96.0 10.3086 0.1494 (A,B,C,p,

11,12,16,17 q,AC,Ap)
18,22,23,24

26,29,31
4 16 2 3 0 1 1,4,6,7,9 106.3990 11.4569 0.1335 (A.B,p,

10,13,15,16 q,r,AB,Ap)
19,20,21,22

23,27,28



110 A. J. SAKA, A. A. OLOSUNDE, AND B. B. ADEOYE

Example 3. Construction of fractional factorial split plot design with six
factors and R = (A, B, C, p, q, r). For a fractional factorial split plot design
with sixteen and thirty-two runs, we have six factors; A, B, C, p, q, r, where
A, B, C are the whole plot factors and p,q,r are the subplot factors. The
requirement set R is (A, B, C, p, q, r). The optimal designs constructed are
presented in Table 3. The resulting D-optimal minimax designs are also D-
optimal designs but not A-optimal.

TABLE 3. Optimal Design for R = (A,B,C, p, q, r)

Design Run k1 k2 p1 p2 Trt. Comb. A(D) D(Dn)
1+t LR(D)1+t

size n
5 16 3 3 0 2 6,7,10,16,17 80.0 10.2456 0.1752

22,25,27,33
39,43,45,49

52,63,64
6 32 3 3 0 1 1,3,8,9,11,12,13 177.6 22.3385 0.0801

14,16,19,21,23,25
26,28,30,34,38,39
41,42,43,44,50,52
53,56,57,58,61,63

Example 4. Construction of fractional factorial split plot design with six
factors and R =(all the main effects). For a fractional factorial split plot
design with sixteen and thirty-two run sizes and six factors, using different
numbers of whole plot and subplot factors. The requirement set R includes
all the main effects. This results are shown in Table 4.

(i) the first design with n = 16, k1 = 2, k2 = 4, p1 = 0, and p2 = 2. The
design is a D-optimal minimax designs and also D-optimal designs
but not A-optimal;

(ii) while the remaining designs are D-optimal minimax designs, A-optimal
and D-optimal.

The D-optimal minimax designs are also A-optimal and D-optimal.



D-OPTIMAL MINIMAX CRITERION FOR . . . 111

TABLE 4. Optimal Design for R =( all main effects )

Design Run k1 k2 p1 p2 Trt. Comb. A(D) D(Dn)
1+t LR(D)1+t

size n
7 16 2 4 0 2 6,9,12,15,18 92.0 11.2424 0.1603

23,28,29,33
36,37,46,50

53,59,64
8 32 2 4 0 1 1,2,3,4,6,7,11,12 186.6667 22.1875 0.0812

13,14,15,17,18,19
20,22,23,24,25,32
33,36,38,39,42,44
45,52,53,56,58,59

9 16 4 2 1 1 3,4,10,13,15 81.333 9.9076 0.1816
17,22,26,28
30,31,38,41

43,61,64
10 32 4 2 0 1 3,4,5,8,9,13,15,16 168.0 21.5846 0.08214

19,21,22,26,30,32
34,38,40,41,42,43
44,45,50,52,56,57
58,59,60,62,63,64

Example 5. Construction of fractional factorial split plot design with six
factors and R = (the set of all the main effects and some interaction effects).
For a fractional factorial split plot design with six factors, the requirement set
R is the set of all the main effects and some interaction effects. The resulting
designs are presented in Table 5, the designs are D-optimal minimax designs
and also D-optimal designs but not A-optimal.
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TABLE 5. Optimal Design for R =( all main effects and some
interaction effects)

Design Run k1 k2 p1 p2 Trt. Comb. A(D) D(Dn)
1+t LR(D)1+t R

size n
11 16 3 3 0 2 4,5,11,12,18 104.0 9.8255 0.1608 (A,B,C,p,)

24,29,33,37 q,r,AC,BC
45,48,51,52

54,58,63
12 16 2 4 0 2 7,8,10,11,12 132.0 10.3005 0.1469 (A,B,p,

14,32,35,38 q,r,s,AB,
41,47,49,52, Ap,Aq)

60,61,62

4. CONCLUSION

D-optimal minimax criterion for regular two-level fractional factorial
split plot designs with model misspecification has been studied. Fractional
factorial split plot designs were constructed using different design gener-
ators. The application of D-optimal mimnmax criterion to the two-level
fractional factorial split plot design was extended and implemented to the
introduction of a general form of the loss function for this criterion.

The loss function was used in searching for optimal two-level fractional
factorial split plot design. Indeed the development of an algorithm using
Python programming language to increase the search for optimal designs
was introduced; adequate and efficient. The resulting designs are called
D-optimal minimax two-level fractional fractorial split plot design. This
can be used to estimate the parameters of a linear model including the
main and some specified interactions effects.

Importantly, the D-optimal mimnmax criterion introduced in this study
is a suitable tool that minimizes the variance, covariance and the bias of
the estimations of the optimal fractional factorial split plot designs con-
structed.
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