

PERFECT DOMINATION ON ANTI FUZZY GRAPH

Dr. R. Muthuraj¹, Dr. S. Revathi² & Dr. P.J. Jayalakshmi³

¹PG and Research Department of Mathematics,

H.H.The Rajah's College, Pudhukottai, Affiliated to Bharathidasan University, Tiruchirappalli,

Tamilnadu, India.E-mail: rmr1973@yahoo.co.in

²Assistant Professor, Department of Mathematics, Saranathan College of Engineering, Trichy – 620

012, Tamil Nadu, India. E-mail: revathi.soundar@gmail.com

³ Associate Professor, Department of Mathematics, Sri Meenakshividiyal Arts and Science College,

Trichy – 621 305, Tamil Nadu, India. E-mail: saijayalakshmi1977@gmail.com

Abstract: In this paper, we introduce the concept of perfect dominating set and perfect domination number of an anti-fuzzy graph. Some types of anti-fuzzy graphs are discussed with suitable examples.

Key words: Anti fuzzy graph, dominating set, perfect dominating set and perfect domination number.

Mathematical Classification: 05C72, 05C07, 05C12, 05C62.

1. Introduction

L.A. Zadeh [9] introduced the notion of a fuzzy set to describe vagueness mathematically and tried to solve such problems by giving a certain grade of membership to each member of a given set which laid the foundation of set theory. In 1975, Fuzzy graphs were introduced by A. Rosenfeld [6], the basic idea of fuzzy graph was introduced by Kauffmann [2] in 1973, fuzzy relation, represents the relationship between the objects of the given set. Domination in fuzzy graphs using effective edges was introduced by A. Somasundaram and S. Somasundaram [8]. Domination in fuzzy graphs using strong arc as discussed by A. Nagoorgani and V. T. Chandrasekaran [5]. R. Seethalaksmi and R. B. Gnanajothi [7] introduced the definition of Anti Fuzzy Graph. R. Muthuraj and A. Sasireka [3,4] defined some types of Anti Fuzzy Graph and illustrated the concepts of some types of regular Anti Fuzzy Graph, edge regular Anti Fuzzy Graph and some operations on the anti-Fuzzy Graph. C.V.R. Harinarayanan, S. Revathi and P.J. Jayalakshmi [1] introduced the perfect dominating set in fuzzy graph. In this paper, we introduce the concept of perfect domination on anti-Fuzzy Graph. Some theorems are discussed and suitable examples are given.

2. Preliminaries

Definition 2.1: A fuzzy graph $G = (\sigma, \mu)$ is said to be an anti-fuzzy graph with a pair of functions σ : $V \rightarrow [0,1]$ and μ : $VxV \rightarrow [0,1]$, where for all $u, v \in V$, we have $\mu(u,v) \ge \sigma(u) \lor \sigma(v)$.

Definition 2.2: The order p and size q of an anti-fuzzy graph G = (V, σ , μ) are defined to be $p = \sum_{u \in V} \sigma(u)$ and $q = \sum_{u v \in E} \mu(u, v)$. It is denoted by O(G) and S(G).

Definition 2.3: The anti-complement of anti-fuzzy graph $G = (\sigma, \mu)$ is an anti-fuzzy graph $\overline{G} = (\overline{\sigma}, \overline{\mu})$ where $\sigma = \overline{\sigma}$ and $\overline{\mu}(u, v) = \mu(u, v) - (\sigma(u) \lor \sigma(v))$ for all u,v in V.

Definition 2.4: An anti-fuzzy graph $G(\sigma,\mu)$ is a strong anti-fuzzy graph $\mu(u,v) = \sigma(u) \lor \sigma(v)$ for all $(u,v) \in \mu^*$ and G is a complete anti-fuzzy graph if $\mu(u,v) = \sigma(u) \lor \sigma(v)$ for all $(u,v) \in \mu^*$ and $u,v \in \sigma^*$. Two vertices u and v are said to be neighbours if $\mu(u,v) > 0$.

Definition 2.5: An edge $e = \{u, v\}$ of an anti-fuzzy graph G is called an effective edge if $\mu(u, v) = \sigma(u) \lor \sigma(v)$.

Definition 2.6: u is a vertex in an anti-fuzzy graph G the $N(u) = \{v:(u,v) \text{ is an effective edge}\}$ is called the neighbourhood of u and $N[u]U\{u\}$ is called closed neighbourhood of u.

Definition 2.7: Every vertex in an anti-fuzzy graph G has unique fuzzy values the G is said to be v-nodal anti fuzzy graph. i.e. $\sigma(u) = c$ for all $u \in V(G)$,

Definition 2.8: Every edge in an anti-fuzzy graph G has unique fuzzy values the G is said to be e-nodal anti fuzzy graph. i.e $\mu(u,v) = c$ for all $uv \in E(G)$.

Definition 2.9: Every vertices and edges in an anti-fuzzy graph G have the unique fuzzy value then G is called as uninodal anti fuzzy graph.

Definition 2.10: The strong neighbourhood of an edge e_i in an anti-fuzzy graph G is $N_s(e_i) = \{e_j \in E(G)/e_j \text{ is an effective edge with V } N(e_i) \text{ in G and adjacent to } e_j.$

Definition 2.11: An edge $e = \{u,v\}$ of an anti-fuzzy graph G is called a strong edge if $\mu^{\infty}(u,v) = \mu(u,v)$ where $\mu(u,v)$ is an effective edge.

Definition 2.12: An edge $e = \{u,v\}$ of an anti-fuzzy graph G is called an weak edge if $\mu(u,v) \neq \sigma(u) \lor \sigma(v)$.

Definition 2.13: A set $D \subseteq V(G)$ is said to be a dominating set of an anti-fuzzy graph G is for every vertex $v \in V(G)/D$ there exists u in D such that v is a strong neighbourhood of u with $\mu(u,v) = \sigma(u) \lor \sigma(v)$ otherwise it dominates itself.

Definition 2.14: A dominating se D with minimum number of vertices is called a minimal dominating set if no proper subset of D is a dominating set.

Definition 2.15: The maximum fuzzy cardinality taken overall minimal dominating set in G is called a domination number of anti-fuzzy graph G and is denoted by $\gamma(G)$. i.e $|D|_f = \sum_{v \in \mathcal{O}} \sigma(v)$.

3. Main results

Definition 3.1: Let $G = (\sigma, \mu)$ be an anti-fuzzy graph. Let $u, v \in V$. The vertex u dominates the vertex v in G is a strong arc. A subset P of V is called a perfect dominating set of G if each vertex v not in P is dominated by exactly one vertex of P.

Definition 3.2: A Perfect dominating set P of an anti-fuzzy graph G is said to be a minimal perfect dominating set, if for $v \in P$, $P - \{v\}$ is not a perfect dominating set of G.

Definition 3.3: The maximum fuzzy cardinality taken over all minimal perfect dominating set of G is called a perfect domination number of an anti-fuzzy graph and is denoted by $\gamma_{paf}(G)$

Theorem 3.4: For any complete uni nodal anti-fuzzy graph G, perfect domination number $\gamma_{paf}(G) = \sigma(u)$ for all $u \in V(G)$ where $\sigma(u)$ is the membership value of a vertex u.

Proof: By the definition of uni nodal anti fuzzy graph, every vertices and edges in an anti-fuzzy graph G have the unique fuzzy values. Let G be a complete unimodal anti-fuzzy graph and P be the perfect dominating set of G. In this complete anti fuzzy graph every arc in G is a strong arc and each vertex dominates all other vertices and each vertex in V-P is dominated by exactly one vertex in P which is the perfect dominating set and perfect domination number $\gamma_{paf}(G) = \sigma(u)$ for all $u \in V(G)$.

Example 3.5: Let G be a complete uninodal anti fuzzy graph

Perfect dominat set P = { a or b or c or d} Perfect domination number $\gamma_{paf}(G) = 0.6$

Theorem 3.6: If G is a star anti fuzzy graph then $\gamma_{paf}(G) = \sigma(v)$ where v is the centre vertex of G. **Proof:** If G is a star anti fuzzy graph and P is a minimal perfect dominating set of G. The vertex set of $G = \{v, v_1, v_2, \dots, v_n\}$, v should be dominates to v_i , for $i = 1, 2, 3, \dots, n$, where v is the centre vertex of G which satisfies every vertex $v_i \in V - P$ is dominated by exactly one vertex in P. So, $P = \{v\}$ is a minimal perfect dominating set and therefore $\gamma_{paf}(G) = \sigma(v)$.

Example 3.7: Let G be a star anti fuzzy graph

Perfect dominating set $P = \{v\}$ which is the centre vertex of G. $\gamma_{paf}(G) = \sigma(v)$

Theorem 3.8: If G is a complete Anti fuzzy graph, then $\gamma_{paf}(G) = \vee \sigma(u)$ for all $u \in V(G)$ where $\sigma(u)$ is the membership value of a vertex u.

Proof: Let G be a complete anti fuzzy graph and let P be a perfect dominating set. In this complete anti fuzzy graph, every arc in G is a strong arc. So, every vertex dominates all other vertices and every vertex v not in P, v is dominated by exactly one vertex with maximum cardinality for u of P which is perfect dominating set. Therefore, $\gamma_{paf}(G) = \lor \sigma(u)$.

Example 3.9: Let G be an anti fuzzy graph

Perfect dominating set = {a or b or c or d} $\gamma_{paf}(G) = \vee \sigma(u) = 0.7$

Proposition 3.10: Perfect dominating set does not exist for the complement of a complete anti fuzzy graph G.

Example 3.11: F rom the above graph, the complement of a complete anti fuzzy graph $G_{a(0.6)}$ (0.5)

Here perfect dominating set does not exist. Since \overline{G} has isolated vertices. It does not satisfy every vertex v not in P, v is dominated by exactly one vertex with maximum cardinality of P. So \overline{G} is not the perfect dominating set.

Theorem 3.12: Let G be a complete bipartite anti fuzzy graph G, then $\gamma_{paf}(G) = (\lor \sigma(u_i) + \lor \sigma(v_i))$ for all $u_i \in V_2(G)$ and $v_i \in V_1(G)$.

Proof: Let G be a complete bipartite anti fuzzy graph and let P be a perfect dominating set. In this graph G, every arc in G is a strong arc. So, every vertex in $u_i \in V_2(G)$ is dominates all other vertices and every vertex $v_i \in V_1(G)$ and also satisfies every vertex v not in P, v is dominated by exactly one vertex with maximum cardinality for $u_i \in V_2(G)$ and $v_i \in V_1(G)$ which is perfect dominating set. Therefore, $\gamma_{naf}(G) = (\lor \sigma(u_i) + \lor \sigma(v_i))$ for all $u_i \in V_2(G)$ and $v_i \in V_1(G)$.

Example 3.13: Let G be a complete bipartite anti fuzzy graph

Perfect dominating set P = {(v₁, u₁) or (v₁, u₂) or (v₁, u₃) or (v₂, u₁) or (v₂, u₂)or (v₂, u₃)} $\gamma_{paf}(\overline{G}) = (\vee \sigma(u_i) + \vee \sigma(v_i)) = 0.6 + 0.7 = 1.3$

Proposition 3.14: Perfect dominating set exists for the complement of a complete bipartite anti fuzzy graph G.

Example 3.15: From the above graph, the complement of a complete bipartite anti fuzzy graph G

Here Perfect dominating set $P = \{v_1, u_2\}$. Since \overline{G} has disconnected graph. It satisfy every vertex v not in P, v is dominated by exactly one vertex with maximum cardinality of P. So \overline{G} is the perfect dominating set and $\gamma_{paf}(\overline{G}) = 1$

Theorem 3.16: Every maximum fuzzy cardinality of a perfect dominating set of an anti fuzzy graph is minimal perfect dominating set.

Theorem 3.17: A perfect dominating set P of an anti fuzzy graph G is minimal perfect dominating set if and only if for each $v \in P$ at least one of the following conditions are satisfied (i) $N(v) \cap P = \phi$ (ii) there exists a vertex $w \in V - P$ such that $N(w) \cap P = \{v\}$

Proof. Let G be an anti fuzzy graph and P be a perfect dominating set of G. Let $v \in P$ and $w \in V - P$

. Then to prove that at least one of the conditions (i) and (ii) are satisfied. Suppose $P-\{v\}$ is a perfect dominating set of G. Then w is not dominated by exactly one vertex in P which is contradiction to our assumption. Hence the vertex v is strong neighbourhood to w and w is dominated by exactly one

vertex v. $N(w) \cap P = \{v\}$ and P is a minimal perfect dominating set of G and also there is no common vertex in N(v) and P. Therefore, $N(v) \cap P = \phi$.

Conversely, If at least one of the conditions are holds. Then to prove that P is a minimal perfect dominating set of anti fuzzy graph G. Suppose p is not a minimal perfect dominating set then there exists a vertex $v \in P$ such that P-{v} is a perfect dominating set. But, v is a strong neighbourhood to exactly one vertex in P-{v}. Therefore (i) and (ii) conditions are fails. It is clear that P-{v} is a perfect dominating set which is contradiction to our assumption. Therefore, P is a minimal perfect dominating set of G.

Example 3.18: Let G be an anti fuzzy graph

Here Perfect dominating set $P = \{b,c\} \gamma_{paf}(G) = 0.7$

4. Conclusion

In this paper, perfect domination number is defined on anti fuzzy graphs and also applied for the various types of anti fuzzy graph and suitable examples are given.

References

- [1] Harinarayanan, C.V.R., Revathi, S., and Jayalakshmi. P.J., "Perfect Dominating sets in fuzzy graphs" IOSR Journal of Mathematics, 8(3)(2013), pp.43-47.
- [2] Kaufmann. A., "Introduction to the theory of Fuzzy Subsets", Academic Press, Newyork(1975).
- [3] Muthuraj. R., and Sasireka. A., "On Anti fuzzy graph", Advances in Fuzzy Mathematics, Vol. 12, no.5(2017), pp.1123-1135.
- [4] Muthuraj. R., and Sasireka. A., "Some Types of Nodal and Edge Regular Anti fuzzy graph", International journal of Fuzzy Mathematical Archive, Vol. 14, No.2(2017), pp.365-378.
- [5] Nagoorgani, A., Chandrasekaran, .T., "A first look at Fuzzy graph theory" Allied Publishers Pvt. Ltd. 2010.
- [6] Rosenfeld, A., "Fuzzy graphs", In:Zadeh, L.A., Fu, K.S., Shimura, M(Eds.), Fuzzy sets and their Applications, Academic Press, New York, (1975).
- [7] Seethalakshmi. R., and Gnanajothi, R. B., "Operations on Anti fuzzy graphs", Mathematical Sciences International Research Journl, Vol. 5, Issue 2 (2016), pp.210-214.
- [8] Somasundaram. A., and Somasundaram. S., "Domination in fuzzy graphs I", Pattern Recognition Letters, 19(9)(1998), PP.787-791.
- [9] Zadeh. L.A., "Fuzzy sets", Information Sciences, No. 8(1965), pp,338-353.