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1. Introduction 
In 1937, Stone [6] introduced regular open sets and used it to define the semi-regularization of a 
topological space. In 1968, Velicko [7]proposed the class of δ-open sets contained in the category of 
open sets. Levine [2]has brought generalized closed sets in 1970. Dunham [1] has established an 
operator calledgeneralized closure using Levine’s generalized closed sets as Cl*.In 2016, Pious 
Missier [5] had instituted regular*-open sets using Cl*.In 2019,Meenakshi etal initiated the study of 
η*-open sets [3] between the classes of δ-Open sets and open sets. Using η*-open sets, J- closed sets 
are introduced[4], and their features are explored in 2019.In this article, J-Closure,J-interiorof a 
subset,J-Derived set, J-Border, J-Frontier, J-Exteriorof a subset and J-saturated sets are defined using 
the concept of J-open sets here. Some exciting features of J-Closure,J-interior &J-Derived set, J-
Saturated sets are obtained. Moreover, the interrelations between J-Border, J-Frontier, J-Exterior sets 
are analysed. 
 
 
2. Preliminaries 
 
  Throughout this article, (Y,𝜁𝜁) will always denote topological space on which no separation axioms 
are assumed, unless explicitly stated. If D is a subset of the space (Y,𝜁𝜁), Cl(D) and int(D) denote the 
closure and interior of D respectively. 
 
Definition 2.1 If D is a subset of a space (Y,𝜁𝜁),  
(i) The generalized closure of D [1] is defined as the intersection of all g-closed sets in Y containing D 
and is denoted by Cl*(D).  
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(ii) The generalized interior of D [1] is defined as the union of all g-open sets in Y contained in D and 
is denoted by int*(D). 

Definition 2.2 Let (Y,𝜁𝜁) be a topological space. A subset D of (Y,𝜁𝜁) is called regular*-open (or r*-
open) [5] if D = int(Cl*(D)).The complement of a regular*-open set is called a regular*-closed set. 
The union of all regular*-open sets of Y contained in D is called the regular*-interior of D and is 
denoted by r*int(D). The intersection of all regular*-closed sets of Y containing D is called the 
regular*-closure of Dis denoted by r*Cl(D). 

Definition 2.3 A subset D of a topological space (Y,𝜁𝜁) is called a η*-open set [3] if it is a union of 
regular*-open sets (r*-open sets).The complement of a η*-open set is called a η*-closed set. A subset 
D of a topological space (Y,𝜁𝜁) is called η*-Interior of D is the union of all η*-open sets of Y contained 
in D andis denoted by η*-Int(D).The intersection of all η*-closed sets of  Y  containing D is called    
η*-closure of D and  is denoted by  η*-Cl(D). 

 
Definition 2.4 A subset D of a topological space (Y,𝜁𝜁)is said to be aJ-closed set [4]if  
Cl(D)⊆M whenever D⊆M, M is η*-open in (Y,𝜁𝜁).  
The class of all J-closed sets of (Y,𝜁𝜁) is denoted by JC(Y,𝜁𝜁). 

Definition 2.5 A subset D of a topological space (Y,𝜁𝜁) is called J-open if itscomplement Dc is J-closed 
in (Y,𝜁𝜁). The collection of allJ-open sets in (Y,𝜁𝜁)is denoted byJO(Y,𝜁𝜁). 

Remark 2.6 (i) Every open set is a J-open set [4]. 

(ii) Finite intersection of J-open sets is J-open [4]. 

 
Definition2.7 A subset D of a topological space (Y,𝜁𝜁) is said to be Saturatedset if Cl({x}) ⊆D for 
each x ∈D. 
 
Definition2.8 Let D ⊆ Y. The Frontier of D is defined as Cl(D)−int(D).It is denoted by Fr(D). 
 
Definition2.9 Let D be a subset of a topological space (Y,𝜁𝜁). The Border of D is defined as D−int(D). 
It is denoted by Br(D). 
 
Definition2.10 Let D be a subset of a topological space (Y,𝜁𝜁). The Exterior of D is defined as 
Y−Cl(D) and is denoted by Er(D). 
 
 
 
3. J-closure operator 
In this section, the notion of J-closure of a set is introduced and some of its properties are studied. 

Definition 3.1 The J-closure of D (briefly JCl(D)) of a topological space (Y,𝜁𝜁)is defined as follows. 
 J𝑪𝑪𝑪𝑪(𝑫𝑫) =∩ {𝑭𝑭 ⊆ 𝒀𝒀:𝑫𝑫 ⊆ 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑭𝑭 ∈ 𝑱𝑱𝑪𝑪(𝒀𝒀,𝜻𝜻)} 

Proposition 3.2 Let D be any subset of (Y,ζ).  If D is J -closed in (Y,ζ), thenJCl(D) = D. 
Proof:  Let D be J-closed in (Y,𝜁𝜁). By definition, J𝐶𝐶𝐶𝐶(𝐷𝐷) =∩ {𝐹𝐹 ⊆ 𝑌𝑌:𝐷𝐷 ⊆ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∈ 𝐽𝐽𝐶𝐶(Y, 𝜁𝜁)}. Since 
D is J -closed, the smallest F in the above collection is D itself and hence J𝐶𝐶𝐶𝐶(𝐷𝐷) = 𝐷𝐷. 

Example 3.3 (counter example) Let Y={p,q,r,s},𝜁𝜁={φ,Y,{p},{p,q}}.HereJCl(𝑌𝑌, 𝜁𝜁)= P(Y)−{ 
{p},{q},{p,q}}.Let D = {p,q}.Then JCl(D) ={p,q}=D≠ a J-closedset. 

Remark 3.4 For a subset D of (Y,ζ),D ⊆ JCl(D) ⊆ Cl(D)[4]. 

Proposition 3.5 Let D and B be subsets of (Y, ζ).  Then the following statements are true: 
(a) JCl(∅) = ∅ and JCl(Y) = Y; 
(b) If D⊆ B, thenJCl(D) ⊆ JCl(B); 
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(c) D ⊆ JCl(D); 
(d) JCl(D) ∪JCl(B) =JCl(D ∪ B); 
(e) JCl(D ∩ B) ⊆ JCl(D) ∩JCl(B); 
(f) JCl(JCl(D) ) = JCl(D). 

Proof: (a), (b), (c) follow from Definition 3.1.  

(d) Since D ⊆ D ∪ Band B ⊆ D ∪ B.By(b),JCl(D) ⊆ JCl(D ∪ B)andJCl(B) ⊆   JCl(D ∪
B). HenceJCl(D) ∪ JCl(B) ⊆ JCl(D ∪ B).To prove the reverse inequality, let x ∉
JCl(D)∪JCl(B), then 𝑥𝑥 ∉ J𝐶𝐶𝐶𝐶(𝐷𝐷)  and 𝑥𝑥 ∉ J𝐶𝐶𝐶𝐶(𝐵𝐵).  Therefore, there exist J-closed sets U and V in Y 
such that D⊆ U and B ⊆ V and  x ∉ U and x ∉ V.  Hence we have 𝐷𝐷 ∪ 𝐵𝐵 ⊆ 𝑈𝑈 ∪ 𝑉𝑉  and 𝑥𝑥 ∉ U ∪ V(By  
Theorem 4.1from [4]), 𝑈𝑈 ∪ 𝑉𝑉 is J -closed and hence 𝑥𝑥 ∉ J𝐶𝐶𝐶𝐶(𝐷𝐷 ∪ 𝐵𝐵). 
(e) Since D∩B⊆D and D∩B⊆ B. By (b),J𝐶𝐶𝐶𝐶(D ∩ B)⊆JCl(D)   andJ𝐶𝐶𝐶𝐶(D ∩ B)⊆JCl(B).   
HenceJ𝐶𝐶𝐶𝐶(D ∩ B)⊆JCl(D)∩JCl(B).  

(f) Follows from the definition of J-closure. 

The converse of the above Proposition 3.5(e) is not true from the following counter example. 

Example3.6 (counter example) Let Y={p,q,r},𝜁𝜁={φ,Y,{p},{q},{p,q}}.Then JC(Y, 𝜁𝜁)={φ,Y, 
{r},{q,r},{p,r}}.Take D = {p} and B = {q},D∩B = φ,JCl(D) = {p,r},JCl(B) = {q,r},JCl(D)∩JCl(B) = 
{r} but JCl(D∩ B) = φ.Hence JCl(D) ∩JCl(B)⊈JCl(D∩ B). 

 

From Proposition 3.5 (a),(b),(c) &(d),(f) we have that J-closure operator is a Kurtowski’s closure 
operator. 
Theorem 3.7 For each y∈ Y,y ∈JCl(D) if and only if U ∩ D ≠φ for every  J-open set U in 
(Y, ζ)containing y. 
Proof: Let 𝑦𝑦 ∈J𝐶𝐶𝐶𝐶(𝐷𝐷). Suppose that there exists a J-open set U in  (Y, 𝜁𝜁)containing y such that U ∩ D 
= φ. Hence D⊆Y – U is J-closed in (Y, 𝜁𝜁)which implies that J𝐶𝐶𝐶𝐶(𝐷𝐷) ⊆ 𝑌𝑌 − 𝑈𝑈.  Hence 𝑦𝑦 ∉J𝐶𝐶𝐶𝐶(𝐷𝐷) 
which is a contradiction. Hence U ∩ D≠φ. 
Let us assume that U ∩ D ≠φ for every J-open set U in (Y, 𝜁𝜁)containing y. Suppose that  𝑦𝑦 ∉J𝐶𝐶𝐶𝐶(𝐷𝐷). 
By definition of J-closure, there exists a J-closed set U in (Y, 𝜁𝜁) containing D such that y∉ U.  Hence 
Y – U is J-open in (Y, 𝜁𝜁)containing y.Therefore (Y-U)∩ D = φ, which is a 
contradiction.Hence  𝑦𝑦 ∈J𝐶𝐶𝐶𝐶(𝐷𝐷). 
 
 
4. J-neighbourhood 
 
Definition4.1 A subset M of a topological space (Y,𝜁𝜁) is said to be a J-Neighbourhood of x∈Y if 
there exists a J-open set D such that x ∈ D⊆ M. 
The set of all J-Neighbourhoods of x is denoted by JNr(x). 
 
Example4.2 Let Y={p,q,r,s}, 𝜁𝜁={φ,Y,{p,q}}.Then JO(Y,𝜁𝜁) ={φ, 
Y,{p},{q},{r},{s},{p,q}{q,r},{p,r},{p,s},{q,s},{p,q,r},{p,q,s}}.Here {q,r,s} is a J-Neighbourhood  of 
q asq∈{q,r}⊆{q,r,s}. 
 
Theorem4.3 AJ-open set N is a J-Neighbourhood  of each of its points. 
Proof: Let N be a J-open set and x ∈ N. Then x ∈ N ⊆ N satisfying the condition of N being a J-
Neighbourhood.Since x is an arbitrary point of N, N is a J-Neighbourhood of each of its points. 
 
Corollary 4.4 Every J-open set containing a point x is belongs to JNr(x). 
 
Remark 4.5 A J-Neighbourhood of some point in Yneed not be a J-open set as observed from 
theupcoming example. 
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Example4.6  Let Y={p,q,r,s}, 𝜁𝜁={φ,Y,{p},{q,r},{p,q,r}}.Then JO(Y,𝜁𝜁) = {φ, 
Y,{p},{q},{r},{p,q}{q,r},{p,r},{p,q,r}}.A subset {p,q,s} is J-Neighbourhood  of p as 
p∈{p,q}⊆{p,q,s}.But it is not a J-open set. 
 
Definition4.7 A subset M is said to be a J-Neighbourhood of N⊆ Y if there exists a J-open set A such 
that N ⊆ A⊆ M. 
The set of all J-Neighbourhoods of N is denoted by JNr(N). 
 
 
Example4.8 In the above Example 4.2, {p,q,s} is J-Neighbourhood  of {p} as {p}∈{p,q}⊆{p,q,s}. 
 
Theorem 4.9 If M is a J-closed subset of a topological space(Y,ζ)  and x ∈Y–M,then there exists a J-
Neighbourhood N of x such that N ∩M =∅. 
Proof: LetM be a J-closed subset of Y then Y –M is J-open in Y. By Theorem 4.3,Y–M is a J-
Neighbourhood  of each of its points. Therefore there exists a J-open set Nof x such that N⊆ Y –M 
which in turn implies that N ∩ M =∅. 
 
Theorem4.10 In a topological space (Y,ζ) with x ∈ Y, the following results are true. 
(i) JNr(x)≠ ∅; 
(ii) If M ∈JNr(x),then x ∈ M; 
(iii) If M ∈JNr(x) and M⊆ N,then N ∈JNr(x); 
(iv) If M ∈JNr(x) and N ∈JNr(x),then M  ∩ N∈JNr(x); 
(v) If M ∈JNr(x) then there exists a N ∈JNr(x) such that N⊆ M and N∈ JNr(y),for every y ∈ N. 
Proof: (i) SinceYitself is a J-open set by Theorem 4.3,it is a J-Neighbourhood for every x ∈ Y. That is 
Y∈JNr(x),for all x ∈Y.HenceJNr(x)≠ ∅ for all x ∈ Y. 
(ii)Follows from the Definition 4.1. 
(iii) Let M ∈JNr(x) and M⊆ N. Since M is a J-Neighbourhood of x then there exists a J-open set A 
such that x∈ A ⊆M.SinceM⊆ N,we get x∈ A ⊆ N.Hence N is a J-Neighbourhood of x. 
(iv) LetM ∈JNr(x) and N ∈JNr(x) then there exists J-open sets A and B such 
Thatx∈ A ⊆ M and x∈ B ⊆ N. This implies x∈ A∩B ⊆ M∩N. Now in order to prove M∩Nis a J-
Neighbourhood  of x, it is enough  to prove that A∩B is J-open. Since finite intersection of J-open sets 
is J-open(by Remark 2.6 (ii)), A∩Bis J-open and hence M  ∩ N is a J-Neighbourhood of x.Therefore 
M  ∩ N∈JNr(x). 
(v) Let M ∈JNr(x) then there exists a J-open set N such that x∈ N ⊆ M.  Since N is J-open, it is a J-
Neighbourhood  of all  its points (by Theorem 4.3).ThusN∈ JNr(y),for every y ∈ N. 
 
Lemma 4.11 Nr(x) ⊆ JNr(x). 
Proof: Let A ∈ Nr(x).Then ∃ B ∈ 𝜁𝜁 such that x∈ B⊆A.Since every open set is a J-open set (by 
Remark 2.6 (ii)), A∈JNr(x). 
 
Lemma 4.12 A collection 𝒞𝒞xsatisfies: 
(i) M ∈ 𝒞𝒞x such that x ∈ M; 
(ii) N,M∈ 𝒞𝒞x implies N ∩M ∈ 𝒞𝒞xthen ℬ forms a basis for a topology where ℬ = {∅} ∪{G ⊆ Y / x ∈ G 
implies there exists N ∈ 𝒞𝒞x such that x∈ N ⊆ G} when (Y,ζ) is a topological spaceand x ∈ Y. 
 
Corollary 4.13 If 𝒞𝒞x =JNr(x) in Lemma 4.12 (ii),t hen JNr(x) forms a basis for a topology. 
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5. J-derived set 
 
Definition5.1 Let D⊆Yand apoint y ∈ Y is known as a J-limit point of D if every J-Neighbourhood  
of y intersects D in some point other than y itself. 
 
Example 5.2 Let Y={p,q,r}, 𝜁𝜁={φ,Y,{p},{q},{p,q}}.Then JO(Y,𝜁𝜁) ={φ,Y,{p},{q},{p,q}}.Here r is the 
limit point  of {p,r}. 
 
Definition5.3 The set of all J-limit points of D⊆Y is called J-Derived set of D and is denoted by 
JDr(D). 
 
Theorem5.4 Let A,B⊆Y.Then the following statements are valid in (Y,ζ). 

(i) JDr(∅) = ∅; 
(ii) JDr(A)⊆Dr(A); 
(iii) If A ⊆ B,then JDr(A)⊆JDr(B); 
(iv) JDr(A∪B) = JDr(A) ∪ JDr(B); 
(v) JDr(A∩B)⊆JDr(A)∩JDr(B); 
(vi) [JDr(JDr(A))]– A ⊆JDr(A); 
(vii) JDr(A∪JDr(A))⊆A∪JDr(A). 

Proof: (i) Follows from the Definition 5.3. 
(ii)Let x∈JDr(A).Then every J-Neighbourhood N of x is such thatN∩(A−{x})≠ ∅---(1).Consider N′ is 
a neighbourhood of x.By the above Lemma 4.11, N′isJ-Neighbourhood of x.Hence by 
(1), N′ ∩(A−{x})≠ ∅.Hence x ∈Dr(A). 
(iii)Let x∈JDr(A).Thenforevery J-Neighbourhood N of x is such thatN∩(A−{x})≠ ∅.Since A ⊆ B, 
N∩(B−{x})≠ ∅. Therefore x∈JDr(B). 
(iv)Since A⊆A∪B,JDr(A)⊆JDr(A∪B).Similarly B⊆A∪B,JDr(B)⊆JDr(A∪B).Therefore 
JDr(A)∪JDr(B)⊆JDr(A∪B).Suppose x∉ JDr(A)∪JDr(B).Then x∉JDr(A) or x∉JDr(B),that is x is 
neither a limit point of A nor of B.Therefore there exist J-Neighbourhoods N1 and N2,then 
N1∩(A−{x}) = ∅ and N2∩(B−{x}) = ∅.Here to prove N1∩ N2 is a J-Neighbourhood containing x.It is 
enough to prove A∩B is J-open.Sincefiniteintersection of J-open sets is J-open (by Remark 
2.6(ii)),A∩B is J-open.Hence N1∩ N2 is a J-Neighbourhood containing x is such that(N1∩ 
N2)∩((A∪B)-{x}) = ∅ implies x∉ JDr(A∪B) gives JDr(A∪B)⊆ JDr(A)∪JDr(B). 
(v) Since A∩B⊆A,B, the proof follows. 
(vi) Let x∈JDr(JDr(A)) – A.Then N∩(JDr(A)−{x})≠ ∅ for each J-Neighbourhood N  of x.Now let y∈
N ∩(JDr(A)-{x}) implies y∈N and y∈JDr(A). Here y∈JDr(A)gives  N∩(A−{y})≠ ∅ for each J-
NeighbourhoodN  of y. So that take z∈ N∩(A−{y}).Then z≠x as z∈A and x∉A.Therefore 
N∩(A−{x})≠ ∅ for each J-Neighbourhood N  of x. Hence x∈JDr(A). 
(vii)Let x∈JDr(A∪JDr(A)).If x∈A,then the result is obvious. Suppose x∈ JDr(A∪JDr(A)) – A. Then 
N∩(A∪JDr(A)) −{x})≠ ∅ for each J-Neighbourhood N  of x implies N∩(A−{x})≠ ∅ and 
N∩(JDr(A)−{x})≠ ∅.  Now let y∈ N ∩ (JDr(A) − {x})  implies y∈N and y∈JDr(A). So N∩(A−{y})≠
∅ for each J-Neighbourhood N  of y. So that take z∈ N∩(A−{y}).Then z≠x as z∈A and 
x∉A.Therefore N∩(A−{x})≠ ∅ for each J-Neighbourhood N  of x. Hence x∈JDr(A)and thus x∈ 
A∪JDr(A). 
 
Theorem5.5 Let A⊆ Y.If A is J-closed then JDr(A) ⊆A. 
Proof: Let x∈ JDr(A) then N∩(A−{x})≠ ∅ whenever N is a J-Neighbourhood of x implies N∩A≠ ∅ 
whenever N is a J-Neighbourhood of x-----(1).Consider 𝑁𝑁 ′ ∩A where  
𝑁𝑁 ′ is J-open,then by Theorem 4.3,every J-open is J-Neighbourhood of x and from (1),               𝑁𝑁 ′ ∩A≠
∅.Therefore x∈JCl(A) = A, since A is J-closed. Hence the proof. 
 
Corollary5.6 JDr(A) ⊆ JCl(A). 
 
Theorem5.7 For any subset A of a topological space (Y,ζ),JCl(A) = A ∪ JDr(A). 
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Proof: By the above Corollary5.6,JDr(A) ⊆ JCl(A),A∪ JDr(A)⊆ JCl(A).On the other hand,let x ∈ 
JCl(A).If x ∈ A,then the proof is complete. If x ∉ A,each J-open set U  containing x intersects A at a 
point distinct from x ; So x ∈ JDr(A).Thus JDr(A) ⊆ A ∪ JDr(A) which completes the proof. 
 
Lemma5.8 JCl(A) – A ⊆JDr(A). 
Proof: Let x ∈JCl(A)– A. Then x∈ JCl(A)& x ∉A. For every J-open set N containing x intersects A 
and x ∉A. By Theorem 4.3, for every J-Neighbourhood N containing x intersects A and x ∉A. Hence 
N∩(A−{x})≠ ∅ and x ∈ JDr(A). Hence the proof. 
 

 

6. J-interior operator 

In this section,the notion of J-Interior of a set is introduced and some of its properties are studied. 

Definition 6.1   Let D be a subset of Y.A point y∈ D is said to be J-interior pointof D if D is a J-

neighbourhood of y.The set of all J-interior points of D is called the J-interior of D and is denoted by 

Jint(D). 

Lemma 6.2 If D is a subset of Y,thenJint(D) = ∪ {G: G ⊆ Dand G ∈ JO�(Y, ζ))�. 

Proof: Let D be a subset of Y. Let y ∈ Jint(D) ⟺ y  is a J-interior point of D ⟺ D is a J-

neighbourhood of y ⟺ ∃ a J-open set G such that y ∈ G⊆ D⟺y∈∪ {G: G ⊆ D and G ∈

JO�(Y, ζ))�.Hence Jint (D) =∪ {G ⊆ Y: G ⊆ D and G ∈ JO�(Y, ζ))�. 

Lemma 6.3 If D is a subset of Y,thenint(D) ⊆Jint(D). 

Proof:  Let D be a subset of Y. Let y ∈int(D) ⇒ y∈∪ {G: G ⊆ D and G ∈  ζ ⇒ ∃an open set G such that 

y∈ G⊆ D.Since every open set is a J-open set (by Remark 2.6(i)) in Y⇒     y∈   ∪ {G: G ⊆ Dand G ∈

JO�(Y, ζ))� ⇒ y∈ Jint(D).Hence  int(D)⊆Jint(D). 

The converse of the above Lemma6.3 is not true from the following counter example. 

Example 6.4 (counter example) LetY={p,q,r},ζ ={φ, Y, {p,q}}.Here JO((Y,𝜁𝜁))= P(Y). Let 

D={r},Jint(D) = {r},int(D) = φ.Hence Jint(D)⊈int(D). 

In general intD is an open set. But JintD need not be a J-open set.It can be proved by the following 

counter example. 

Example 6.5 (counter example) Let Y={p,q,r,s},𝜁𝜁 ={φ, Y, {p}}.Here JO�(Y, 𝜁𝜁)�= P(Y)–{q,r,s}.Let D 

= {q,r,s}, Jint(D) = {q,r,s} but it is not a J-open set. 

Theorem 6.6 For any two subsets D and B of (Y, ζ), the following statements are true:  

(a)  Jint(Y) = Y andJint(ϕ) = ϕ; 

(b)  Jint(D) ⊆ D; 

(c)  If B is any J-open set contained in D, then B ⊆Jint(D); 

(d)  If D⊆B, then Jint(D)⊆Jint(B); 

Proof: (a)It is obvious. 
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(b)Let y∈Jint(D).Then y is a J-interior point of D⇒  D is a J-neighbourhood of y⇒y∈ D.Hence 

Jint(D) ⊆ D. 

(c)Let B be any J-open set such that B ⊆ D. Let y∈ B. Since B is a J-open set contained in D, y is a J-

interior point of D. That is y∈Jint(D). Hence B ⊆Jint(D). 

(d)Let D and B be subsets of Y such that D⊆ B. Let y∈Jint(D). Then y is a J-interior point of D and so 
D is a J-neighbourhood of y.(ie) there exists a J-open set G such that y∈ G⊆ D.Now D⊆ B implies y∈ 
G⊆ B.Hence B is also J-neighbourhood of y then y∈Jint(B). Hence Jint(D)⊆Jint(B).   

Remark 6.7 For a subset D of (𝑌𝑌, 𝜁𝜁), int(D)⊆Jint(D) ⊆ D. 

Lemma 6.8 Jint(D) = D – JDr(Y –D) . 

Proof: Let x ∈D – JDr(Y –D),then x∉ JDr(Y –D).Therefore ∃ a J-open set G containing x such that G 
∩(Y –D) = ∅ implies x∈G ⊆D and hence x ∈Jint(D).Now to prove Jint(D)⊆ D – JDr(Y –D).Let x 
∈Jint(D)then JintD is a J-Neighbourhood of x.Since JintD ∩(Y−D)=∅,there is a J-Neighbourhood of x 
doesnot intersect Y –D implies x∉ JDr(Y –D). Therefore x ∈D – JDr(Y –D). Hence Jint(D) = D – 
JDr(Y –D) . 

Proposition 6.9 Let D be any subset of (Y, ζ). If D is J -open in (Y, ζ)then Jint(D) = D. 

Proof: Let D be J-open in (Y, 𝜁𝜁).We know that Jint(D) ⊆ D. Also D is a J-open set contained in D. 
From above Theorem 6.7 (c), D⊆Jint(D). Hence Jint(D) = D. 

The Converse of Proposition6.10 need not be true. 

Example 6.10 (counter example) Same as in Counter Example 6.5.  Here Jint(D) = D but D is not a J-
open set. 

Corollary 6.11 Jint(Jint(D)) =Jint(D). 

Theorem 6.12 If D and B are subsets of Y, then Jint(D) ∪Jint(B) ⊆Jint(D∪B). 

Proof: Since D⊆D∪B and B ⊆D∪B, by Theorem6.6 (d), Jint(D) ⊆Jint(D∪B) and Jint(B) ⊆Jint(D∪B). 
Hence Jint(D) ∪Jint(B) ⊆Jint(D∪B).  

The converse of Theorem 6.12  need not be true as seen from the following counter example. 

Example 6.13 (counter example)  Let Y = {p,q,r,s}, 𝜁𝜁= {Y,ϕ, {r}, {p,q}, {p,q,r}. Here JO(𝑌𝑌, 𝜁𝜁) = { 
Y,ϕ,{p},{q},{r},{p,r},{q,r},{p,q}, {p,q,r}}.Let D = {p,q,r}, B = {p,q,s} and D∪B = {p,q,r,s } =Y then 
Jint{D} = {p,q,r}, Jint{B} = {p,q} and Jint{D∪B} = Y. Hence Jint(D∪B) = Y⊈Jint{D} ∪Jint{B} = 
{p,q,r}.  

 

Theorem 6.14 If D and B are subsets of Y, then Jint(D∩B) = Jint(D) ∩Jint(B). 

Proof: Since D∩B ⊆D and D∩B ⊆B, by Theorem 6.7(d), Jint(D∩B)⊆Jint(D) and Jint(D∩B)⊆Jint(B). 
Hence Jint(D∩B)⊆Jint(D)∩Jint(B). In other way,t o prove Jint(D) ∩Jint(B) ⊆Jint(D∩B).Let y ∈
 Jint(D)&y ∈ Jint(B).Then y  is a J-interior point of D &y  is a J-interior point of B. That implies D is a 
J-neighbourhood of y& B is a J-neighbourhood of y. Therefore ∃ a J-open set G such that y ∈ G⊆ 
D&∃ a J-open set M such that y∈M ⊆ D. By Remark 2.6(ii),∃ a J-open set such that y ∈ G∩
𝑀𝑀 ⊆D∩B. Hence y ∈Jint(D∩B). 
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Remark: From Theorem 6.7 (a),(b) & Corollary 6.12, Theorem 6.15, J-interior operator is a 
Kuratowski’s interior operator. 

 

Theorem 6.15  Let D be any subset of  (Y, ζ),  then 

(a) (Jint(D))c =JCl(Dc). 
(b) (JCl(D))c= Jint(Dc). 

Proof:  (a)Let 𝑥𝑥 ∈ ( Jint(D))c .Then 𝑥𝑥 ∉ 𝐽𝐽𝐽𝐽𝐹𝐹𝐽𝐽(𝐷𝐷).That is every J-open set U containing x is such that 
𝑈𝑈 ⊈ D.That is every J-open set U containing x is such that 𝑈𝑈 ∩ 𝐷𝐷𝑐𝑐 ≠ ∅.By Theorem 3.8,𝑥𝑥 ∈ 𝐽𝐽𝐶𝐶𝐶𝐶(𝐷𝐷𝑐𝑐) 
and therefore (Jint(D))c⊆JCl(Dc). 
Conversely, let𝑥𝑥 ∈ JCl(Dc).Then by Theorem 3.8,every J-open set U containing x is such that 𝑈𝑈 ∩
𝐷𝐷𝑐𝑐 ≠ ∅. Then 𝑥𝑥 ∉ 𝐽𝐽𝐽𝐽𝐹𝐹𝐽𝐽(𝐷𝐷). Hence  𝑥𝑥 ∉ �𝐽𝐽𝐽𝐽𝐹𝐹𝐽𝐽(𝐷𝐷)�𝐶𝐶 and 𝐽𝐽𝐶𝐶𝐶𝐶(𝐷𝐷𝑐𝑐) ⊆ �Jint(D)�c .Thus (Jint(D))c 
=JCl(Dc). 

(b) Follows by replacing int by Cl & Cl by int in (a). 
 
Remark: In other notation, the above Theorem 6.15 can be stated as follows : 

(a) Y−Jint(D) = JCl(Y –D). 
(b) Y−JCl(D) = Jint(Y –D). 

 
 

7. J-saturated set 

Definition7.1 A subset D of a topological space  (Y,𝜁𝜁) is said to be J-Saturated set if JCl({x}) ⊆D for 

each x ∈D.The set of all J-saturated sets in (Y,𝜁𝜁) is denoted by JSr(Y). 

Example7.2 Consider Y={m,n,o},𝜁𝜁 ={φ, Y,{m},{n},{m,n}}.Then JC(Y,𝜁𝜁) = {φ, Y,{n,o},{m,o},{o}}. 

Let D = {n,o}.Then JCl({x})  ⊆D for each x∈D,it is a J-saturated set. 

Theorem 7.3 Every J-closed set is a J-Saturated set but not conversely. 

Proof: Let D be a J-closed set and x ∈D.Then {x} ⊆ D.Take J-closure on both sides of {x} ⊆D,we get 

JCl({x}) ⊆ JCl(D) = D,as D is J-closed.Therefore D is J-Saturated. 

Example 7.4 (counter example)  Let Y={p,q,r,s}, 𝜁𝜁={φ, Y,{p},{q},{p,q},{p,q,s},{p,q,r}}. Then 

JC(Y,𝜁𝜁) = {φ, Y,{r},{s},{q,r},{p,r},{p,s},{r,s},{q,s},{p,q,r},{p,r,s},{p,q,s},{q,r,s}}.Let D = 

{p,q}.Then JCl({x})  ⊆D for each x∈D,it is J-saturated  but D is not J-closed. 

 

 

8. J-frontier 

Definition8.1 Let D ⊆ Y. A subset D of (Y,𝜁𝜁) is known as the J-Frontier of D is defined as 

JCl(D)−Jint(D) and is denoted by JFr(D). 

Example 8.2 In the above Example 4.6, JC(Y,𝜁𝜁) = {φ, Y, 

{s},{p,s},{r,s},{q,s},{p,r,s},{p,q,s}{q,r,s}}.Let D = {r},JCl(D) = {r,s}.Here Jint(D) = {r}.Therefore 

JFr(D) = JCl(D) –Jint(D) = {r,s} –{r} = {s}. 

 

Proposition 8.3 Let D ⊆ Y. Then the upcoming results are perfect. 



 

 

 
 

106 
 

(a) JFr(D) ⊆Fr(D); 

(b) JCl(D) = Jint(D) ∪ JFr(D); 

(c) Jint(D) ∩ JFr(D) = ∅; 

(d) If D is a J-open set then JFr(D) ⊆ JDr(D); 

(e) JFr(D) = JCl(D) ∩ JCl(Y− D); 

(f) JFr(D) is J-closed; 

(g) JFr(D) = JFr(Y−D); 

(h) JFr(JFr(D)) ⊆ JFr(D); 

(i) JFr(Jint(D)) ⊆ JFr(D); 

(j) JFr(JCl(D)) ⊆ JFr(D); 

 

Proof : 

(a) Since JCl(D) ⊆ Cl(D) (by Remark 3.4)& int(D) ⊆ Jint(D) (by Lemma 6.3).It 
givesJCl(D) – Jint(D) ⊆ Cl(D) –int(D) implies JFr(D) ⊆ Fr(D). 

(b) RHS = Jint(D) ∪ JFr(D) = Jint(D) ∪ [JCl(D)−Jint(D)] =Jint(D) ∪ [JCl(D)∩ (Y 
−Jint(D))] =(Jint(D) ∪ JCl(D))∩(Jint(D) ∪ (Y −Jint(D))) = JCl(D)∩ Y  = JCl(D) 
[ By Jint(D) ⊆ D ⊆ JCl(D) ] =LHS. 

(c) Jint(D) ∩ JFr(D) = Jint(D) ∩[JCl(D) –Jint(D)] = Jint(D) ∩[JCl(D)∩(Y −Jint(D))] 
= Jint(D) ∩(Y −Jint(D))∩JCl(D) =JCl(D)∩ ∅ = ∅. 

(d) Given D is J-open implies that Jint(D) = D.JFr(D) = JCl(D) – Jint(D) = JCl(D) – 
D ⊆ JDr(D).(By Lemma 5.8) 

(e) RHS = JCl(D) ∩ JCl(Y− D) =JCl(D) − Jint(D) = JFr(D) = LHS. 
(f) JCl(JFr(D)) = JCl(JCl(D) –Jint(D)) = JCl(JCl(D)∩JCl(Y−D)) ⊆JCl(JCl(D)) 

∩JCl(JCl(Y−D)) =JCl(D) ∩JCl(Y−D) (by Proposition 3.5(g)) =JCl(D) −Jint(D) 
=JFr(D).Hence JFr(D) is J-closed. 

(g) RHS = JFr(Y−D) = JCl(Y −D) –Jint(Y−D) = (Y –Jint(D)) –(Y – JCl(D)) = (Y 
–Jint(D)) ∩JCl(D) = JCl(D) –Jint(D) = JFr(D) = LHS. 

(h) JFr(JFr(D)) = JCl(JFr(D)) ∩JCl(Y−JFr(D))⊆JCl(JFr(D)) = JFr(D) by (e) & (f). 
(i) JFr(Jint(D)) = JCl(Jint(D))–Jint(Jint(D)) = JCl(Jint(D))–Jint(D)⊆ JCl (D)–Jint(D) 

= JFr(D) (Since JCl(Jint( D))⊆JCl (D)). 
(j) JFr(JCl(D)) = JCl(JCl(D)) –Jint(JCl(D))⊆JCl (D)–Jint (D) =JFr(D) (Since 

Jint(JCl (D))⊇Jint (D)). 
 

Proposition 8.4 Let A⊆B and Jint(B) = ∅ then JFr(A)⊆JFr(B). 

Proof: Let A⊆B and Jint(B) = ∅. Let x ∈JFr(A) = JCl(A) –Jint(B) as  A⊆B and since Jint(B) = ∅,we 

get x ∈ JCl(A)⊆JCl(B) = JCl(B)− Jint(B) = JFr(B).Hence x∈JFr(B). 

 

9. J-border 

Definition9.1 Let D be a subset of a topological space (Y,𝜁𝜁). The J-Border of D is defined as D 

−Jint(D) and is denoted by  JBr(D). 

Example9.2 In the above Example 4.6,let D = {q,r,s},then Jint(D) = {q,r}.Therefore JBr(D)  = {s}. 

Theorem 9.3 Let A be a subset of a topological space (Y,ζ).Then the following results hold: 

(a) JBr(A) ⊆Br(A) ; 
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(b) JBr(∅) = ∅; 

(c) JBr(Y)  = ∅; 

 

(d) JBr(A) ⊆ A; 

 
(e) A = Jint(A) ∪JBr(A) ; 

(f) If A is J-open,thenJBr(A)  = ∅; 

(g) Jint(A) ∩JBr(A)  = ∅; 

(h) JBr(Jint(A)) = ∅; 

(i) Jint(JBr(A) ) = ∅; 

(j) JBr(JBr(A) ) = JBr(A) ; 

(k) JBr(A)  = A ∩ JCl(Y−A); 

(l) JBr(A)  = JDr(Y –A); 

(m) Jint(A) = A –JBr(A); 

(n) JBr(A) ⊆ JFr(A); 

Proof:  

(a) JBr(A) = A – JintA ⊆ A –int A  =Br(A)  (By Lemma 6.3).  
(b) It is a trivial one. 
(c) By definition JBr(Y)  = Y−Jint(Y) = Y – Y = ∅. 
(d) It follows from the Definition of Border of A. 
(e) RHS = Jint(A) ∪JBr(A)  =Jint(A) ∪[A−Jint(A)] =  Jint(A) ∪ (A∩(Y−JintA)) = (Jint(A) ∪ A) 

∩ (Jint(A) ∪ (Y−JintA)) = A∩ Y = A=LHS. 
(f) Let A be J-open.ThenJint(A) = A.By definition of JBr(A)  = A –Jint(A) = A− A = ∅. 
(g) LHS = Jint(A) ∩JBr(A)  = Jint(A) ∩[A−Jint(A)] = Jint(A) ∩ [A∩(Y –Jint A)] =∅ =RHS. 
(h) JBr(Jint(A)) = Jint(A) – Jint(Jint(A)) = Jint(A) – Jint(A) = ∅. 
(i) Let x ∈ Jint(JBr(A) ).Then x ∈JBr(A) .In other way JBr(A) ⊆ A by (d).Hence x ∈Jint(JBr(A) 

) ⊆ Jint(A).This implies that x ∈ Jint(A) ∩JBr(A)  which contradicts (g).Therefore 
Jint(JBr(A)) = ∅. 

(j) LHS = JBr(JBr(A) ) = JBr( A −Jint(A)) = A –Jint(Jint(A)) = A –Jint(A) =JBr(A)  = RHS. 
(k) JBr(A)  = A – Jint(A) = A – (Y – JCl(Y –A)) = A ∩ JCl(Y−A). 
(l) JBr(A)  = A –Jint(A) = A –(A –JDr(Y−A))(by Lemma 6.9)=JDr(Y –A). 
(m) RHS = A –JBr(A)  = A – (A –Jint(A)) = Jint(A) = LHS. 
(n) Direct Proof. 

 
Remark 9.4 The converse of the above Theorem 9.3 (f) is not true as seen from the following  counter 

example. 

Example 9.5 (counter example) In Counter Example 6.5, JBr(D)  = ∅.But D is not J-open. 

 

10. J-exterior 

Definition 10.1 Let D be a subset of a topological space (Y,𝜁𝜁). The J-Exterior of D is defined as 

Y−JCl(D) and is denoted by  JEr(D). 



 

 

 
 

108 
 

Example 10.2 In the above Example 8.2,take D = {p}.Then JCl(D) = {p,s}.Therefore JEr(D) = 

Y−JCl(D) = Y−{p,s} = {q,r}. 

Theorem 10.3 Let  A be a subset of a topological space (Y,ζ).Then the following results hold: 
(a) JEr(A) ⊆Er(A); 
 
(b) JEr(Y) = ∅; 
(c) JEr(∅) = Y; 
(d) JEr(A) = Jint(Y –A) = Y –JCl(A); 
(e) If A ⊆B then JEr(A) ⊇ JEr(B); 
(f) JEr(A∪B) = JEr(A) ∩JEr(B); 
(g) JEr(JEr(A)) = Jint(JCl(A)); 
(h) JEr(A) = JEr( Y – JEr(A)); 
(i) Y = Jint(A) ∪ JEr(A) ∪ JFr(A); 
(j) Jint(A) ⊆ JEr(JEr(A)); 

(k) JEr(A) ∪ JEr(B) ⊆JEr(A ∩ B); 
Proof : 

(a) JEr(A) = Y –JCl(A) ⊆Y–Cl(A) = Er(A).(By Remark 3.4). 
(b) JEr(Y) = Y –JCl(Y) = Jint(Y –Y) =Jint(∅) = ∅. 
(c) JEr(∅) = Y – JCl(∅) = Y. 
(d) From this JEr(A) = Y – JCl(A) = Jint(Y – A)(by Remark 6.18(b)),we got the proof. 
(e) JEr(A) = Y− JCl(A) = Jint(Y−A) ⊇ Jint( Y−B) as A ⊆B .Hence JEr(A) ⊇ JEr(B). 
(f) LHS = JEr(A∪B) = Y –JCl(A ∪ B) = Y – (JCl(A) ∪ JCl(B))(by Proposition 3.5(d))  = (Y – 

JCl(A)) ∩  ( Y – JCl(B)) = JEr(A) ∩ JEr(B) = RHS. 
(g) JEr(JEr(A)) =JEr( Y –JCl(A)) = Jint( Y –( Y –JCl(A)))(by Remark 5.9(b)) =Jint(JCl(A)). 
(h) JEr( Y – JEr(A)) = JEr( Y –(Y−JCl(A))) = JEr(JCl(A)) = (Y –JCl(JCl(A)))(by (d))= Y− 

JCl(A) = JEr(A). 
(i) Jint(A) ∪ JEr(A) ∪ JFr(A) = (Jint(A) ∪ JFr(A)) ∪JEr(A) = JCl(A) ∪ (Y –JCl(A)) = Y.(By 

Proposition 8.3 (b)).  
(j) Jint(A) ⊆ Jint(JCl(A)) = JEr(JEr(A)),by  (h). 
(k) JEr(A) ∪ JEr(B) = Jint(Y−A) ∪ Jint(Y−B) ⊆ Jint((Y−A)∪ (Y-B))(by Theorem 6.13) 

=Jint(Y –(A∩B)) = JEr(A∩B), by (d). 
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