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Abstract :A mathematical analysis of the steady boundary layer flow of nanofluid due to 
anexponentially stretching sheet with magnetic field in presence of chemical reaction, thermal 
radiation and viscous dissipation is presented.The approximate analytical expressions ofthe 
dimensionless velocity, dimensionless temperature and dimensionless concentration profiles 
are derived analytically and graphically by using the New Homotopy analysis method.  The 
effect of various prominent parameters local like skin friction, local Nusselt number and local 
Sherwoodnumber are also derived analytically and graphically. Numerical values of different 
involved parameters on the local skin friction coefficient, local Nusselt and Sherwood numbers 
are obtained and compared with our analytical results.A satisfactory agreement between 
analytical and numerical results are noted. 
 
Keywords:Chemical reaction; MHD; Heat and mass transfer; Micropolar; Modified 
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1. Introduction 
 
The magnetohytrodynamic (MHD) flow is the influence of a magnetic field on the viscous flow of 
electrically conducting fluid.  This fluid plays a vital role in many manufacturing processes, such as in 
MHD electrical power generation, magnetic materials processing, glass manufacturing, and 
purification of crude oil, paper production and geophysics. The cooling rate can be controlled by using 
MHD. The desired quality of the product can be achieved by MHD. Owing to its various applications 
in the manufacturing processes, the study of magnetohytrodynamic (MHD) boundary layer flow on a 
constant stretching sheet is given attention for the last few decades. The former to learn the boundary 
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layer flow caused by a stretching sheet which moves with a velocity varying linearly with the distance 
from a fixed point was Crane [2].With external magnetic field, viscous dissipation and Joule Effects, 
the MHD flow and heat transfer over stretching/shrinking sheets is studied by Jafar et al. [3].Over a 
stretching sheet, Prasad et. al. [4] explained the effect of variable viscosity on MHD viscous-elastic 
fluid flow and heat transfer. On a linearly stretching sheet, Sharma et.al. [5] discussed the effects of 
variable thermal conductivity and heat source/sink on MHD flow near a stagnation point. While 
probing the coolants techniques and cooling processes, Choi coined the term Nanofluid at Argonne 
National Laboratory in US. The nanometer sized particles of oxides, metals, carbides or carbon 
nanotubes are defined as Nanofluid. As convective properties and thermal conductivity of the 
Nanofluid is dominant over the properties of the base fluid, the properties of Nanofluid are significant 
over base fluid. Water, toluene, ethylene glycol, and oil are common base fluids. Over the base fluid, 
thermal conductivity is more efficiently better in the range of 15% - 40%. Many researchers 
worldwide are involved in the study of nanofluid. For example, in transportation, nuclear reactor, 
electronics as well as biomedicine and food, this nanofluid is used. With nanoparticles, the Enhancing 
thermal conductivity of fluids is analyzed byChoi [6] andKhan et.al [7] studied the boundary layer 
flow of nanofluids over a stretching surface. With suction/injection, the effect of MHD flow over a 
permeable stretching/shrinking sheet of a nanofluid is discussed by SandeepNaramgariet.al 
[8].SohailNadem et.al [9] studied the boundary layer flow of nanofluid over an exponentially 
stretching surface.In a nanofluid, NorfifahBachok et.al, [10] explained the boundary layer stagnation-
point flow and heat transfer over an exponentially stretching/shrinking sheet. With velocity, thermal 
and solute slip boundary conditions, the MHD boundary layer flow and heat transfer of a nanofluid 
over a permeable stretching sheet is presented by Wubshet Ibrahim et.al, [11] and Rashid et. al, [12] 
examined the Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal 
permeable sheet with transpiration.The method of converting mechanical energy of downward-
flowing water into acoustical and thermal energy is called dissipation. In order to lessen the kinetic 
energy of flowing waters and reducing their erosive potential on streambeds, many devices are 
developed in the banks and river bottoms. Viscous dissipation is used in many applications in polymer 
processing flows such as extrusion at high rates or injection modeling, considerable temperature rises 
are seen. Mohsen Sheikholeslami et. al [13] explained the numerical simulation of MHD nanofluid 
flow and heat transfer by considering viscous dissipation. With viscous dissipation, Sin Wei Wong et 
al. [14] studied the Boundary layer flow and heat transfer over an exponentially stretching/shrinking 
permeable sheet. Using chemical reaction effects and viscous dissipation, Heat and mass transfer in 
MHD flow of nanofluids through an absorbent media due to a permeable stretching sheet is analyzed 
by YohannesYirgaet.al, [15].In the blueprint of many higher energy conversion systems operating at 
high temperature, the effect of thermal radiation on flow and heat transfer processes play an important 
role.Within the energy conversion system, the thermal radiations arise due to the emission by the 
working fluid and hot walls. Boundary layer flow over a stretching surface in association with 
transverse magnetic field and thermal radiation within nanofluid medium flow is vital due to its 
application in various industries, for instance in the design of dependable equipment’s, polymer and 
processing engineering, petrochemical industry ,metallurgy , gas turbines, nuclear plants and many 
propulsion devices for aircraft, satellites, space vehicles and missiles.Over a permeable plate, the heat 
transfer analysis of MHD nanofluid flow is discussed by Mutuku-Njane et.al [16].Fekry M Hady et al. 
[17] presented heat transfer over a nonlinearly stretching sheet and radiation effect on viscous flow of 
a nanofluid in porous medium, over a stretching sheet, Liancun Zhenga et al. [18] studied radiation 
heat transfer of a nanofluid with velocity slip and temperature jump.Thermal radiation effect on the 
nanofluid buoyancy flow and heat transfer over a stretching sheet is analyzed by Abdul Sattar 
Dogonchi et.al [19].Radiation and MHD boundary layer stagnation-point of nanofluid flow towards a 
stretching sheet rooted in a porous medium is investigated by Emad H. Aly [20].With dissipation 
effect, Maria Imtiaz et. al,[21] explained the flow of magneto nanofluid by a radiative exponentially 
stretching surface.In a porous medium with heat generation and viscous dissipation, the effect of 
mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet is 
presented by Dulal Pal et.al [22]. In the presence of nanofluids, the study of heat transfer with 
chemical reaction gained a great value in the many branches of science and engineering. This is 
commonly seen in heat exchanger design Petro-chemical industry, cooling of nuclear reactors, cooling 
systems and power, chemical vapor, deposition on surfaces, geophysics and forest fire dynamics as 



 

 

 
 

111 
 

well as in magneto hydrodynamic power generation system.Over an exponentially stretching sheet, the 
influence of chemical reaction and thermal radiation on MHD boundary layer flow and heat transfer of 
a nanofluid is discussed by Rudraswamy et.al [23].Mohamed R.Eid [24] presented the influence of 
chemical reaction on MHD boundary-layer flow of two-phase nanofluid model with a heat generation 
over an exponentially stretching sheet.Das et al. [25] explained the mixed convection and nonlinear 
radiation in the stagnation point nanofluid flow towards a stretching sheet with homogenous-
heterogeneous Reactions effects. With thermal radiation and chemical reaction, the Heat and mass 
transfer analysis of nanofluid over linear and non-linear stretching surfaces is studied bySreedevi et.al, 
[26]. 
 
 
2. Mathematical formulation of the problem 
We consider a steady two-dimensional flow an incompressible viscous and electrically conducted 
nanofluid caused by a stretching sheet,which is placed in a quiescent ambient fluid of uniform 
temperature of the plate and species concentration to ∞> TTw   and ∞> CCw are temperature and 
Species concentration at the wall and ∞∞ TC , are  the temperature and species concentration for away 
from the platerespectively .The x-axis is taken along the stretching sheet in the direction of the motion 
and y -axis  is perpendicular to it. Consider that a variable magnetic field ( )xB  is applied normal to 
the sheet that the induced magnetic field is neglected, which is justified for MHD flow at small 
magnetic Reynolds number. A physical model of the  
problem shown in Fig.1. 

 
Fig. 1:Physical model and coordinate system  

Under the above assumptions and useful boundary layer approximation, the steady MHD boundary 
layer flow of nanofluid flow an exponentially stretching sheet in presence of chemical reaction and 
thermal radiation are governed by the flowing equation of momentum, energy and species 
concentration are written in common notation as: 
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where u  and v  are the velocity components in x - and y -directions, respectively, v is the kinematic 
viscosity, fρ is the density of the base fluid, T  is the temperature, ∞T  is constant temperature of the 

fluid in the in viscid free stream, α is the thermal conductivity, PCρ  is the effective heat capacity of 
nanoparticles, fCρ is heat capacity of the base fluid,C is nanoparticles volume fraction, K  is the 

permeability of the porous medium, BD is the Brownian diffusion coefficient, TD is the thermophoretic 
diffusion coefficient, PC is the specific heat at constant pressure. Here, the variable magnetic field 
( )xB is taken in the form     
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We are assumed that the permeability K of the porous medium of the following form 
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The boundary conditions are as follows  
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where wT is the variable temperature at the sheet with 0T  being a constant which measure the rate of 

temperature increase along the sheet, wC  the variable wall nano-particle volume fraction with 0C
being a constant ∞C is constant nano-particle volume fraction in free stream. The stretching wU
velocity is given 
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where 0>C  is stretching sheet. 
Now wV  is a variable wall mass transfer velocity and it is given by the form 
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where 0V is called constant and 00 >V for mass suction 00 <V  for mass injection the radiative heat 
flux in the x -axis is considered negligible as compared to y -axis. Hence, by using Roseland 
approximation for radiation, the radiative heat flux rq is given by  
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where *k  is the mean absorption coefficient, *σ  is called Stefan-Boltzmann,now consider the 
temperature difference with in the flow sufficiently small term 4T  may be extend to the linear  
function of temperature. This is completed by expending 4T Taylor’s series about a free stream  
temperature ∞T  and ignore the higher order terms we get  

 434 34 ∞∞ −≈ TTTT    (11) 
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Now we introduce the similarity transformations as follows: 
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ψ is astream function with
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ψψ , andη  is called similarity variable using the eqn. (15), 

theeqns. (1)-(3) are transformed to the following ordinary differential eqns. 
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is called local Reynolds number .The dimensionless parameters Nb (Brownian motion parameter)and 
Nt (Thermophoresis parameter) are defined as follows: 
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The boundary conditions (7) reduce to following form: 
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0−= iscalled wall mass transfer parameter, ( )00 0 <> vS  corresponds to mass suction and 

( )00 0 >< vS  corresponds to mass injection. The quantities of physical interest for this problem are 

the local skin friction fC , the local Nussel tnumber xNu and the local sherwood number xSh .These 
all are defined as follows: 
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3. Solution of the non-linear differential equations using the Modified Homotopy analysis 
method 

Homotopy analysis method (HAM) is a non -perturbative analytical method for obtaining 
series solutions to nonlinear equations and has been successfully applied to numerous problems in 
science and engineering. In comparison with other perturbative and non -perturbative analytical 
methods, HAM offers the ability to adjust and control the convergence of a solution via the so-called 
convergence-control parameter. Because of this, HAM has proved to be the most effective method for 
obtaining analytical solutions to highly non-linear differential equations. Previous applications of 
HAM have mainly focused on non-linear differential equations in which the non-linearity is a 
polynomial in terms of the unknown function and its derivatives. As seen in (1), the non-linearity 
present in electrohydrodynamic flow takes the form of a rational function, and thus, poses a greater 
challenge with respect to finding approximate solutions analytically. Our results show that even in this 
case, HAM yields excellent results. 
Liao [25-33] proposed a powerful analytical method for non-linear problems, namely the Homotopy 
analysis method. This method provides an analytical solution in terms of an infinite power series. 
However, there is a practical need to evaluate this solution and to obtain numerical values from the 
infinite power series. In order to investigate the accuracy of the Homotopy analysis method (HAM) 
solution with a finite number of terms, the system of differential equations was solved. The Homotopy 
analysis method is a good technique comparing to another perturbation method. The Homotopy 
analysis method contains the auxiliary parameter h , which provides us with a simple way to adjust 
and control the convergence region of solution series.  The approximate analytic solution of the eqns. 
(14)-(16) by using the Modified Homotopy analysis method (MHAM) is as follows:   

( ) ηηη 1321
GG eeeeef −++= (21) 

( ) ηηη 1312
' GG eeGeGef −−=                         (22)

 

( )

( )

( )

( ) 













































































−





























−

−














−

−
+

−
+















−

−







 +

+

+

−+=

−

−−

−−

−

−

LL
eLNt

LB

eB

LL

eL
Nb

Lc

eEcc

LL

eL
s

R

erer

herer

L

BL

cL

LL

LL

2

22

22

2

22

2

43

21

4

4

3
41

Pr

η

ηη

ηη

ηη

ηηηθ
 (23)

 

( )












−
−

−
−+−+=

−−
−−

BL
eL

Nb
Nt

BB

eBSLe
ecechecec

LB
BBBB

2

2

24321
ηη

ηηηηηφ . (24) 

The analyticalexpression of the local skin friction given by 
( ) ( )1
'' 0 Gf −−= .                                                                                      (25) 

 The analytical expression of the local nusselt number is as follows: 
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 The analytical expression of the local Sherwood number is given by: 
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4. Result and discussion  
In this paper we derived the analytical expression of the dimensionless velocity profile ( )η'f , 
dimension less temperature profile ( )ηθ and dimensionless concentration profile ( )ηφ  by using 
Modified Homotopy analysis method.  Fig.1 is the physical model of the fluid flow. Fig.2 represents 
the dimensionless velocity ( )η'f  verses dimensionless similarity variable ( )η .From Fig.2 (a), it is 
evident that when the magnetic parameter M  increases, the corresponding dimensionless velocity 
profiles decreases in some fixed values of the other dimensionless parameters. From Fig. 2(b),it is 
observed that when the suction parameter S increases, the corresponding the dimensionless velocity 
profiles decreases in some fixed values of the other dimensionless parameters. From Fig.2(c),it is 
noted that when the permeability parameter 1K  increases, the corresponding the dimensionless 
velocity profiles decreases in some fixed values of the other dimensionless parameters. Fig. 2(d) 
represents thelocal skin friction ( )0''f−  verses suction parameter S .From Fig 2(d), it is  evident that 

when the magnetic parameter M increases ,the corresponding local skin friction ( )0''f− also 
increases in some fixed value of the other dimension less parameter. 
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Fig.3 represents the dimensionless temperature ( )ηθ  verses dimension less similarity variable ( )η . 
From Fig. 3(a),it depicts that when the magnetic parameter M  increases, the corresponding the 
dimensionless velocity profiles also increases in some fixed values of the other dimensionless 
parameters. From Fig.3(b), it is observed that when the suction parameter S increases, the 
corresponding the dimensionless temperature profiles decreases in some fixed values of the other 
dimensionless parameters. From Fig.3(c), it is noted that when the Prandtl number Pr increases, the 
corresponding the dimensionless temperature profiles decreases in some fixed values of the other 
dimensionless parameters. From Fig.3(d), it is examined that when the thermophoresis parameter Nt  
increases, the corresponding the dimensionless velocity profiles alsoincreases in some fixed values of 
the other dimensionless parameters.From Fig.3(e), it is observed that when the Brownian motion 
parameter Nb  increases, the corresponding the dimensionless velocity profiles increases in some fixed 
values of the other dimensionless parameters. From Fig. 3(f), it is noted that when the Brownian 
motion parameter Eckert number Ec  increases, the corresponding the dimensionless velocity profiles 
increases in some fixed values of the other dimensionless parameters.From Fig. 3(g),itis thatexamined 
that when the radiation parameter R  increases, the corresponding the dimensionless velocity profiles 
alsoincreases in some fixed values of the other dimensionless parameters.  
From Fig.4, represents the dimensionless concentration profile ( )ηφ verses the dimensionless similarity 

variable ( )η .From Fig.4(a),it is noted that when the chemical reaction parameterγ  increases, the 
corresponding the dimensionless concentration profiles decreases in some fixed values of the other 
dimensionless parameters.From Fig.4(b),it is evident that when the thermophoresis parameter Nt
increases, the corresponding the dimensionless concentration profiles increases in some fixed values 
of the other dimensionless parameters.From Fig.4(c), it shows that when the Brownian motion 
parameter Nb increases, the corresponding the dimensionless concentration profiles decreases in some 
fixed values of the other dimensionless parameters.From Fig. 4(d), it is notedthat when the lewis 
number Le increases, the corresponding the dimensionless concentration profiles decreases in some 
fixed values of the other dimensionless parameters. From Fig.4(e),it reveals that when the suction 
parameter S increases, the corresponding the dimensionless concentration profiles decreases in some 
fixed values of the other dimensionless parameters.From Fig. 4(f), we noted that when Brownian 
motion parameter Nb increases the corresponding local Sherwood number ( )0'φ− increases  in some 
fixed value of the other dimensionless parameters. 
Table.1 shows that the analytical and numerical values of the local skin friction ( )0''f− . From this 
table it is observed that when suction parameter S , magnetic parameter M and permeability parameter 

1K increases.Table.2 representsthe analytical and numerical values of thelocalNusselt number ( )0'θ−
.  From this table it is noted that when suction parameter S , magnetic parameter M ,permeability 
parameter 1K ,brownian motion parameter Nb ,lewis Number Le ,chemical reaction parameter γ  and 

thermophoresis parameter Nt increases. Table.3 representsthe analytical and numerical values of 
thelocal sherwood number ( )0'φ− .From thistable it is observe that when brownian motion parameter
Nb ,lewisnumber Le , chemicalreaction parameterγ  and thermophoresis parameter Nt increases. 
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2(a): Dimensionless velocity ( )η'f  verses dimensionless similarity variable ( )η .The curves 
are plotted using the eqn. (22) for various valuesof themagnetic parameter M  and in some 
fixed values of the other dimensionless parameters 1, KS . 

 

Fig. 2(b): Dimensionless velocity profile ( )η'f  verses the dimensionless similarity variable ( ).η  The 
curves are plotted using the eqn.(22) for various valuesof the suction   parameter S  and in some fixed 
values of the other dimensionless parameter 1, KM . 

 
Fig. 2(c): Dimensionless velocity profile ( )η'f  verses the dimensionless similarity variable ( ).η  The 
curves are plotted using the eqn.(22) for various values of the permeability parameter  1K  and in 
some fixed values of the other dimensionless parameters ., MS  
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Fig. 2(d): Local skin friction ( )0''f−  verses suction parameter S .The curves are plotted using the 
eqn.(25) for various valuesof themagnetic parameter M  and in some fixed values of the other 
dimensionless parameter 1, KS . 

 
Fig. 3(a): Dimensionless temperature profile ( )ηθ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (23) for various values of the magnetic parameter M  and in 
some fixed values of the other dimensionless parameters LeEcRNbNtKS x ,Pr,,,,,,Re,1, γ . 

 
Fig. 3(b): Dimensionless temperature profile ( )ηθ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn.(23) for various valuesof thesuction parameter S  and in some 
fixed values of the other dimensionless parameter LeEcRNbNtKM x ,Pr,,,,,,Re,1, γ . 
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Fig. 3(c): Dimensionless temperature profile ( )ηθ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn.(23) for various valuesof thePrandtl number Pr  and in some 
fixed values of the other dimensionless parameter LeEcRNbNtKM x ,,,,,,Re,1, γ . 

 
Fig. 3(d): Dimensionless temperature profile ( )ηθ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (23) for various valuesof thethermophoresis parameter Nt  and in 
some fixed values of the other dimensionless parameter LeEcRNbKM x ,,,,,Re,1, γ . 
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Fig. 3(e):Dimensionless temperature profile ( )ηθ  verses the dimensionless similarity variable ( )η .The 
curves are plotted using the eqn. (23) for various valuesof the Brownian motion parameter Nb and 
insome fixed values of the other dimensionless parameter LeEcRNtKM x ,,,,,Re,1, γ . 
 

 
Fig. 3(f): Dimensionless temperature profile ( )ηθ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (23) for various valuesof theEckert number Ec  and in some 
fixed values of the other dimensionless parameter LeNbRNtSKM x ,,,,,,Re,1, γ . 

 
Fig. 3(g):Dimensionless temperature profile ( )ηθ  verses the dimensionless similarity variable ( )η .The 
curves are plotted using the eqn.(23) for various valuesof theradiation   parameter R  and in some fixed 
values of  the other dimensionless parameter LeEcSNbNtKM x ,,,,,,Re,1, γ . 
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Fig. 4(a):Dimensionless concentration profile ( )ηφ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (24) for various values of the chemical reaction parameterγ and 
in some fixed values of the other dimensionless parameter .,,,,,Re,1, LeSEcRNtKM x  

 
Fig. 4(b): Dimensionless concentration profile ( )ηφ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (24) for various values of the thermophoresis parameter Nt and 
in some fixed values of the other dimensionless parameter .,,,,,,Re,1, LeSEcRNbKM x γ  
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Fig. 4(c): Dimensionless concentration profile ( )ηφ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (24) for various values of the Brownian motion parameter Nb
and in some fixed values of the other dimensionless parameter .,,,,,,Re,1, γLeSEcRNtKM x  

 
Fig. 4(d):Dimensionless concentration profile ( )ηφ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (24) for various values of the lewis number Le and in some fixed 
values of the other dimensionless parameter .,,,,,,Re,1, γLeSEcRNtKM x  

 
Fig. 4(e): Dimensionless concentration profile ( )ηφ  verses the dimensionless similarity variable ( )η
.The curves are plotted using the eqn. (24) for various values of the suction parameter S and in some 
fixed values of the other dimensionless parameter γ,,,,,,Re,1, LeNbEcRNtKM x . 
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Fig. 4(f):Localsherwood number ( )0'φ−  verses thermophoresis parameter Nt  .The curves are plotted 
using the eqn. (27) for various values of the Brownian motion parameter Nb and in some fixed values 
of the other dimensionless parameter .,,,,Re,1, γLeEcRKM x  
 
 Table:1 Analytical and numerical values of local skin friction 

local skin friction ( )0''f−  

NbSM
RNtLe

Ec

,,
,,
Pr,,,γ

 

1K  0.2 0.5 0.7 
Numericalsolution 1.6579 1.7538 1.8145 
Analytical solution 1.772 1.861 1.918 

Error % -0.06 -0.057 -0.053 

NbM
RNtLe

Ec

,
,,
Pr,,,γ

 
S  -0.2 0.2 0.4 

Numerical solution 1.4090 1.5988 1.7042 
Analytical solution 1.515 1.715 1.824 

Error % -0.069 -0.131 -0.065 

NbS
RNtLe

Ec

,
,,
Pr,,,γ

 

 

M  0.1 0.5 1 
Numerical solution 1.4822 1.6245 1.7844 

Analytical solution 1.613 1.742 1.890 

Error % -0.081 -0.067 -0.558 
 
Table.2 

 local nusselt number ( )0'θ−  

1,,
,,,

Pr,,,

KSM
NbNtLe

Ec γ

 

R  0.1 0.2 0.5 

Numerical solution 0.8481 0.7837 0.6419 
Analytical solution 0.8481 0.7831 0.6416 

Error % 0 0.00076 0.0004 

1,,
,,,

Pr,,,

KSM
NbNtLe

R γ
 

Ec  0.1 0.3 0.5 

Numerical solution 0.8721 0.8241 0.7762 

Analytical solution 0.8722 0.8223 0.7756 
Error % -0.0001 0.0021 0.0007 

1,,
,,,

Pr,,,

KSM
NbNtLe

REc

 

γ  0.3 0.5 1.0 
Numerical solution 0.8442 0.8416 0.8371 

Analytical solution 0.8441 0.8420 0.8382 
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Error % 0.0001 -0.0004 -0.0013 

1,,
,,,

,,,

KSM
NbNtLe

REc γ
 

Pr  1 2 5 

Numerical solution 0.8481 1.3503 2.3631 

Analytical solution 0.8481 1.351 2.310 
Error % 0 -0.0007 0.0229 

1,,
,,,

Pr,,,

KSM
NbNtR

Ec γ
 

Le  1 3 5 
Numerical solution 0.8481 0.8291 0.8219 
Analytical solution 0.8481 0.8282 0.8222 

Error % 0 0.0010 -0.0003 

1,,
,,
Pr,,,

KSM
NbR

Ec γ
 

Nt  0.1 0.3 0.5 

Numerical solution 0.8481 0.8146 0.7834 

Analytical solution 0.8481 0.8125 0.7842 
Error % 0 0.0031 -0.0010 

1,,
,,,

Pr,,,

KSM
NtRLe

Ec γ
 

Nb  0.1 0.3 0.5 

Numerical solution 0.8481 0.7852 0.7267 

Analytical solution 0.8481 0.7847 0.7248 
Error % 0 0.0006 0.002 

NbSM
RNtLe

Ec

,,
,,
Pr,,,γ

 
1K  0.2 0.5 0.7 

Numerical solution 0.8420 0.8247 0.8140 

Analytical solution 0.8422 0.8220 0.8120 
Error % -0.0002 0.0032 0.0024 

NbM
RNtLe

Ec

,
,,
Pr,,,γ

 
S  -0.2 0.2 0.4 

Numerical solution 0.6418 0.8229 0.9269 

Analytical solution 0.6415 0.8216 0.9265 
Error % 0.0004 0.0015 0.0004 

 
Table.3 

 local sherwood number ( )0'φ−  

1,,
,,,

Pr,,,

KSM
NbNtLe

Ec γ
 

R  0.1 0.2 0.5 

Numerical solution 0.5484 0.5986 0.7070 

Analytical solution 0.5485 0.5989 0.7078 
Error % 0 -0.0005 -0.0011 

1,,
,,,

Pr,,,

KSM
NbNtLe

REc

 

γ  0.3 0.5 1.0 
Numerical solution 0.7319 0.8463 1.1564 

Analytical solution 0.7305 0.8422 1.177 
Error % 0.0019 0.0048 -0.0175 

1,,
,,,

,,,

KSM
NbNtLe

REc γ
 

Pr  1 2 5 

Numerical solution 0.5484 0.1390 -0.7556 

Analytical solution 0.5485 0.1389 -0.7446 
Error % 0.0001 0.0007 0.0147 
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1,,
,,,

Pr,,,

KSM
NbNtR

Ec γ
 

Le  1 3 5 
Numerical solution 0.5484 1.9390 2.971 
Analytical solution 0.5485 1.9392 2.971 

Error % -0.0001 -0.0001 0 

1,,
,,
Pr,,,

KSM
NbR

Ec γ
 

Nt  0.1 0.3 0.5 

Numerical solution 0.5484 -0.4984 -1.4496 

Analytical solution 0.5485 -0.4988 -1.446 
Error % -0.0001 -0.0008 -0.002 

1,,
,,,

Pr,,,

KSM
NtRLe

Ec γ
 

Nb  0.1 0.3 0.5 

Numerical solution 0.5484 0.9416 1.0194 

Analytical solution 0.5485 0.9418 1.011 
Error % -0.0001 -0.0002 0.0079 

 
 
5.Conclusion 
 
A mathematical analysis of the effect of chemical reaction, thermal radiation and viscous dissipation 
on steady MHD boundary layer flow of nanofluid over an exponentially permeable stretching sheet 
has been investigated.The approximate analytical expressions of the dimensionless velocity, 
dimensionless temperature, dimensionless concentration are derived  analytically and graphicallywith 
help of New Homotopy analysis method (NHAM).We can also derived the analytical expressions of  
local skin friction, local nusselt number and local sherwood number. The skin-friction coefficient, the 
rate of heat transfer and the rate of mass transferare presented in the tabular form. A good agreement 
between the analytical and numerical results are observed. This New Homotopy analysis method  can 
be easily extended to solve other non -linear boundary value problems in physical and chemical 
sciences. 
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Appendix A 

Approximate analytical expression of the non-linear differential eqns. (14) - (16)using 

ModifiedHomotopy analysis method [25-33] 

In this section we derive the analytical expressions of ( ) ( )ηθη ,f and ( )ηφ  using theModified 
Homotopyanalysis method (MHAM) . 
We construct the Homotopy for the eqns.(14)-(16) are as follows: 
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The initial approximation for eqns. (14) -(16) is as follows: 
( ) ( ) ( ) 0,11,0 000 =∞== ffSf (B.4) 
( ) ( ) 0,10 00 =∞= θθ (B.5) 
( ) ( ) 0,10 00 =∞= θθ (B.6) 
( ) ( ) niii ...3,2,10,00 ==∞= θθ (B.7) 
( ) ( ) 0,10 00 =∞= φφ (B.8) 
( ) ( ) niii ...3,2,10,00 ==∞= φφ (B.9) 

The approximate solutions for (B.1)– (B.3) are given by 
...2

2
10 +++= fppfff (B.10) 

...2
2

10 +++= θθθθ pp (B.11) 

...2
2

10 +++= φφφφ pp                                                                                                                 (B.12) 
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By substituting the eqns. (B.10)-(B.12) into the eqns.(B.1)-(B.3) we get
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Now equating the coefficients of 0p  and 1p  we get the following eqns. 
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Solving (B.16)- (B.20) by using the boundary condition (B.4) -(B.9) obtain the following results, 
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( ) ηηηφ BB ecec −+= 210 (B.24)
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According to Modified Homotopy analysis method, we have 
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(B.27)       

( ) 10
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    (B.28) 

After putting the eqn. (B.21) into an eqn. (B.26), the eqns.(B.22) and (B.23) into an eqn.(B.27)andthe 
eqns.(B.24)and (B.25) into an eqn.(B.28), we obtain the solutions in the text as given in the eqns. (21), 
(23) and (24) respectively.

 
 
Appendix B 
Nomenclature 

Symbols Meaning 

xSh  Sherwood number 

xNu  Nusselt number 

( )xB  Magnetic field strength 

C  Nano particle concentration 

xCf  Skin-friction coefficient 

wC  Nano particles concentration at the 
stretching surface 

∞C  Nano particle concentration far from 
the sheet 

PC  Specific heat capacity at constant 
pressure 

wU  Velocity of the wall along the x -axis 

vu,  Velocity components in the x - and y
axis, respectively 

∞D  Thermophoresis diffusion coefficient 
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*k  Roseland mean absorption coefficient 

k  Thermal conductivity 
Le  Lewis number 
M  Magnetic parameter 
S  Suction/ Injection parameter 

TD  Brownian diffusion coefficient 

Nt  Thermophoresis parameter 
Nb  Brownian motion parameter 

xRe  local Reynolds number 
γ  chemical reaction parameter 
R  radiation parameter 
1K  permeability parameter 

Ec  Eckert number 
Pr  Prandtl Number 
M  Magnetic parameter 

 

 
 

 


