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Abstract: This paper illustrates an application of the single step method based on polynomial 
interpolation function for solving viral infection model with delayed immune response. The 
effect of time delay on the dynamics of viral infection with cytotoxic T-Lymphocytes (CTLs) 
response is studied. It has been modelled into the system of delay differential equations. This 
delay system has been solved using single step method that is based on the combination of 
exponential-polynomial interpolating function. From the numerical simulations, the dynamic 
behaviour in this model has been observed.  
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1. Introduction: 

Delay differential equations (DDEs) play an import role in various fields of science and 
engineering. These equations arise very frequently in population dynamics [9], control systems [7], 
chemical kinetics [4] etc. Recently there has been a growing interest in obtaining the numerical 
solutions of DDEs. Some of the notable numerical methods are Adomian decomposition method [12], 
block method [11], Homotopy perturbation method [6], variation iteration method [13] etc.   

Several one-step numerical techniques have been developed for the solution of first order 
ordinary differential equations (ODEs) by means of interpolating functions. In 1988, Van Niekerek 
[14] have presented a new algorithm which consists of the rational interpolating function for solving 
ODEs. Kama and Ibijola [8] have developed the new one-step polynomial and exponential 
interpolating function technique for solving initial value problems (IVPs). In 2017, Abolarin and 
Akingbade [1] have derived the fourth stage inverse polynomial scheme to IVPs. Fadugba and 
Falodun [5] have developed the new one-step power series polynomial scheme for IVPs in ODEs.  
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Recently, many mathematical models have been developed to describe the dynamic behaviour 
in viral models. Wang et al. [15] have studied the dynamical behaviour in a viral model with retarded 
immune response. Xueyong and Jingan [17] have discussed the effect of time delay and stability in 
viral infection model. 

In this paper, an application of the single step method based on the combination of exponential 
and polynomial interpolation function for solving viral infection model with delayed immune response 
is illustrated. The organization of the paper is as follows: In section 2, the derivation of the 
exponential-polynomial single step method is given. In section 3, the viral infection model with 
delayed immune response is described. In section 4, numerical simulations of the dynamical behaviour 
of the model are given.  
 
2. Exponential – Polynomial Single step Method (EPSM): 

Consider the first order DDEs of the following form:  
𝑦𝑦′(𝑡𝑡) = 𝑓𝑓�𝑡𝑡,𝑦𝑦(𝑡𝑡),𝑦𝑦(𝑡𝑡 − 𝜏𝜏)�,      𝑡𝑡 > 𝑡𝑡0 

𝑦𝑦(𝑡𝑡) = Φ(𝑡𝑡),    𝑡𝑡 ≤ 𝑡𝑡0   (1) 
where Φ(𝑡𝑡) is the initial function and 𝜏𝜏 = 𝜏𝜏(𝑡𝑡,𝑦𝑦(𝑡𝑡)). 

Let us assume that the analytical solution 𝑦𝑦(𝑡𝑡)to the initial value problem (1) can be locally 
represented in the interval [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1], 𝑛𝑛 ≥ 0 by the non-linear polynomial interpolating function which 
consists of both polynomial and exponential function of the form 

𝐹𝐹(𝑡𝑡) = 𝑎𝑎1𝑒𝑒2𝑡𝑡 + 𝑎𝑎2𝑡𝑡4 + 𝑎𝑎3𝑡𝑡3 + 𝑎𝑎4 𝑡𝑡2 + 𝑎𝑎5 𝑡𝑡 + 𝑎𝑎6 ,    (2) 
where 𝑎𝑎1,𝑎𝑎2𝑎𝑎3,𝑎𝑎4,𝑎𝑎5 and 𝑎𝑎6 are undetermined coefficients. We shall assume 𝑦𝑦𝑛𝑛 is a numerical 
approximation to the analytical solution 𝑦𝑦(𝑡𝑡) and using mesh points as follows: 

𝑡𝑡𝑛𝑛 = 𝑡𝑡0 + 𝑛𝑛ℎ,              𝑛𝑛 = 0,1,2, …      (3) 
Consider the following constraints on the interpolating function (2) in order to get the undetermined 
coefficients. 
Firstly, the interpolating function must coincide with the analytical solution at 

𝑡𝑡 = 𝑡𝑡𝑛𝑛and 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1. 
Hence we required that 

𝐹𝐹(𝑡𝑡𝑛𝑛) = 𝑎𝑎1𝑒𝑒2𝑡𝑡𝑛𝑛 + 𝑎𝑎2𝑡𝑡𝑛𝑛4 + 𝑎𝑎3𝑡𝑡𝑛𝑛3 + +𝑎𝑎4𝑡𝑡𝑛𝑛2 + 𝑎𝑎5𝑡𝑡𝑛𝑛 + 𝑎𝑎6   
And 𝐹𝐹(𝑡𝑡𝑛𝑛+1) = 𝑎𝑎1𝑒𝑒2𝑡𝑡𝑛𝑛+1 + 𝑎𝑎2𝑡𝑡𝑛𝑛+14 + 𝑎𝑎3𝑡𝑡𝑛𝑛+13 + 𝑎𝑎4𝑡𝑡𝑛𝑛+12 + 𝑎𝑎5𝑡𝑡𝑛𝑛+1 + 𝑎𝑎6 
Secondly, the derivatives of the interpolating function are required to coincide with the differential 
equation as its first, second, third and fourth derivatives with respect to tat 𝑡𝑡 = 𝑡𝑡𝑛𝑛. 
We denote the ith total derivatives of 𝐹𝐹 and f with respect to t as𝐹𝐹(𝑖𝑖) and 𝑓𝑓(𝑖𝑖) and assume that 

𝐹𝐹(1)(𝑡𝑡𝑛𝑛) = 𝑓𝑓𝑛𝑛         
𝐹𝐹(2)(𝑡𝑡𝑛𝑛) = 𝑓𝑓𝑛𝑛

(1)         
𝐹𝐹(3)(𝑡𝑡𝑛𝑛) = 𝑓𝑓𝑛𝑛

(2)         
𝐹𝐹(4)(𝑡𝑡𝑛𝑛) = 𝑓𝑓𝑛𝑛

(3)         
𝐹𝐹(5)(𝑡𝑡𝑛𝑛) = 𝑓𝑓𝑛𝑛

(4)         
Now     𝑓𝑓𝑛𝑛 = 2𝑎𝑎1𝑒𝑒2𝑡𝑡𝑛𝑛 + 4𝑎𝑎2𝑡𝑡𝑛𝑛3 + 3𝑎𝑎3𝑡𝑡𝑛𝑛2 + 2𝑎𝑎4𝑡𝑡𝑛𝑛 + 𝑎𝑎5     (4) 

𝑓𝑓𝑛𝑛
(1) = 4𝑎𝑎1𝑒𝑒2𝑡𝑡𝑛𝑛 + 12𝑎𝑎2𝑡𝑡𝑛𝑛2 + 6𝑎𝑎3𝑡𝑡𝑛𝑛 + 2𝑎𝑎4     (5) 
𝑓𝑓𝑛𝑛

(2) = 8𝑎𝑎1𝑒𝑒2𝑡𝑡𝑛𝑛 + 24𝑎𝑎2𝑡𝑡𝑛𝑛 + 6𝑎𝑎3      (6) 
𝑓𝑓𝑛𝑛

(3) = 16𝑎𝑎1𝑒𝑒2𝑡𝑡𝑛𝑛 + 24𝑎𝑎2       (7) 
𝑓𝑓𝑛𝑛

(4) = 32𝑎𝑎1𝑒𝑒2𝑡𝑡𝑛𝑛        (8) 
Solving the simultaneous equations (4) - (8), we get the values of 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4 and 𝑎𝑎5 as follows: 

𝑎𝑎1 = 𝑓𝑓𝑛𝑛
(4)

32𝑒𝑒2𝑡𝑡𝑛𝑛
        (9) 

𝑎𝑎2 = 1
24
�𝑓𝑓𝑛𝑛

(3) − 𝑓𝑓𝑛𝑛
(4)

2
�        (10) 

𝑎𝑎3 = 1
6
��𝑓𝑓𝑛𝑛

(2) − 𝑓𝑓𝑛𝑛
(4)

4
� − �𝑓𝑓𝑛𝑛

(3) − 𝑓𝑓𝑛𝑛
(4)

2
� 𝑡𝑡𝑛𝑛�     (11) 
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𝑎𝑎4 = 1
2
��𝑓𝑓𝑛𝑛

(1) − 𝑓𝑓𝑛𝑛
(4)

8
� − �𝑓𝑓𝑛𝑛

(2) − 𝑓𝑓𝑛𝑛
(4)

4
� 𝑡𝑡𝑛𝑛 − �𝑓𝑓𝑛𝑛

(4)

4
− 𝑓𝑓𝑛𝑛

(3)

2
� 𝑡𝑡𝑛𝑛2�   (12) 

𝑎𝑎5 = ��𝑓𝑓𝑛𝑛 −
𝑓𝑓𝑛𝑛

(4)

16
� − �𝑓𝑓𝑛𝑛

(1) − 𝑓𝑓𝑛𝑛
(4)

8
� 𝑡𝑡𝑛𝑛 − �𝑓𝑓𝑛𝑛

(4)

8
− 𝑓𝑓𝑛𝑛

(2)

2
� 𝑡𝑡𝑛𝑛2 − �𝑓𝑓𝑛𝑛

(3)

6
− 𝑓𝑓𝑛𝑛

(4)

12
� 𝑡𝑡𝑛𝑛3� . (13) 

Since 𝐹𝐹(𝑡𝑡𝑛𝑛+1) = 𝑦𝑦(𝑡𝑡𝑛𝑛+1) and 𝐹𝐹(𝑡𝑡𝑛𝑛) = 𝑦𝑦(𝑡𝑡𝑛𝑛) implies that 
𝑦𝑦(𝑡𝑡𝑛𝑛+1) = 𝑦𝑦𝑛𝑛+1and𝑦𝑦(𝑡𝑡𝑛𝑛) = 𝑦𝑦𝑛𝑛 

Thus we have  𝐹𝐹(𝑡𝑡𝑛𝑛+1)−  𝐹𝐹(𝑡𝑡𝑛𝑛) = 𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 . Hence  
𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 = 𝑎𝑎1(𝑒𝑒2𝑡𝑡𝑛𝑛+1 − 𝑒𝑒2𝑡𝑡𝑛𝑛) + 𝑎𝑎2(𝑡𝑡𝑛𝑛+14 − 𝑡𝑡𝑛𝑛4) + 𝑎𝑎3(𝑡𝑡𝑛𝑛+13 − 𝑡𝑡𝑛𝑛3) 

+𝑎𝑎4(𝑡𝑡𝑛𝑛+12 − 𝑡𝑡𝑛𝑛2) + 𝑎𝑎5(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛) .    (14)  
Setting 𝑡𝑡0 = 0 in (3), we get  𝑡𝑡𝑛𝑛 = 𝑛𝑛ℎ and 𝑡𝑡𝑛𝑛+1 = (𝑛𝑛 + 1)ℎ.  
From these, we have: 

𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛 = 𝑛𝑛ℎ        (15) 
𝑡𝑡𝑛𝑛+12 − 𝑡𝑡𝑛𝑛2 = (2𝑛𝑛 + 1)ℎ2       (16) 
𝑡𝑡𝑛𝑛+13 − 𝑡𝑡𝑛𝑛+13 = (3𝑛𝑛2 + 3𝑛𝑛 + 1)ℎ3      (17) 
𝑡𝑡𝑛𝑛+14 − 𝑡𝑡𝑛𝑛+14 = (4𝑛𝑛3 + 6𝑛𝑛2 + 4𝑛𝑛 + 1)ℎ4     (18) 

Using (15) – (18) in (14), we get 
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + 𝑎𝑎1(𝑒𝑒2𝑡𝑡𝑛𝑛+1 − 𝑒𝑒2𝑡𝑡𝑛𝑛) + 𝑎𝑎2ℎ4(1 + 4𝑛𝑛 + 6𝑛𝑛2 + 4𝑛𝑛3) 

+𝑎𝑎3ℎ3(1 + 3𝑛𝑛 + 3𝑛𝑛2) + 𝑎𝑎4ℎ2(1 + 2𝑛𝑛) + 𝑎𝑎5ℎ    (19) 
 Eqn. (19) gives the solution of (1) by this Exponential – Polynomial single step method. 
 

 
3. Formulation of Viral Model with Delayed Immune Response: 

Many mathematical models have been developed to explain the epidemic and viral dynamics. 
These viral models can give insights in the dynamics of viral load in biology and play an important 
role for a better understanding of diseases. Viral reproduction involves host cells and uses the cells 
machinery for synthesizing new components of the virus. Nowak et al. [10] and Bonhoeffer et al. [3] 
proposed the ODE viral model as follows. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜆𝜆 − 𝑑𝑑𝑑𝑑 − 𝛽𝛽𝑑𝑑𝑦𝑦 
𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝑑𝑑𝑦𝑦 − 𝑎𝑎𝑦𝑦 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑦𝑦 − 𝑢𝑢𝑢𝑢        (20) 
This model consists of three variables: the populations of uninfected cells 𝑑𝑑(𝑡𝑡), infected cells 

that produce virus 𝑦𝑦(𝑡𝑡)and free virus particles 𝑢𝑢(𝑡𝑡). Uninfected cells are generated at a constant rate 𝜆𝜆 
and dieat the rate dx. They become infected cells at the rate 𝛽𝛽xy. The death rate of infected cells is ay. 
The production rate of new virus from infected cells is ky and the death rate is uv. 

According to Bartholdy et al. [2] and Wodarz et al. [16], the amount of free virus is simply 
proportional to the population of infected cells. Hence, the population of infected cells 𝑦𝑦(𝑡𝑡) can be 
considered as an amount of virus load 𝑢𝑢(𝑡𝑡). Thus (20) is simplified to: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜆𝜆 − 𝑑𝑑𝑑𝑑 − 𝛽𝛽𝑑𝑑𝑦𝑦 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝑑𝑑𝑦𝑦 − 𝑎𝑎𝑦𝑦        (21) 
In many viral infections, CTLs play a significant role in antiviral defence by attacking infected cells. If 
𝑧𝑧(𝑡𝑡)is the number of CTLs, then (21) can be modified to 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜆𝜆 − 𝑑𝑑𝑑𝑑 − 𝛽𝛽𝑑𝑑𝑦𝑦 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝑑𝑑𝑦𝑦 − 𝑎𝑎𝑦𝑦 − 𝑝𝑝𝑦𝑦𝑧𝑧        
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑦𝑦, 𝑧𝑧) − 𝑏𝑏𝑧𝑧        (22) 
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Here 𝑓𝑓(𝑦𝑦, 𝑧𝑧) denotes the rate of immune response due to virus activation. The infected cells are killed 
by the CTL response at a rate pyz. The CTL response decays at rate bz. If we assume that the 
production of CTLs depends only on the number of infected cells, then 𝑓𝑓(𝑦𝑦, 𝑧𝑧) = 𝑐𝑐𝑦𝑦. 

In the models of immune response, time delays cannot be ignored. Antigenic stimulation 
generating CTLs may need a period of time 𝜏𝜏, i.e., the CTL response at time t may depend on the 
number of antigens at a previous time 𝑡𝑡 − 𝜏𝜏. In this paper, we consider the model by incorporating a 
time delay of the immune response as follows: 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
= 𝜆𝜆 − 𝑑𝑑𝑑𝑑 − 𝛽𝛽𝑑𝑑𝑦𝑦 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝑑𝑑𝑦𝑦 − 𝑎𝑎𝑦𝑦 − 𝑝𝑝𝑦𝑦𝑧𝑧 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑐𝑐𝑦𝑦(𝑡𝑡 − 𝜏𝜏) − 𝑏𝑏𝑧𝑧       (23) 
The CTL response is activated at a rate proportional to the population of infected cells at a previous 
time𝑐𝑐𝑦𝑦(𝑡𝑡 − 𝜏𝜏), and also decays exponentially at a rate proportional to its current strength 𝑏𝑏𝑧𝑧. 
Moreover,𝜏𝜏 is the time delay of CTL response. 
 

 
4. Numerical Simulations: 

The basic reproductive ratio (𝑅𝑅0) is the average number of newly infected cells generated 
from one infected cell at the beginning of the infectious process. For the system (23), this ratio is given 
by 𝑅𝑅0 = 𝜆𝜆𝛽𝛽 𝑎𝑎𝑑𝑑⁄ . The detailed stability analysis of this model is discussed in [12]. In order to find the 
complex dynamic behaviour of system (23) and to verify the stability switches, we do numerical 
calculations using different time delays τ and birth rates of susceptible cells 𝜆𝜆.  

Consider𝑎𝑎 = 5, 𝑏𝑏 = 0.3, 𝑐𝑐 = 0.2,𝑑𝑑 = 0.1, 𝛽𝛽 = 0.002, 𝑝𝑝 = 0.05 < 𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑

. The initial conditions 
are taken as  x(θ) = 1000 , y(θ) = 10 and z(θ) = 10 where θ∈(-τ,0].If 𝜆𝜆 = 270, then 𝑅𝑅0 = 1.8 > 1. 
From Fig. 1(a) and 1(b), it is noted that, the time delay cannot affect the dynamic behaviour if the birth 
rate of the infected cells𝜆𝜆 = 270. 

Suppose we take 𝜆𝜆 = 1000, then 𝑅𝑅0 = 4.0 > 1. From Fig. 1(c) - 1(g), it is noted that, the time 
delay can affect the dynamic behaviour if the birth rate of the infected cells 𝜆𝜆 = 1000. Also there 
appears stability switch and chaotic pattern as time delay increases.  

Numerical simulation by EPSM is compared with the numerical simulation presented by 
Wang et al. [12] in Fig. 1(a)-1(g).  

 
 

Fig. 1(a)(𝝉𝝉 = 𝟎𝟎.𝟓𝟓) 
Numerical Simulation by EPSM 

 

Numerical Simulation in Wang et al. [12] 
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Fig. 1(b)(𝝉𝝉 = 𝟏𝟏𝟏𝟏.𝟓𝟓) 
Numerical Simulation by EPSM 

 

Numerical Simulation in Wang et al. [12] 

 

 
 

Fig. 1(c)(𝝉𝝉 = 𝟎𝟎.𝟎𝟎𝟓𝟓) 
Numerical Simulation by EPSM 

 

Numerical Simulation in Wang et al. [12] 

 

 
 

Fig. 1(d)(𝝉𝝉 = 𝟐𝟐.𝟓𝟓) 
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Numerical Simulation by EPSM 

 

Numerical Simulation in Wang et al. [12] 

 

 
Fig. 1(e)(𝝉𝝉 = 𝟒𝟒.𝟓𝟓) 

Numerical Simulation by EPSM 
 

 

Numerical Simulation in Wang et al. [12] 
 

 

 
 

Fig. 1(f)(𝝉𝝉 = 𝟓𝟓.𝟎𝟎) 
Numerical Simulation by EPSM 

 

Numerical Simulation in Wang et al. [12] 
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Fig. 1(g)(𝝉𝝉 = 𝟖𝟖.𝟓𝟓) 

Numerical Simulation by EPSM 
 

 

Numerical Simulation in Wang et al. [12] 
 

 

 
 
 
 
 
 
5. Conclusion: 

In this paper, we have solved a viral infection model with delayed immune response by using 
polynomial-exponential single-step method. The effect of time delay on the dynamics of viral 
infection with cytotoxic T-Lymphocytes (CTLs) response is studied. From the results, we can see the 
time delay 𝜏𝜏 plays an important role in preventing the virus.  

 
The numerical simulations (Fig. 1(a) and 1(b)) reveal that the dynamic behaviour is not 

affected by the time delay when the birth rate of infected cells or the basic reproductive ratio of the 
virus is below a certain threshold. However, when the birth rate of infected cells is increased to 𝜆𝜆 =
1000 (𝑅𝑅0 = 4.0), the numerical simulations (Fig. 1(c) - 1(g)) reveal that the dynamic behaviour of 
system (23) is affected by the time delay. 

 
Hence, it is concluded that the proposed single step method is very much applicable in solving 

the real-world problems like viral infection model and similar realistic problem existing in various 
fields of science and engineering. 
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