

STRONG BI-IDEALS OF Γ- NEAR SUBTRACTION SEMIGROUPS

P. Meenakshi¹, N. Meenakumari²

^(1,2)PG & Research Department of Mathematics

A. P. C. Mahalaxmi College for Women, Thoothukudi, Tamil Nadu, India.

Email:¹ meena.bushy@gmail.com² meenakumarin123@gmail.com

Abstract: Using the concept of strong bi-ideals in near- subtraction semigroups, we introduce the notion of strong bi-ideals in Γ -near- subtraction semigroups. We show that the arbitrary intersection of strong bi-ideals of a Γ -near subtraction semigroup is again a strong bi-ideals. Also we proved that the intersection of strong bi-ideals of Γ -near subtraction semigroup and sub- Γ -near subtraction semigroup is again a strong bi-ideal of X. Also, we study certain properties of strong bi-ideals in a left permutable Γ -near subtraction semigroups. Throughout this paper, by a Γ - near subtraction semigroup X, we mean a zero symmetric Γ -near subtraction semigroup.

Keywords: Left permutable, quasi-ideal, strong bi-ideal, weak bi-ideal, left self distributive S-Γ-near substraction semigroup.

1.Introduction

By X, we mean that zero- symmetric Γ -near subtraction semigroup. Γ -near subtraction semigroup was introduced by Dr. S. J. Alandkar [2]. For basic terminology in near subtraction semigroup, we refer to Dheena [3] and for Γ -near subtraction semigroup, we refer to Dr. S. J. Alandkar [2]. Tamizh Chelvam and Ganesan [14] introduced the notion of bi-ideals in near-rings and it was extended to Γ -near-ring by T. Tamizh Chelvam and N. Meenakumari [13]. V.Mahalakshmi and S. Jayalakshmi introduced the strong bi-ideals and weak bi-ideals in near-subtraction semigroup [7] &[8]. In this paper we introduce the notion of strong bi-ideal and weak bi-ideal in Γ -near subtraction semigroups by extending the concepts of strong bi-ideals and weak bi-ideal in near-subtraction semigroup.

2.Preliminaries

(X, -), where X is a non-empty set is known as subtraction algebra if it satisfies the following identities: for any u, v, $w \in X$, i) u - (v - u) = u; ii) u - (u - v) = v - (v - u); iii) (u - v) - w = (u - w) - v. A triple (X, -, .) is known as subtraction semigroup if it satisfies the following axioms: for any u, v, $w \in X$, i)(X, .) is a semigroup ii) (X, -) is a subtraction algebra; iii)u(v - w) = uv - uw and (u - v)w = uw - vw. A triple (X, -, .) is known as near-subtraction semigroup(right) if it satisfies the following axioms: for any u, v, $w \in X$, i)(X, .) is a semigroup ii) (X, -) is a subtraction algebra; iii)u(v - w) = uv - uw and (u - v)w = uw - vw. A triple (X, -, .) is known as near-subtraction semigroup(right) if it satisfies the following axioms: for any u, v, $w \in X$, i)(X, .) is a semigroup ii) (X, -) is a subtraction algebra; iii) (u - v) = uv - uw and (u - v)w = uw - vw. A triple (X, -, .) is known as near-subtraction semigroup(right) if it satisfies the following axioms: for any u, v, $w \in X$, i)(X, .) is a semigroup ii) (X, -) is a subtraction algebra; iii) (u - v) = uv - uw and (u - v) = uv - uw.

v)w = uw - vw. A Γ -near subtraction semigroup is a triple (X, -, γ), for all $\gamma \in \Gamma$, where Γ is a nonempty set of binary operators on X, such that $(X, -, \gamma)$ is a near-subtraction semigroup for all $\gamma \in \Gamma$. In practice, we called simply Γ -near- subtraction semigroup instead of right Γ -near- subtraction semigroup. Similarly, we can define a Γ -near- subtraction semigroup(left). It is clear that $0\gamma a = 0$ for all $a \in X$ and for all $\gamma \in \Gamma(S, -)$ where S is a nonempty subset of a subtraction algebra X is said to be subalgebra of X, if $x - y \in S$ whenever x, $y \in S$. A subalgebra M of (X, -) with M $\Gamma M \subseteq M$ is called a sub Γ -near subtraction semigroup of X. A nonempty subset A of X is called i) a left Γ -subalgebra of X if A is a subalgebra of (X, -) and X $\Gamma A \subseteq A$. ie.) X $\gamma A \subseteq A$ for all $\gamma \in \Gamma$. ii) a right Γ -subalgebra of X if A is a subalgebra of (X, -) and $A\Gamma X \subseteq A$. i.e., $A\gamma X \subseteq A$ for all $\gamma \in \Gamma$. $X_0 = \{x \in X / x\gamma 0 = 0 \text{ for all } \gamma \in \Gamma\}$ is called the zero-symmetric part of X. X is called Zero-Symmetric, if $X = X_0$. An element $a \in X$ is called idempotent if $a\gamma a = a$ for all $\gamma \in \Gamma X_d = \{n \in X/n\gamma(x-y) = n\gamma x - n\gamma y \text{ for all } x, y \in X \text{ and for all } x \in X \}$ $\gamma \in \Gamma$ } is the set of all distributive elements of X. X is called distributive if X = X_d. If $a \in X\gamma a$ for all $\gamma \in$ Γ and for all a \in X, then X is called S- Γ -near subtraction semigroup.X is said to be left bipotent if Xya = X γ a γ a for all a \in X and $\gamma \epsilon \Gamma$. Let X and X' be two Γ -near subtraction semigroups. A map f: X \rightarrow X' is said to be Γ -near subtraction semigroup homomorphism if i) f(a-b) = f(a) - f(b) ii) $f(a\gamma b) =$ $f(a)\gamma f(b)$ for all $a, b \in X$ and $\gamma \in \Gamma$. Let X be a zero-symmetric Γ -near subtraction semigroup and if X is strongly regular, then X is regular. For A \subseteq X, by \sqrt{A} we mean that { $a \in X/a^k \in A$, for some k>0}.

3. Strong bi-ideal of Γ-near subtraction semigroup

In this section we study the properties involving strong bi-ideal in a left permutable Γ -near subtraction semigroups and obtain the characterization theorem on strong bi-ideals.

Definition 3.1

A subalgebra Q of (X, -) is said to be a quasi-ideal of X if $(Q\Gamma X) \cap (X\Gamma Q) \subseteq Q$.

Definition 3.2

A subalgebra B of (X, -) is said to be a strong bi-ideal of X if $X\Gamma B\Gamma B \subseteq B$.

Proposition 3.3

Any homomorphic image of a strong bi-ideal is also a strong bi-ideal. **Proof:** Let f: $X \rightarrow X'$ be an homomorphism.Let B be a strong bi-ideal of X.Now, for f(b) \in f(B) and n' $\in X'.n'\gamma f(b) \gamma f(b) = f(n) \gamma f(b) \gamma f(b) = f(n\gamma b\gamma b) \subseteq f(X\Gamma B\Gamma B) \subseteq f(B)$ for all $\gamma \in \Gamma$. Hence f(B) is a strong bi-ideal of X.

Definition 3.4

A family ζ of subsets of a set A is called a Moore system, if i)A $\in \zeta$ and ii) ζ is closed under arbitrary intersection.

Proposition 3.5

The arbitrary intersection of strong bi-ideals of a Γ -near subtraction semigroup is again a strong bi-ideals.

Proof: Let $\{B_i\}_{i \in I}$ be a set of strong bi-ideals in X. Let $B = \bigcap_{i \in I} B_i$. Then $X\Gamma B\Gamma B \subseteq X\Gamma B_i \Gamma B_i \subseteq B_i$, \forall i. Hence $X\Gamma B\Gamma B \subseteq B$. Hence the proposition.

Definition 3.6

X is said to be strongly regular if for each $a \in X$, there exists $b \in X$, such that $a = b\gamma a\gamma a$ for all $\gamma \in \Gamma$.

Proposition 3.7

Let X be a Γ -near subtraction semigroup and B a strong bi-ideal of X. If elements of B are strongly regular, then B is a quasi-ideal of X.

Proof: Let $x \in (B\Gamma X) \cap (X\Gamma B)$. Then $x = b_1 \gamma n_1 = n_2 \gamma b_2$ for some $b_1, b_2 \in B$ and $n_1, n_2 \in X$ for all $\gamma \in \Gamma$. Since elements of B are strongly regular, $b_1 = c\gamma b_1 \gamma b_1$ and $b_2 = d\gamma b_2 \gamma b_2$ for some c, $d \in X$ and for

all $\gamma \in \Gamma$. Hence $x = b_1\gamma n_1 = (c\gamma b_1\gamma b_1)\gamma n_1 = c\gamma b_1\gamma (b_1\gamma n_1) = c\gamma b_1\gamma (n_2\gamma b_2) = c\gamma b_1\gamma (n_2\gamma (d\gamma b_2\gamma b_2)) = (c\gamma b_1\gamma n_2\gamma d)\gamma (b_2\gamma b_2) \in X\Gamma B\Gamma B \subseteq B$ for all $\gamma \in \Gamma$. Hence $(B\Gamma X) \cap (X\Gamma B) \subseteq B$. Therefore B is a quasi-ideal of X.

Definition 3.8

X is known as left permutable if $a\gamma b\gamma c = b\gamma a\gamma c$ for all a, b, $c \in X$ and for all $\gamma \in \Gamma$.

Proposition 3.9

Let X be a left permutable and B is a bi-ideal of X. If the elements of B are strongly regular, then B is strong bi-ideal of X if and only if B is a quasi-ideal of X. **Proof:** If part follows from the proposition 3.7. Conversely assume that B is a quasi-ideal. From the definition of quasi-ideal, is a bi-ideal. Further $x \in X\Gamma B\Gamma B$, then, $x = n\gamma b\gamma b \in X\Gamma B$ for all $\gamma \in \Gamma$. Again since X is left permutable, $x = b\gamma n\gamma b \in B\Gamma X$. for all $\gamma \in \Gamma$.i.e.) $x \in (X\Gamma B) \cap (B\Gamma X) \subseteq B$. Hence

XΓBΓB⊆ B. Therefore, B is a strong bi-ideal.

Proposition 3.10

Let X be a left permutable. If B is a strong bi-ideal of X, then $n\gamma B$ and $B\gamma n' \forall \gamma \in \Gamma$ are strong bi-ideals of X, where n, n' $\in X$ and n is distributive element in X.

Proof: Clearly B γ n' is a subalgebra of (X, -) for all $\gamma \in \Gamma$.Also, X Γ (B γ n') Γ (B γ n') \subseteq X Γ B Γ (B γ n') \subseteq B γ n' for all $\gamma \in \Gamma$.And so we get that B γ n' is a strong bi-ideal of X. Since n is distributive, n γ B is a subalgebra of (X, -) for all $\gamma \in \Gamma$.Further let x \in X Γ (n γ B) Γ (n γ B). Then:

 $x = n_1 \gamma n \gamma b \gamma n \gamma b' = n \gamma n_1 \gamma b \gamma n \gamma b' = n \gamma n \gamma n \gamma b \gamma b' \in n \gamma X \Gamma B \Gamma B \subseteq n \gamma B$ for all $\gamma \in \Gamma$. Hence $n \gamma B$ is a strong bi – ideal.

Proposition 3.11

Let B be a strong bi-ideal of a Γ -near subtraction semigroup X and S be a sub Γ -near subtraction semigroup of X, then intersection of B with S is again a strong bi-ideal of S. **Proof:** Let C = B \cap S. Now,

 $S\Gamma C\Gamma C = S\Gamma(B\cap S)\Gamma(B\cap S) = S\Gamma((B\cap S)\Gamma B\cap (B\cap S)\Gamma S \subseteq S\Gamma(B\Gamma B\cap S\Gamma S) \subseteq (S\Gamma B\Gamma B)\cap S\Gamma S \subseteq B\cap S = C.$ Hence $S\Gamma C\Gamma C \subseteq C$. Hence the proof.

Proposition 3.12

Let X be a left permutable Γ -near subtraction semigroup. Then B is a strong bi-ideal if and only if B is a bi-ideal.

Proof: If part is trivial. Conversely suppose B is a bi-ideal of X. Let $x \in X\Gamma B\Gamma B$.Since X is left permutable, $x = n\gamma b\gamma b = b\gamma n\gamma b \in B\Gamma X\Gamma B \subseteq B$, for all $\gamma \in \Gamma$. Hence the proof.

Proposition 3.13

If X is strongly regular, then $B = X\Gamma B\Gamma B$ for every strong bi-ideal B of X. **Proof:** Let B be a strong bi-ideal of X. Let $b \in B$. Since X is strongly regular, there exists $x \in X$ such that $b = x\gamma b\gamma b\in X\Gamma B\Gamma B$ for some $x\in X$ and for all $\gamma \in \Gamma$. i.e.)., $B \subseteq X\Gamma B\Gamma B$. Hence from the definition of a strong bi-ideal, $B = X\Gamma B\Gamma B$.

Proposition 3.14

Let X be a left permutable S - Γ -near subtraction semigroup. Then X is strongly regular if and only if B = X Γ B Γ B for every strong bi-ideal B of X. **Proof:** If part follows from the proposition 3.13.Conversely, let a \in X. By the proposition 3.10, X γ a is a strong bi-ideal of X.Now, a \in X γ a =X Γ (X γ a) Γ (X γ a) \subseteq (X γ a) Γ (X γ a)for all $\gamma \in \Gamma$. i.e.)., a = n₁ γ a γ n₂ γ a= n₁ γ n₂ γ a γ a \in X γ a γ a for all $\gamma \in \Gamma$. i.e.) X is strongly regular.

Proposition 3.15

Let X be a left permutable S - Γ -near subtraction semigroup. Then X is a left bi-potent if and only if B = X Γ B Γ B for every strong bi-ideal B of X.

Proof: Every left bi-potent is strongly regular and by proposition 3.14, the result is true.

Proposition 3.16

Let X be a left permutable. Then $B = B\Gamma X\Gamma B$, for every bi-ideal B of X if and only if $B = X\Gamma B\Gamma B$.

Proof: Let $B = B\Gamma X\Gamma B$ for a bi-ideal B of X. By proposition 3.12, B is a strong bi-ideal. If $x \in B = B\Gamma X\Gamma B$, then $x = b\gamma n\gamma b$ for some $b \in B$ and $n \in X$ for all $\gamma \in \Gamma$. Since X is left permutable, $x = n\gamma b\gamma b \in X\Gamma B\Gamma B$ for all $\gamma \in \Gamma$. i.e.)., $B \subseteq X\Gamma B\Gamma B$ and so $B = X\Gamma B\Gamma B$. Conversely let $B = X\Gamma B\Gamma B$ for every bi-ideal B of X. If $x \in B = X\Gamma B\Gamma B$, then $x = n\gamma b\gamma b = b\gamma n\gamma b \in B\Gamma X\Gamma B$ for all $\gamma \in \Gamma$. i.e.)., $B \subseteq B\Gamma X\Gamma B \subseteq B$. Hence $B = B\Gamma X\Gamma B$.

Definition 3.17

A S- Γ -near subtraction semigroup X is said to be left self-distributive S- Γ -near subtraction semigroup if aybyc = aybyayc for all a, b, c \in X and for all $\gamma \epsilon \Gamma$.

Theorem 3.18

Let X be a left self-distributive S- Γ -near subtraction semigroup. Then B=X Γ B Γ B, for every strong bi-ideal B of X if and only if X is strongly regular.

Proof: Let B=B Γ B Γ B, for every strong bi-ideal B of X. Since X γ a is astrong bi-ideal of X and X is a S- Γ -near subtraction semigroup, we have $a \in X\gamma a = X\Gamma(X\gamma a)\Gamma(X\gamma a)\subseteq (X\gamma a)\Gamma(X\gamma a)$ for all $\gamma \in \Gamma$. (ie)., $a = n_1\gamma a\gamma n_2\gamma a$ for all $\gamma \in \Gamma$. Since X is a left self-distributive S- Γ -near subtraction semigroup, $a = n_1\gamma a\gamma n_2\gamma a = a = n_1\gamma a\gamma n_2\gamma a \gamma a \in X\gamma a \gamma a$ for all $\gamma \in \Gamma$. (ie)., X is strongly regular. Conversely, let B be a strong bi-ideal of X. Since X is strongly regular, for $b \in B$, $b = n\gamma b \gamma b \in X\Gamma B\Gamma B$ for all $\gamma \in \Gamma$. (ie)., B $\subseteq X\Gamma B\Gamma B$. Hence the proof.

4. Weak bi-ideal of Γ-near subtraction semigroup

In this section we establish weak bi-ideal in Γ -near subtraction semigroup and obtain the characterization theorem on weak bi-ideals.

Definition 4.1

A subalgebra B of (X, -) is said to be a weak bi-ideal of X if BFBFB \subseteq B.

Proposition 4.2

Any homomorphic image of a weak bi-ideal is also a weak bi-ideal. **Proof:** Let f: $X \rightarrow X'$ be an homomorphism.Let B be a weak bi-ideal of X. Let B' = f(B). Let b' \in f(B). Then b' γ b' γ b'= f(b) γ f(b) γ f(b) = f(b) γ f(b)= f(b γ b γ b) \subseteq f(B Γ B Γ B) \subseteq f(B) for all $\gamma \in \Gamma$. Hence the proof.

Proposition 4.3

The arbitrary intersection of weak bi-ideals of a Γ -near subtraction semigroup is again a weak bi-ideals.

Proof: Let $\{B_i\}_{i \in I}$ be a set of weak bi-ideals in X. Let $B = \bigcap_{i \in I} B_i$. Then $B \cap B \cap B \cap B \cap B_i \cap B_i$ $B_i, \forall i$. Hence $B \cap B \cap B \cap B \cap B \cap B$. Therefore, B is a weak bi-ideal of X.

Proposition 4.4

If B is a weak bi-ideal of a Γ -near subtraction semigroupX and S is a sub Γ -near subtraction semigroup of X, then then intersection of B with S is again a weak bi-ideal of S. **Proof:** Let $C = B \cap S$. Now, $C\Gamma C\Gamma C = (B \cap S)\Gamma(B \cap S)\Gamma(B \cap S)\subseteq (B \cap S)\Gamma(B \cap S)\Gamma(S \cap S) \subseteq B \cap S \subseteq B \cap S = C$. Hence $C\Gamma C\Gamma C \subseteq C$. Hence the proof.

Proposition 4.5

Let B is a weak bi-ideal of X, then $b'\gamma B$ and $B\gamma b$ for all $\gamma \in \Gamma$ are weak bi-ideals of X, where $b,b' \in X$ and b' is distributive element in X.

Proof: Clearly B γ b is a subalgebra of (X, -) for all $\gamma \in \Gamma$. Then:

 $(B\gamma b)\Gamma(B\gamma b)\Gamma(B\gamma b) \subseteq B\Gamma B\Gamma(B\gamma b) \subseteq B\gamma b.$

We have b' is distributive, b' γ B is a subalgebra of (X, -) and (b' γ B) Γ (b' γ B) Γ (b' γ B) \subseteq b' γ B Γ B Γ B Γ B \subseteq b' γ B for all $\gamma \in \Gamma$. Hence b' γ B and B γ b for all $\gamma \in \Gamma$ are weak bi-ideals of X.

Corollary 4.6

Let B be a weak bi-ideal of X. For b, $c \in B$, if b is distributive, then by Byc is a weak bi-ideal of X.

Theorem 4.7

Let X be a left self-distributive S- Γ -near subtraction semigroup. Then B Γ B Γ B =B, for every weak bi-ideal B of X if and only if X is strongly regular.

Proof: Let B be a weak bi-ideal of X. If X is strongly regular, X is regular. Let $b \in B$. Since X is regular, $b = b\gamma a\gamma b$, for some $a \in X$ for all $\gamma \in \Gamma$. Since X is left distributive, we have $b\gamma a\gamma b = b\gamma a\gamma b\gamma b$ for all $\gamma \in \Gamma$. Thus $b = b\gamma a\gamma b = b\gamma a\gamma b\gamma b = b\gamma a\gamma b\gamma b\gamma b \in B\Gamma B\Gamma B$ for all $\gamma \in \Gamma$. i.e)., $B \subseteq B\Gamma B\Gamma B$. Hence $B = B\Gamma B\Gamma B$ for every weak bi-ideal B of X. Conversely, let $a \in X$. Since X γa is a weak bi-ideal B of X and X is S- Γ -near subtraction semigroup, we get $a \in X\gamma a = (X\gamma a)\Gamma(X\gamma a)\Gamma(X\gamma a)\Gamma(X\gamma a)$.i.e)., $a = n_1\gamma a\gamma n_2\gamma$ afor all $\gamma \in \Gamma$. Since X is left self-distributive, $a = n_1\gamma a\gamma n_2\gamma a\gamma a$ for all $\gamma \in \Gamma$. i.e)., X is strongly regular.

Theorem 4.8

Let X be a left self-distributive S- Γ -near subtraction semigroup. Then B Γ B Γ B =B, for every weak bi-ideal B of X if and only if B=X Γ B Γ B, for every strong bi-ideal B of X.

References

- [1] Abbott J. C., Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
- [2] Alandkar S. J., A Note on Γ- near subtraction semigroups, Indian Streams Research Journal, Vol.6, Issue-6(2016)
- [3] Dheena P. and Satheesh Kumar G., On strong regular near-subtraction semigroups Commun. Korean Math.Soc.22(2007),pp.323-330.
- [4] Kaushik J. P. and Moin Khan, On bi-Γ-ideal in Γ-semirings, Int. J. Contemp. Math. Sciences, Vol. 3, no.26(2008),pp.1255-1260
- [5] Kim K. H. Roh E. H. and Yon Y. H., A Note on Subtraction Semigroups, Scientiae Mathematicae Japonicae Online, Vol.10,(2004),pp.393-401.
- [6] Mahalakshmi V., Maharasi S., Jayalakshmi S.,On bi-ideals of Near-Subtraction Semigroup, Advances in Algebra ISSN 0973-6964, Vol. 6(1)(2013), pp. 35-43.
- [7] Mahalakshmi V., Maharasi S., Jayalakshmi S., On weak bi-ideals in near subtraction semigroup, International Journal of Current Research, Vol. 8, Issue, 08, pp. 35955-35959, August, 2016.
- [8] Mahalakshmi V., Jayalakshmi S., A Study on regularities in near subtraction semigroups, Ph. D thesis, Manonmaniam Sundaranar University, 2016.
- [9] Meenakshi, P. and Meenakumari N., On semigamma bi-ideals in Γ-seminear-rings, International Journal of Current Research Vol.9, Issue 10(2017), pp.59172-59175.
- [10] Meenakshi, P. and Meenakumari N.,Bi-ideals of Γ- near subtraction semigroups,JETIR February 2019, Volume 6, Issue 2 (ISSN-2349-5162), pp. 448-451.
- [11] Pilz Gunter, Near-Rings, North Holland, Amsterdam, 1983.
- [12] Schein B. M., Difference Semigroups, Comm. In Algebra 20(1992), pp. 2153-2169.

- Tamizh Chelvam T. And Meenakumari N., Bi-ideals of Gamma Near-Rings, Southeast Asian [13] Bulletin of Mathematics, 27(2004), pp. 983-988. Tamil Chelvam and N. GanesanOn Bi-ideals of Near-Rings, Indian J. Pure appl. Math.
- [14] 18(11)(1987),pp.1002-1005.
- Zelinka B., Subtraction Semigroups, Math. Bohemica, 120(1995), pp. 445-447. [15]