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Abstract:The mathematical model pertaining to amperometric enzyme electrode with
substrate cyclic conversion in a single enzyme membrane has been considered. The
model is based on non-stationary diffusion equations containing a non-linear term
related to Michaelis-Menten kinetics of the enzyme reaction. Semi-analytical
solutions have been derived for the substrate concentration and reactant product
concentrationin the steady state and the non-steady state using new approach to
Homotopy perturbation method. The derived expressions are compared with the
numerical results with the help of MATLAB and are found to be of excellent fit for
experimental values of parameters. Analytical expressions for current are presented
for steady state and non-steady state conditions. Further, the sensitivity of the
parameters is also discussed.
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1. Introduction

A biosensor is an analytical device, used for the detection of a chemical substance [3,4].
Biosensors consist of two components a biological entity that recognises the target analyte and the
transducer that translates the biorecognition event into an electrical signal. The amperometric
biosensors measure the changes of the current of a working indicator electrode by direct
electrochemical oxidation or reduction of the products of the biochemical reaction[3]. In amperometric
biosensors the potential of the electrode is held constant while the current is measured. The
amperometric biosensors are known to be reliable, cheap and highly sensitive for environment, clinical
and industrial purposes[1].

The goal of the investigation by RomasBaronas et al [1] was to make a model allowing
computer simulation of the biosensors response utilising the amplification by conjugated
electrochemical and enzymatic substrates conversion. The developed model was based on non
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stationary diffusion equations containing a nonlinear term related to the enzymatic reaction. The
authors had carried out the digital simulation of the biosensor response using the implicit finite
difference scheme.

We had derived the steady state and non-steady state analytical expressions for the substrate
concentration and reactant product concentration using a new approach to Homotopy perturbation
method. We had also derived the analytical expressions for current in the steady and non-steady state
conditions.

2. Mathematical formulation of the problem

RomasBaronas et al [1] had considered biosensor as an enzyme electrode, containing a membrane
with immobilised enzyme applied onto the surface of the electrochemical transducer. They considered
the scheme of substrate (S)electrochemical conversion to a product (P) following catalysed with

enzyme (E)product conversion to substrate:

E

S—>P->S
Assuming the symmetrical geometry of the electrode and homogeneous distribution of immobilised
enzyme in the enzyme membrane, the authors had framed the following governing nonlinear partial
differential equations

S S VP
8_ — DS a__l_ max ’
ot x® K, +P
oP 0°P VP
—=Dp—-—"—, 0<x<d, 0<t<T (2)

ot ox: Ky +P
where xis spatial coordinate, tis time, Sis the substrate concentration, Pis the reaction product
concentration, V.. is the maximal enzymatic rate, K,, is the Michaelis constant, d is the enzyme layer
thickness, Dy is the diffusion coefficient of the substrate, D, is the diffusion coefficient of the
product and T is the full time of operation.

x = Orepresents the electrode surface, while X = d represents the bulk solution/membrane surface. The
operation of the biosensor starts when some of the substrate appears over the surface of the enzyme
layer. Hence the initial conditions become

S(x,0)=0, S(d,0)=S,, 0<x<d (3)

P(x,00=0, 0<x<d 4)
where S, is the concentration of the substrate in the bulk solution.
The boundary conditions are

O<x<d,0<t<T (1)

S(0,t)=0 ®)
S(d,t)=S, (6)
oP oS
Dp| —| =-D¢|— 7
P(axjx—o S(aX]x—O ( )
P(d,t)=0 (8)
The current is measured as a response of the biosensor as follows
. oS oP
t)=n,FD{| —| =-n,FD,|— 9
0=n S(axjx_o h P(axjx_o ®)

Wheren,is the number of electrons involved in a charge transfer at the electrode surface and Fis

Faraday constant. F ~9.65x10* C/mol.

Egns. (1) to (9) are converted to the dimensionless form using the following substitutions by Ismail et
al [2]

X = ,R:&,i*(t*)z I®) (10)
Ky K y d d? D, FV, . d

max
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As per the experimental data, we observe thatD, =Dy, hence, hereafter, let us consider
D, =Ds =D

Ve d
Define 0% =% 11
DK, (11)
Hence egns. (1) to (9) in the dimensionless form become as follows
* 2 * *
as* :6 S2 Lol P i (12)
ot ax* 1+P
* 2 * *
8P* :a P2 2 P i (13)
ot ax* 1+P
subject to the initial and boundary conditions
S*(x",00=0, S"(1,0)=S," (14)
P (x",00=0 (15)
S7(0,t7)=0 (16)
S (Lt) =S, (17)
Pl S (18)
X )y X )y
P"(Lt")=0 (19)
- FD - FD -
I L LA FELHN [ 1A (20)
FViad L OX™ ) -, FViad L 0™ ) -,

where S;" = >0
M

3. New approach to Homotopy perturbation method

Linear and non-linear differential equations can model many phenomena in different fields of Science
and Engineering in order to present their behaviours and effects by mathematical concepts. Most of the
non-linear differential equations do not have analytical solutions, but can be handled by semi-
analytical or numerical methods. In order to obtain analytical solution of non-linear differential
equations, semi-analytical methods such as the Variational Iteration method[11],Adomain
decomposition method[12], Homotopy analysis method[13-16] andHomotopy perturbation
method[19-24] are considered.

The Homotopy perturbation method is a powerful and efficient technique for finding solutions of
nonlinear equations without the need of a linearization process.The method was first introduced by
Hein1998 [5-10].HPM is a combination of the perturbation and homotopy methods. This method can
take the advantages of the conventional perturbation method while eliminating its restrictions. In
general, this method has been successfully applied to solve many kinds of linear and nonlinear
equations in applied Sciences by many authors[25-36]. Lately, a new approach to HPM[17,18] is used
to solve nonlinear differential equation in zeroth iteration.

4. Semi-analytical solution to the steady state of eqns. (12) to (19) and egns. (1) to (8) usinghew
approach to Homotopy perturbation method

Using new approach to HPM, the solution of egns. (12) to (19) in steady state follows
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NEEN ““s“ sinh
$* =5, 1-e 7% 1+ So (21)
-0
sinh -
1+S0
L 2 i
g pw oc? .
. e % giph X
. X 1+S
P =5, |e "™ 0 (22)
2
sinh |-
1+S,
The solution of egns. (1) to (8) in steady state follows
Vmaxd
Ve, DK +5o) smh/
S =5, 1—e VOMurs)l o K +S (23)
. vmxcl2
sinh | —M&—
D(Ky +So)
I vmxd2
Vow € P(Ku +50) iy }
P=g,|e (PKurs) _ D(Ky +59) (24)

5. Semi-analytical solution to eqgns. (12) to (19) and eqgns. (1) to (8) (non-steady state) using new
approach to Homotopy perturbation method

Using new approach to HPM and Laplace transform technique [37,38], the solution to egns.(12) to
(29) in the non- steady state is evaluated as follows:

7[(2n+1)2 ﬂzt*]
Uz 1+sO sinh Cos(2n+lﬂx*je 4
l*e 1+S0 X n+1 2
(2n+1)z
sinh
S"=S, 1+,
[ +n27r2 t
i n;zsm(nnx Je (S0
n=1 +n2”2
1+SO
(25)
_ 1=
P e 1+So sinh - —[16; +nir z]t
R P 1+5S 2 2nzsin(nax e V0
P" =S, ||e "™ - ( 2)
. n=1 o 2_2
sinh - ~tnw
1+5S, 1+5,
(26)

The solution of egns. (1) to (8) in non steady state follows
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Vinaxd? [ (2n+1)*z%Dt
DK +0) smh/ os((2n+1)ﬂx)e[ o ]
1_e \D(KM +so) Kw +S n+1 2d
Vv dz (2n+1)z
sinh Kmax S)
5=5, D(Ky +
Vinaxd 2 nzg? |2
Znnsln(nﬂxje[D(KWSO) ]dz
> d
+; Vmaxd2 2_2
X 4+ n7
D(Ky +So)
(27)
- _ Vmaxdz ] 7[ Vmax +n2”2JE
Vinae e VoK) ginp | Vo N Znﬂsin(nﬂxje D(Ky +5) d¢*
P =S e_ D(KM+30)X_ D(KM +SO) _z d
=99
. V d2 n=1 Vmaxd2 22
sinh | — M= e 1 | P/
D(K,, +S,) D(Ky +S,)
(28)

We here note thatast — oo, egns. (25) to (28)exactly coincide with eqgns. (21) and (24) respectively.
This clearly indicates that the solution derived for the non-steady state converges to the solution
derived for the steady state as t — oo.

6. Semi-analytical solution for current egn. (20)

i : e n,FD (oP”
Substituting the non steady state solution of P ini (t )= ——( j , We get the non steady
FV .0 o0
state current as follows
- 0-72* — ’ +n27r2 t
.« «. N,FDS," o2 g 1% 2 2n’z%e [”SO }

i(t)==2 —[1+ + 29
PV | 145, sinh ot | ™ o’ +n?z? *)
145, 1+,

and the steady state current as follows

2
o

* 2 - 1+SO*
i = “FCDSd o |14 8 (30)
x 1+S 2
e 0 sinh —
1+S,
Using eqn. (10), the maximal biosensor current is given as follows
_ Vmaxdz
. n.FDS V. d? DK +50)
o =1 = 0 max 14— (31)
K (KM +So) . vV Xd2
sinh | — ™~
D(Ky +S,)

7 .Numerical simulation

The non-linear differential egns. (12) and (13) with initial and boundary conditions given by eqns. (14)
to (19) and the non-linear differential eqns. (1) and (2) with initial and boundary conditions given by
eqgns. (3) to (8) are also solved numerically. The function pdepe has been used in MATLAB software
to solve the initial-boundary value problems numerically. The obtained analytical results are compared
with the numerical simulation. The MATLAB program is given in Appendix D.
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Figl. The profile of the dimensionless substrate concentration( S*) and reaction product

concentration( P™). The dotted lines represent the analytical solution and the lines with dots and
dashes represent the numerical simulation.
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Fig3. The profile of the dimensionless reaction product concentration (P ") for various values of ©.
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Fig4. The profile of the substrate concentration('S ) and reaction product concentration(P). The dotted
lines represent the analytical solution and the lines with dots and dashes represent the numerical

simulation.
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Fig5. The profile of the substrate concentration( S ) versus spatial co-ordinate (x) for various values
of D. The dotted lines represent the analytical solution and the lines with dots and dashes represent
the numerical simulation.
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Fig6. The profile of the reaction product concentration(P) versus spatial co-ordinate (x) for various
values of D. The dotted lines represent the analytical solution and the lines with dots and dashes
represent the numerical simulation.
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Fig7. The profile of the substrate concentration( S ) versus spatial co-ordinate (x) for various values
of K,,. The dotted lines represent the analytical solution and the lines with dots and dashes represent

the numerical simulation.
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Fig8. The profile of the reaction product concentration(P) versus spatial co-ordinate (x) for various
values of K, . The dotted lines represent the analytical solution and the lines with dots and dashes
represent the numerical simulation.

2.x 107 e menem el
= '_‘,—" e
V.. =0.000000100 ot >
5 . {_‘Ie\ .-/I
H 2 *
) K ¢ £ V. =0.000000001
15=x 1077 r"- 55 ’
c V... =0.000000010 -~
s r mEX i /.
[mol / car' ] t £ 7
* : & P ... expressad
1 %104 J‘-f F _/" in mol llen’s)
o pf &
/ ! .f‘ i 7
i f ¥ D=0000003cm” /s
8l !" A b
5.% 10 i s V... =0.000000010 mol/|cm’s |
F o
Ir /-" d=0.02¢cm
i) .
5, =0.000000020 mol / cm
o | : ; |
0 0.005 0010 0015 0020
x [em]
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Table 1: Comparison between analytical values and numerical values in Fig. 1

c=15 8, =1
x" | Numerical solution | Analytical solution Absolute

percentage error

0 1 1 0

0.2 0.7398316080 0.7506387719 1.466

p* 0.4 0.5178647727 0.5351831490 3.34

0.6 0.3265225987 0.3439012156 5.32

0.8 0.1572218387 0.1681529572 6.95

1 0 0 0

Average absolute percentage error 2.85

0 0 0 0

0.2 0.2601305102 0.2493612285 4.14

g 0.4 0.4820711959 0.4648168510 3.58

0.6 0.6734062126 0.6560987844 2.57

0.8 0.8427188243 0.8318470425 1.29

1 1 1 0

Average absolute percentage error 1.93

Table 2: Comparison between analytical values and numerical values in Fig. 17
o=1 8, =1t =04
x| Numerical solution | Analytical solution Absolute

percentage error

0 1 1 0

0.2 .7664803607 7713196686 0.63

p* 0.4 5525067020 5603604244 1.42

0.6 .3563129966 .3642991454 2.24

0.8 1741361958 .1792099059 291

1 0 0 0

Average absolute percentage error 1.20

0 0 0 0

0.2 .2287153054 .2189629008 4.26

g 0.4 4396212556 4239368673 3.57

0.6 .6356443302 .6201222897 2.44

0.8 .8207419226 8112821227 1.15

1 1 1 0

Average absolute percentage error 1.90

Table 3: Comparison between analytical values and numerical values in Fig. 18
0=3 8, =1

t" * | Numerical solution | Analytical solution Absolute
percentage error
1 1 0
p* 0.2 .5645282694 5770063790 2.21
0.10 0.4 .2816910527 .2992320250 6.22
' 0.6 1255576406 1351773082 7.66
0.8 0.049454271 0.04840812589 2.12
0 0 0
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| Average absolute percentage error | 3.04 |

8. Results and discussion
The steady state (Appendix A) and the non-steady state (Appendix B) analytical expressions
for the substrate concentration and reactant product concentration have been derived. The semi-

analytical steady state solutions for dimensionless substrate concentration (S*)and dimensionless

reactant product concentration (P*)are compared with the numerical solutions derived using Matlab in
Figl. The semi-analytical steady state solutions for the substrate concentration (S) and reactant
product concentration(P) are compared with the numerical solutions derived using Matlab for various
values of parameters in Figs3 to 10. The semi-analytical non steady state solutionsfor the
dimensionless substrate concentration (S*) and dimensionless reactant product concentration (P*)are

compared with the numerical solutions derived using Matlab in Figs. 17 and18. Tables 1 to 3 show
that the maximum deviation between the semi-analytical and numerical values is a maximum of 3%.
This shows that the semi-analytical solutions make an excellent fit with the numerical solutions for
experimental values of parameters [1].

Fig2. represents the dimensionless substrate concentration (S*) versus dimensionless spatial
coordinate (X*) for different values of parameter o .Fig3. represents the dimensionless reactant
product concentration (P*) versus dimensionless spatial coordinate (X*) for different values of
parameter o .Figl9 represents the dimensionless substrate concentration (S*) versus dimensionless
time (t*) for different values of parameter o .Fig20. represents the dimensionless reactant product
concentration (P*) versus dimensionless time (t*) for different values of parameter o .From the

figures, it is clear to observe that the value of S “increases with increase in o, while the value of P
decreases with increase in o .
From Figs. 5, 7 and 9, we observe that the substrate concentration (S ) decreases with increase

in D, decreases with increase inK,, and increases with increase inV,,,. From Figs. 6, 8 and 10, we
observe that the reactant product concentration (P) increases with increase inD, increases with
increase in K,, and decreases with increase inV,,, .

Figs. 11, 13 and 15 show the substrate concentration (S ) versus spatial co-ordinate X and D ,
Ky and V.., .respectively. Figs. 12, 14 and 16 show the reactant product concentration (P) versus
spatial co-ordinate XandD, K,,and V,, respectively.

Figs. 21 to 24 show the variation of steady state current i, with respect to S,for various

values of V d, D and K,, respectively. Figs. 25 to 28 show the variation of steady state current

max !
I, With respect to d for various values of D , S;, V,,, and K,, respectively. From the figures it is
clear that i, increases with increase in S, while it decreases with increase in d.

Differential sensitivity analysis is based on partial differentiation of the aggregated model. We
have found the partial derivative of substrate concentration (S ), reactant product concentration (P)
and steady state current i, (dependent variables) with respect to the parameters D , K,, V ., d
and S, (independent variables). For the experimental values of parameters, numerical value of rate of
change of S,Pand i, are obtained and the sensitivity analysis of the parameters is given in Figs. 29
to 31.

From Fig29.it is inferred that V,,, has positive impact on substrate concentration (S) while D,
Ky, dandS, have negative impact on the same. K, accounts for the maximum negative impact on
S.From Fig30.it is obvious thatD, K,,, dandS, have positive impact on reactant product
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concentration (P) while V, . has negative impact. K, accounts for the maximum positive impact on
P.From Fig3Ll.it is inferred that D , V.,

X

and S, have positive impact on steady state current 1,

X

while K,,, d have negative impact on the same . S,accounts for the maximum positive impact on
I -Next to the parameter S,, the parameter V., has more positive impact on current.

From Figs 19 and 20 , we infer that S reaches its steady state after t"=0.6 and P reaches its
steady state aftert” =0.5.

9. Conclusion

In this paper, steady state and time dependent approximate analytical expressions for thesubstrate
concentration and reactant product concentration are reported. The new Homotopy perturbation
method is used to obtain the solution. Our results are of excellent fit with the numerical results.
Analytical expressions for current are also presented for steady and non-steady state conditions. The
obtained semi-analytical results under non-steady state will help the researchers to interpret the effect
of the different parameters over the substrate concentration, product concentration and steady state
current.

Appendix A
Semi-analytical solution for the steady state model of eqns.(12) to (19) and egns. (1) to (8)
Egns. (12) and (13) in steady state become

2 * *
0 52 P B —|=0 (A1)
6)(* 1+P
2 * *
0 P2 ] —|=0 (A.2)
6X* 1+P

subject to the boundary conditions

$°(0,t")=0 (A.3)
S (Lt)=S," (A4)
oP")  _ (o8 (AS5)
X" ) -, X ) -, '
P"(L,t")=0 (A.6)

To solve egns. (A.1) and (A.2), we introduce a new function G* =S +P", so, that eqns (A.1) and
(A.2) together give

2 *
S o (A7)
OX
subject to the boundary conditions
GG* =0 (A.8)
X x"=0
G (LtT) =S, (A.9)
Solving eqgns. (A.7) to (A.9), we get
G =S, (A.10)
We construct the homotopy for egn. (A.2) as follows
2 * * 2 * *
(1—p)6 P2 ] _ +pa P2 _o? P —||=0 (A.11)
ox” 1+5S, ox” 1+P
Let the approximate solution of (A.2) be
P =P, +P p+P, p?+.. (A.12)
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Substituting egn. (A.12) in egn. (A.11) and equating the coefficients of p0 , We get

2 * *
0 P‘; O] L (A.13)
ox” 1+8S,
2
Let k = g —, SO that the above equation becomes
1+S,
o°P, .
- —kPo =0 (A.14)
OX

Solving eqgn. (A.13) using its boundary conditions, we get
X “JK *
P, = SO*|:e_ﬁx _ e " sinh Vkx }

sinh vk (A.15)
From egn. (A.12), we have P” ~ PO* , hence we get
b So*[eﬁx* e sinh \/Fx*}

sinh VK (A.16)
Since G =S +P”, we get
$* =G -P" = So*{l—eﬁx* +—e_i;igt/§x*} (A.17)

Hence the solution for egns. (12) to (19) is as follows

— O-Z* 2
e WS ogiph |9 X
. * Vs, 1+8§,
S 1-e + - (A.18)
sinh |2
1+5S,
" 62* o’ .
[o . e "™ sinh Lo
P =5, e s i (A.19)
sinh e -
1+S,

Substituting egns. (10) and (11) in (A.18) and (A.19) , we get the semi-analytical solution for the
steady state model of equations (1) to (8) as follows

_ vmao(d2
Voo e VP(Ku+So) ginh Ve X
x D(Ky +S,)
(A.20)
d

2

sinh L
D(KM +So)
_ Vmaxd2
[V, ® D(Ku+S0) gjnpy 7D(KmaXS)X
P-s,|e D(Ky+So) = M T (A.21)
sinh max
D(Ky +S,)
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Appendix B
Semi-analytical solution for eqgns.(12) to (19) and eqns. (1) to (8)

To solve egns. (12) to (19), we introduce a new function H™ =S™ + P, so that eqns. (12) and (13)
together give
oH™  o°H”

= (B.1)
ot o™’
subject to the initial and boundary conditions
H™(x",00=0 (B.2)
AL B (B.3)
X ) o
H @Qt") =S, (B.4)
Applying Laplace transform to eqgns. (B.1) to (B.4), we get
H™ 0°H’
0 —— 0 =0 (B.5)
ot aX*
subject to the initial and boundary conditions
t"=0,H =0 (B.6)
X =0, aH* 0 (B.7)
OX
X =1, H =20 (B.8)
s
Solving egns. (B.5) to (B.8), we get
- S, cosh/sx”
H =22 s (B.9)

scosh/s
Now, let us invert eqn.(B.9) using the complex inversion formula.

If y(s) represents the Laplace transform of a function y(7), then according to the complex inversion

formula y(z) :%fexp(w)?(s)ds where the integration has to be performed along a line S =cin the
m
Cc

complex plane where s =X+ iy.The real number ¢ is chosen in such a way that s = Clies to the right

of all the singularities, but is otherwise assumed to be arbitrary. In practice, the integral is evaluated by
considering the contour integral presented on the right-hand side of the equation, which is then
evaluated using the so-called Bromwich contour. The contour integral is then evaluated using the

residue theorem.
S, cosh+/sx”
scosh \/E '

Now, finding the poles of H " we see that there is a pole ats = 0and there are infinitely many poles
given by the solution of the equation cosh(\/g)z 0

In order to invert eqn.(B.9), we need to evaluate Re s(

2
ie) there are infinite number of poles at s, = —(2n +1)? 7[—, where n=12,3,.....
(ie) poles at s, .

Hence, we note that

L‘l(H*)=Res{e“[S° cosh X ]] +Res{e“[SO cosh Vsx ]] (B.10)
s=0 s=S,

scosh \/E scosh \/E

The first residue in egn. (B.10) is given by
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Red e S, cosh+/sx”
scosh \/g o
It S, coshy/sx’
= set 22—~
s—0 scosh+/s

=S, (B.11)
The second residue in egn. (B.10) is given by

<[ S, cosh/sx”
Res|e¥| =0 — 2"
scosh\/g e
.t o cosh/sx”
575 sdi(cosh\/g)
s

(2n+1 j [ : ’”*]
" cos 5 e

= 4(-1"sy
T

Using eqgns. (B.11) and (B.12) in eqn.(B.10), we get

(2n+1? 5.
(Zn +1 *j h 4 t
Cos Tﬂx e
S

H =5, + 3 a(-1p
°+n§;( JS: (2n+1)z

(2n+1)? ”zt*]

2n+1 *] { 4
S| X e
2

o (2n+1)r

- %0

(B.12)

(B.13)

To solve for P”, we construct the homotopy for eqn. (13) as follows

o o « . .

i) aP*_a P2+62 P s p aP*_a P2+62 P V-0 (B.14)
ot ax" 1+5S, ot o 1+P

Let the approximate solution of egn.(13) be

P =P, +P p+P, p?+.. (B.15)

Substituting egn. (B.15) in egn. (B.14) and equating the coefficients of p0 , We get

* 2 * *
0Py @ P% o P (.16
ot ox” 1+SO

2
o

Let k= —, SO that egn (B.16) becomes
1+S,

6P(1 _ ang P (B.17)
ot ox”

Applying Laplace transform to eqn. (B.17) and to its boundary conditions, we get

oP,  0°P)

o x

subject to the following initial and boundary conditions

t"=0,P, =0 (B.19)

-kP, (B.18)
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X' =0, B, =20 (B.20)
S

x"=1P, =0 (B.21)
Solving egns. (B.18) to (B 21), we get
P*=S—° oS _ K sinh s + kx”

° S sinh+/s +k
In order to invert eqn.(B.22), we need to use the complex inversion formula, which means we need to

evaluate Res S_o* o Vs _e‘m sinhv/s+kx" .
S sinh /s +k

Now, finding the poles of P, *, we see that there is a pole ats = 0and there are infinitely many poles

(B.22)

given by the solution of the equationsinh /s +k =0
(ie) there are infinite number of poles at s, = —k —n?z2, where n=1,2,3,.....
Hence, we note that

Ll(F)Z ReS est i 67 5+kx* _67‘/ﬂ Slnh S-i—kX*
i S sinh+/s+k .
s=

* . 7«/S+7k . *
+Res|:est(8_ol:e stkx” € sinh+/s +kx :U:I (823)
S

sinh+/s +k

The first residue in egn. (B.23) is given by

Res| e SL e _e’m sinh /s +kx”
S sinh/s+k .
S=
_ It Sest S_o*e_ s+kx*_e'msinh S+|(X*
s—>0 S sinh+/s+k

z[so*le—@* _ e sinhflod ‘/EXD (B.24)

sinh\/E

The second residue in egn. (B.23) is given by

Res est S_o* e stkx _e_ stk sinh S+kX*
s sinh+/s +k
S=S§

It S "ot e V" sinh /s + kx"
- 0

575 Si(Sinh\/S—f-—k)

onzsin(nax)e k=)
=-S, Z 7 sin( ) (B.25)

k+n°z?
Using eqns. (B.24) and (B.25) in eqn.(B.23), we get

. - eV sinh/kx" 2nzsin(nax e(k”‘z”z)‘*
R, {So{ef— D oz ( )

smh\/_ k+n?z
_g || g € * sinh vkx" Z"’: 2n7rsin(n7zx*)e‘(k+”2”2)‘*
° sinh/k — k+n2z?

From egn. (B.15), we get
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7«/7 © . * 7(k+n2;rz)t*

- x ] Vi Ksinh/kx" 2nzsin(nax )e

P xR =5, | |e _y2nzsin(nx e (B.26)
sinh/k ) K+n°z

. . . w COS(
S =H =P —g/14> a(-2p"

*

5 {em* smh\/_x} iansin(nyzx*)e(k*”z”z)t*J
]

sinh vk —~ k+n?z?
[ (2n+1y? 2
COS( 2n +17Z'X*je 4 d
1_e VR ~sinhkx" i o 2
= SO 5|nh\/_ (2n +1)7Z (B-27)
0 H —(k+n T )[
N Z 2nzsin(nzx 2)e2
~ kK+n°z

Hence the solution for egns. (12) to (19) is as follows

\1 So” 2n+1 _[(2n+1)2”2t*]
* sinh . cos[ 2+ nx*)e !
1—¢e 1+S0 n Z n+l

L smh\/ <
$" =5, 1+S,

—{1 S*+n T ]t
2nzsin n;zx* g\

n=1 o —+n?r?
1+§,
(B.28)
_ 0—2* 2 . )
_ o? X" e 1+S0 Slnh 0-7*)( w {14?.5**-”2”2][*
p* =5, | e Ve 1+, Z 2n7zsm(n7zx e (B.29)
2
sinh _ "t +n’z?
1+5, 1+ So

Substituting egns. (10) and (11) in (B.28) and (B.29) , we get the solution for equations (1) to (8) as
follows.
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| Viwd? [ (2n+1? %Dt
e e Volu+50) ginn / Vinax x S[(Zn +1)7zxje [ 2d? ]
1-¢e D(Ky +So) + D(KM + SO) + 4(_ l)n+1 2d
. V d 2 n=0 (2n +1)”
sinh |— M
D(KM + So)
S=S,
—[ Vi anzzerE
" 2n7zsin(nTﬂXje DK +30) d
2 Voud?
n=1 max nr
D(Ky +Sp)
(B.30)
| Vawd _{ Vinaxd +nz,,2}7
) Ve e D(Ky +S°)Slnh max X ; Znﬂ_Sin[nﬂXje D(Kpy +So) 2
P=s,le D(Ky+5) _ D(Ky +So) _Z d
. Vmaxdz n=1 Vmaxd2 2_2
sinh Nz
D(Ky, +5S,) D(Ky +So)
(B.31)
Appendix: C
Nomenclature
Symbols Meaning
X spatial coordinate in cm
t timeins
S substrate concentration in mol/cm?
P reaction product concentration in mol/cm?
Vo | Maximal enzymatic rate in mol/(cm®s)
Ky Michaelis constant in mol/cm?®
d enzyme layer thickness in cm
Dg diffusion coefficient of the substrate in cm?/s
Dp diffusion coefficient of the product in cm?/s
T full time of operation in s
i(t) density of current at time t in A/cm?
N, number of electrons involved in a charge transfer at the electrode surface
F Faraday constant, F ~ 9.65*10* C/mol
max steady state current im in Alcm?
g dimensionless substrate concentration
p* dimensionless reaction product concentration
o2 Damkohler number (Da)
X" dimensionless spatial coordinate
tt dimensionless time
Appendix: D

MATLAB program to find the numerical solution of egns. (12)-(19)
Function pdepe

m=0;

x = linspace(0,1);
t = linspace(0,0.1);
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sol = pdepe(m,@pdex4pde, @pdex4ic,@pdex4bc,x,t);
ul =sol(:,:,1);

u2 =sol(:,:,2);

figure

plot(x,ul(end,:))

title('ul(x,t)")

xlabel('Distance x')

ylabel('ul(x,2)")

%
figure
plot(x,u2(end,:))
title('u2(x,t)")
xlabel('Distance x")
ylabel('u2(x,2)")

%
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c=1[1,; 1];

f=[1;1] .* DuDx;

si=1;

F=-(si"2*u(2))/((1+u(2)));

s=[-F; FI;

%
function u0 = pdex4ic(x);
u0 = [0;0];

%
function [pl,ql,pr,qr] = pdex4bc(xI,ul,xr,ur,t)
pl = [ul(1)-0;ul(2)-1];

gl = [0;0];

pr = [ur(1)-1;ur(2)-0];

qr = [0;0];

MATLAB program to find the numerical solution of egns. (1)-(8)
functionpdepe

m=0;

x = linspace(0,0.020);

t = linspace(0,100000);

sol = pdepe(m,@pdex4pde, @pdex4ic,@pdex4bc,x,t);

ul =sol(:,:,1);

u2 =sol(:,:,2);

figure

plot(x,ul(end,))

title('ul(x,t)")

xlabel('Distance x')

ylabel('ul(x,2)")

%
figure
plot(x,u2(end,:))
title('u2(x,t)")
xlabel('Distance x')
ylabel('u2(x,2)")

%
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c=[1;1];

f=[1; 1] .* DuDx;

d=0.000003;
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k=0.0000100;
v=0.000000100;
F=-(v*u(2))/((k+u(2))*d);
s=[-F; F];

%
function u0 = pdexd4ic(x);
u0 = [0;0.000000020];

%
function [pl,ql,pr,qr] = pdex4bc(xI,ul,xr,ur,t)
pl = [ul(1)-0;ul(2)-0.000000020];

gl = [0;0];

pr = [ur(1)-0.000000020;ur(2)-0];
qr = [0;0];
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