

POSITIVE IMPLICATIVE AND ASSOCIATIVE *WI*-IDEALS OF LATTICE WAJSBERG ALGEBRAS

A. Ibrahim¹ and C. Shajitha Begum²

¹Assistant Professor, PG and Research Department of Mathematics, H. H. The Rajah's College, Pudukkotai, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. Email:

ibrahimaadhil@yahoo.com; dribrahimaadhil@gmail.com

² Research Scholar, PG and Research Department of Mathematics, H. H. The Rajah's College,

Pudukkotai, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India.

Email: nousheen2407@gmail.com.

Abstract: In this paper, we introduce the notions of positive implicative *WI*-ideal and an associative *WI*-ideal of lattice Wajsberg algebras and investigate some of their properties. Also, we prove that every positive implicative *WI*-ideal is an implicative *WI*-ideal, and hence a *WI*-ideal, and that every associative *WI*-ideal is a *WI*-ideal.

Keywords: Wajsberg algebra; Lattice Wajsberg algebra; *WI*-ideal; Implicative *WI*-ideal; Positive implicative *WI*-ideal; Associative *WI*-ideal.

Mathematical Subject classification 2010: 03G10, 03G20, 03G25, 06B10.

1. Introduction

Wajsberg algebras are formulated in terms of the operations "implication" and "quasi complement" Wajsberg algebra concept was first proposed by Mordchaj Wajsberg [13] in 1935, and analyzed by Font, Rodriguez, and Torrens [1] in 1984, but they were also considered earlier by Komari [11,12] under the name of *CN* algebras, they were the model of \aleph_0 -valued Łukasiewicz logic too. Font, Rodriguez and Torrens [1] introduced a lattice structure of Wajsberg algebra. The authors [2] introduced the notion of *WI*-ideal of lattice Wajsberg algebra and discussed some related properties. Further, the authors [3,4,5,6,7,8,9,10] introduced the notions of fuzzy *WI*-ideal, normal fuzzy *WI*-ideal, intuitionistic fuzzy *WI*-ideal, annihilator, implicative *WI*-ideal, fuzzy implicative *WI*-ideal, anti fuzzy *WI*-ideal, intuitionistic anti fuzzy *WI*-ideal of lattice Wajsberg algebra and also investigated their properties with suitable illustrations.

In this paper, we introduce the notions of positive implicative *WI*-ideal and associative *WI*-ideal of lattice Wajsberg algebras. Further, we investigate some of their properties. Also, we prove that every positive implicative *WI*-ideal is an implicative *WI*-ideal, and hence a *WI*-ideal, and that every associative *WI*-ideal is a *WI*-ideal. Moreover, we provide the condition equivalent for both positive implicative *WI*-ideal and associative *WI*-ideal.

2. Preliminaries

In this section, we recall some basic definitions and their properties that are useful to develop our main results.

Definition 2.1 [1]. Let $(A, \rightarrow, *, 1)$ be an algebra with binary operation ' \rightarrow 'and a quasi complement '*' is said to be Wajsberg algebra if it satisfies the following axioms for all $x, y, z \in A$

(i)
$$1 \rightarrow x = x;$$

- (ii) $(x \to y) \to y = (y \to x) \to x;$
- (iii) $(x \to y) \to ((y \to z) \to (x \to z)) = 1;$
- (iv) $(x^* \rightarrow y^*) \rightarrow (y \rightarrow x) = 1.$

Proposition 2.2 [1]. A Wajsberg algebra $(A, \rightarrow, *, 1)$ satisfies the following axioms for all $x, y, z \in A$,

- (i) $x \rightarrow x = 1;$
- (ii) If $(x \to y) = (y \to x) = 1$ then x = y;
- (iii) If $(x \rightarrow y) = (y \rightarrow z) = 1$ then $x \rightarrow z = 1$;
- (iv) $(x \rightarrow (y \rightarrow x)) = 1;$
- (v) $(x \to y) \to ((z \to x) \to (z \to y)) = 1;$
- (vi) $x \rightarrow 1=1;$

(vii)
$$x \to (y \to z) = y \to (x \to z);$$

(viii)
$$x \to 0 = x \to 1^* = x^*;$$

(ix)
$$(x^*)^* = x$$

(x) $(x^* \to y^*) = y \to x$.

Definition 2.3 [1]. A Wajsberg algebra $(A, \rightarrow, *, 1)$ is called a lattice Wajsberg algebra if it satisfies the following conditions for all $x, y \in A$,

(i) The partial ordering ' \leq ' on a lattice Wajsberg algebra A, such that $x \leq y$ if and only if $x \rightarrow y = 1$;

(ii)
$$(x \wedge y) = ((x^* \to y^*) \to y^*)^*;$$

(iii)
$$(x \lor y) = (x \to y) \to y$$
.

Note. From Definition 2.3 an algebra $(A, \lor, \land, *, 0, 1)$ is a lattice Wajsberg algebra with lower bound 0 and upper bound 1.

Proposition 2.4 [1]. A lattice Wajsberg algebra $(A, \lor, \land, *, 0, 1)$ satisfies the following axioms for all $x, y, z \in A$,

- (i) If $x \le y$ then $x \to z \ge y \to z$ and $z \to x \le z \to y$;
- (ii) $x \le y \to z$ if and only if $y \le x \to z$;
- (iii) $(x \wedge y) \lor z = (x \lor z) \land (y \lor z);$
- (iv) $(x \lor y)^* = (x^* \land y^*);$

(v) $(x \lor y) \to z = (x \to z) \land (y \to z);$

- (vi) $x \to (y \lor z) = (x \to y) \lor (x \to z);$
- (vii) $(x \rightarrow y) \lor (y \rightarrow x) = 1;$
- (viii) $x \to (y \lor z) = (x \to y) \lor (x \to z);$
- (ix) $(x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z);$ (x) $(x \land y) \lor z = (x \lor z) \land (y \lor z);$
- (xi) $(x \wedge y) \lor z = (x \lor z) \land (y \lor z)$.

Definition 2.5 [1]. Let A be a lattice. An ideal I of A is a non empty subset of A is said to be a lattice ideal if it satisfies the following axioms,

(i) $x \in I, y \in A \text{ and } y \le x \text{ imply } y \in I \text{ for all } x, y \in I;$

(ii) $x, y \in I$ implies $x \lor y \in I$ for all $x, y \in I$.

Definition 2.6 [2]. The lattice Wajsberg algebra A is said to be lattice H-Wajsberg algebra, if $x \lor y \lor ((x \land y) \to z) = 1$ for all $x, y, z \in A$. In a lattice H-Wajsberg algebra A the following conditions hold,

(i) $x \to (y \to z) = (x \to y) \to (x \to z);$

(ii) $x \to (x \to y) = (x \to y)$.

Definition 2.7 [2]. Let A be a lattice Wajsberg algebra. Let I be a nonempty subset of A. Then, I is said to be WI-ideal of lattice Wajsberg algebra A satisfies,

(i)
$$0 \in I$$

(ii) $(x \to y)^* \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in A$.

Definition 2.8 [6]. Let I be a non-empty subset of lattice Wajsberg algebra A. Then, I is called an implicative WI-ideal of A, if it satisfies the following conditions, (i) $0 \in I$;

(1)

(ii) $((x \to y)^* \to z^*) \in I \text{ and } (y \to z)^* \in I \text{ imply } (x \to z)^* \in I \text{ for all } x, y, z \in A.$

3. Main Results

3.1. Positive Implicative WI-ideals of Lattice Wajsberg algebras

Definition 3.1.1. A non-empty subset *I* of a lattice Wajsberg algebra *A* is called a positive implicative *WI*-ideal of *A* if it satisfies the following,

(i) $0 \in I$;

(ii) $((y \to (z \to y)^*)^* \to x)^* \in I \text{ and } x \in I \text{ imply } y \in I \text{ for all } x, y, z \in A.$

Example 3.1.2. Let $A = \{0, p, q, r, s, t, 1\}$ be a partial ordering set as given in figure 3.1. Define a binary operation ' \rightarrow 'and a quasi complement '*' on *A* as in tables 3.1 and 3.2.

Define ' \land 'and ' \lor 'operations on *A* as follows,

 $(x \land y) = (((x^* \to y^*) \to y^*)^*),$

 $(x \lor y) = (x \to y) \to y$ for all $x, y \in A$.

Then, $(A, \lor, \land, *, 0, 1)$ is a lattice Wajsberg algebra. It is easy to check that, $I_1 = \{0, r, s\}$ is a positive implicative *WI*-ideal of lattice Wajsberg algebra *A*. But, $I_2 = \{0, p, s\}$ is not a positive implicative

WI-ideal of *A*. Since, $((p \rightarrow (s \rightarrow p)^*)^* \rightarrow 0)^* = q \notin I_2$.

Proposition 3.1.3. Let I be a non-empty subset of A. If I is a positive implicative WI-ideal of A, then I is a WI-ideal of A.

Proof. Let *I* be a positive implicative *WI*-ideal of *A* then from the definition 3.1.1 we have $0 \in I$ and replace x = y and z = x for all $x, y, z \in A$ in (ii) of definition 3.1.1, $(((x \to (x \to x)^*)^* \to y)^*) \in I$ and $y \in I$ imply $x \in I$ for all $x, y, z \in A$

 $(((x \to 0)^* \to y)^*) \in I \text{ and } y \in I \text{ imply } x \in I \text{ for all } x, y, z \in A$

 $((x \rightarrow y)^*) \in I$ and $y \in I$ imply $x \in I$ for all $x, y, z \in A$ Thus, I is a *WI*-ideal of A.

Proposition 3.1.4. Let *I* be a *WI*-ideal of *A*. Then *I* is a positive implicative *WI*-ideal of *A* if and only if $(x \rightarrow (y \rightarrow x)^*)^* \in I$ implies $x \in I$ for all $x, y \in A$.

Proof. Let *I* be a positive implicative *WI*-ideal of *A* and let x = 0, y = x, z = y in $(((y \to (z \to y)^*)^* \to x)^*) \in I$ and $x \in I$ imply $y \in I$ then, we have $(((x \to (y \to x)^*)^* \to 0)^*) \in I$ and $0 \in I$ imply $x \in I$, which implies that, $(((x \to (y \to x)^*)^*) \in I$ implies $x \in I$.

Conversely, since *I* is a *WI*-ideal of $A, (((y \to (z \to y)^*)^*) \in I$. Thus, we have $y \in I$.

Proposition 3.1.5. Let I be a non-empty subset of lattice Wajsberg algebra A. If I is a positive implicative WI-ideal of A, then it is an implicative WI-ideal of A. **Proof.** Let I be a positive implicative WI-ideal of A.

We need to prove: *I* is an implicative *WI*-ideal of *A*. Let $((x \to y)^* \to z^*) \in I$ and $(y \to z)^* \in I$. It is enough to show that $(x \to z)^* \in I$.

Here,
$$((x \to y)^* \to z)^* = (z^* \to (x \to y))^*$$

= $(x \to (z^* \to y))^*$ [From (vii) of proposition 2.2]

$$= (x \rightarrow (y^* \rightarrow z))^*$$
[From (x) of proposition 2.2]

$$= (y^* \rightarrow (x \rightarrow z))^*$$
[From (vii) of proposition 2.2]

$$= ((x \rightarrow z)^* \rightarrow y)^*$$
[From(x) of proposition 2.2]
Therefore, $((x \rightarrow y)^* \rightarrow z)^* = ((x \rightarrow z)^* \rightarrow y)^*$ [From(x) of proposition 2.2]
then $((y \rightarrow z) \rightarrow ((x \rightarrow z)^* \rightarrow y) \rightarrow ((x \rightarrow z)^* \rightarrow z)$
then $((y \rightarrow z) \rightarrow ((x \rightarrow z)^* \rightarrow z))^* \le ((x \rightarrow z)^* \rightarrow y)^*$
 $(((x \rightarrow z)^* \rightarrow z)^* \rightarrow ((x \rightarrow z)^* \rightarrow y)^* \le ((x \rightarrow z)^* \rightarrow y)^* \le I$.
Also,
 $((x \rightarrow z)^* \rightarrow z)^* = ((((x \rightarrow z)^* \rightarrow 0)^* \rightarrow z)^* = ((((x \rightarrow z)^* \rightarrow ((x \rightarrow z)^* \rightarrow z)^* \rightarrow z)^* \in I$.
From (iii) of definition 2.1, we have

 $((x \to (x \to (x \to z)^*)^*)^* \to z)^* = ((x \to z)^* \to (x \to (x \to z)^*)^*)^*$

Thus, we have $(x \to z)^* \in I$.

Proposition 3.1.6. Let I be a non-empty subset of lattice H-Wajsberg algebra A. If I is an implicative WI-ideal of A, then I is a positive implicative WI-ideal of A.

Proof. Let *I* be an implicative *WI*-ideal of lattice *H*-Wajsberg algebra *A*,

Then, we have $(y \rightarrow (z \rightarrow y)^*)^* \in I$

Thus, we get $(y \to (z \to y)^*)^* = ((z \to y) \to y^*)^* = ((y^* \to z^*) \to y^*)^* = (y^*)^*$

Since, *A* is a *H*-Wajsberg algebra, we get $y = (y \rightarrow (z \rightarrow y)^*)^* \in I$.

Proposition 3.1.7. Let *M* and *N* be two *WI*-ideals of lattice Wajsberg algebra *A* with $M \subseteq N$. If *M* is a positive implicative *WI*-ideal of *A* then so is *N*.

Proof. Let $(x \to (y \to x)^*)^* \in N$. Take $r = (x \to (y \to x)^*)^*$, $X = (x \to r)^*$ and Y = x.

Then,

$$(Y \to X)^* = (x \to (x \to r)^*)^*$$

= $(x \to (x \to (x \to (y \to x)^*)^*)^*)^*$
= $((x \to (y \to x)^*)^*)^* = r^*$

Therefore, $(Y \rightarrow X)^* = r^*$

So,
$$(X \to (Y \to X)^*)^* = ((x \to r)^* \to r^*)^*$$

= $(r \to (x \to r))^*$
= $(x \to (r \to r))^*$
 $(X \to (Y \to X)^*)^* = 0 \in M$

and so $x \in M$ by *M* is a positive implicative *WI*-ideal of *A*.

Since $M \subseteq N$, $(x \to r)^* = X \in N$, $r \in N$ implies that $x \in N$. Thus, N is a positive implicative WI-ideal of A.

3.2. Associative WI-ideals of Lattice Wajsberg algebras

Definition 3.2.1. A subset I of A is said to be an associative WI-ideal of A with respect to x, where x is a fixed element of A, if it satisfies following condition,

$$(1) \qquad 0 \in I$$

(ii) $(y \to x)^* \in I \text{ and } ((z \to y)^* \to x)^* \in I \text{ imply } z \in I \text{ for all } x, y, z \in A \text{ and } x \neq 1.$

An associative WI-ideal with respect to 1 is whole algebra A. An associative WI-ideal with respect to 0 coincides with WI-ideal.

Example 3.2.2. Let $A = \{0, l, m, n, 1\}$ be a partial ordering set as in figure 3.2. Define " \rightarrow " and "*" on A as in table 3.3 and table 3.4.

Here, $(A, \land, \lor, *, 0, 1)$ is a lattice Wajsberg algebra. It is easy to verify that, $I_3 = \{0, m, n\}$ is an associative *WI*-ideal of lattice Wajsberg algebra *A*.

Proposition 3.2.3. Every associative *WI*-ideal with respect to *x* contains *x* itself. **Proof.** Let *I* be an associative *WI*-ideal of *A*.

If x = 0 then $(y \to 0)^* \in I$ and $((z \to y)^* \to 0)^* \in I$ imply $z \in I$.

So $y \in I$ and $(z \to y)^* \in I$ imply $z \in I$.

Hence, we have *I* is a *WI*-ideal of *A* that contain 0. If x = 1 then I = A. If $x \neq 0, 1$, take y = 0 and z = x then $((x \rightarrow 0)^* \rightarrow x)^* = 0 \in I$ and $(0 \rightarrow x)^* = 0 \in I$ imply $x \in I$.

Proposition 3.2.4. Every associative WI-ideal is a WI-ideal of lattice Wajsberg algebra A.

Proof. If $y \in I$ and $(x \to y)^* \in I$ then $(y \to 0)^* \in I$ and $(x \to y)^* \to 0)^* \in I$. Since *I* is an associative *WI*-ideal of *A* then $x \in I$.

Proposition 3.2.5. Let *I* be a *WI*-ideal of *A*. *I* is an associative *WI*-ideal if and only if $(((z \rightarrow y)^* \rightarrow x)^*) \in I$ implies $((z \rightarrow (y \rightarrow x)^*)^*) \in I$.

Proof. If
$$(((z \to y)^* \to x)^*) \in I$$
 and $((y \to x)^*) \in I$ then $((z \to (y \to x)^*)^*) \in I$ and $((y \to x)^*) \in I$
Since *I* is a *WI*-ideal of *A*, then $z \in I$. Conversely, Let $(((z \to y)^* \to x)^*) \in I$ then
 $((((z \to (y \to x)^*)^* \to (z \to y)^*)^* \to x)^*) = ((((z \to (y \to x)^*)^* \to x) \to (z \to y)^*)^*)$
 $= (((((z \to x)^* \to (y \to x)^*)^* \to (z \to y)^*)^*)$

$$=1^{*} = 0 \in I$$

Hence, $((((z \to (y \to x)^{*})^{*} \to (z \to y)^{*})^{*} \to x)^{*}) \in I$ (3.2.1)
equation (3.2.1) comes from $(z \to y) \leq (y \to x) \to (z \to x)$
Which implies $(((z \to x)^{*} \to (y \to x)^{*})^{*}) \leq ((z \to y)^{*})$
From our assumption that, $(((z \to y)^{*} \to x)^{*}) \in I$ and I is an associative WI -ideal.
Thus, we have $((z \to (y \to x)^{*})^{*}) \in I$.

Proposition 3.2.6. Let I be a WI-ideal of A. I is an associative WI-ideal if and only if $((y \rightarrow x)^* \rightarrow x)^* \in I$ implies $y \in I$. **Proof.** If $((y \to x)^* \to x)^* \in I$ then $((y \to (x \to x)^*)^* \in I$. So, $((y \to 0)^* = y \in I$. Conversely, $\left(\left(\left(z \to (v \to x)^*\right)^* \to x\right)^* \to x\right)^* \to \left(\left(z \to v\right)^* \to x\right)^*\right)^*$ $=(((((z \to (v \to x)^{*})^{*} \to x)^{*} \to x)^{*} \to ((z \to v)^{*} \to x)^{*})^{*} \to 0)^{*}$ $=(((((z \to (y \to x)^{*})^{*} \to x)^{*} \to x)^{*} \to ((z \to y)^{*} \to x)^{*})^{*} \to (((z \to x)^{*} \to (y \to x)^{*})^{*} \to (z \to y)^{*})^{*})^{*}$ (3.2.2) $=(((((z \to (y \to x)^{*})^{*} \to x)^{*} \to x)^{*} \to ((z \to y)^{*} \to x)^{*})^{*} \to (((z \to (y \to x)^{*})^{*} \to x)^{*} \to (z \to y)^{*})^{*})^{*})^{*}$ $=(((((z \to (y \to x)^{*})^{*} \to x)^{*} \to x)^{*} \to (((z \to (y \to x)^{*})^{*} \to x)^{*} \to ((z \to y)^{*})^{*})^{*} \to ((z \to y)^{*} \to x)^{*})^{*})^{*}$ $\leq \left(\left(\left(z \to y\right)^* \to z\right)^* \to \left(\left(z \to y\right)^* \to z\right)^*\right)^* = 0$ Hence, $((((z \to (y \to x)^*)^* \to x)^* \to x)^* \to ((z \to y)^* \to x)^*)^* \in I$, $((((z \to (y \to x)^*)^* \to x)^* \to x)^* \in I)^* \to X^*$ From the given condition, we have $((y \rightarrow x)^* \rightarrow x)^* \in I$. From proposition 3.2.4, we have *I* is an associative *WI*-ideal. Equation (3.2.2) comes from $(z \rightarrow y) \leq (y \rightarrow x) \rightarrow (z \rightarrow x)$ so $((z \rightarrow x)^* \rightarrow (y \rightarrow x)^*)^* \leq (z \rightarrow y)^*$ $\left(\left(\left(z \to x\right)^* \to \left(y \to x\right)^*\right)^* \to \left(z \to y\right)^*\right) = 0$ and that, the inequality in (3.2.2)from $(x \to y) \le (z \to x) \to (z \to y)$ then $((z \to y)^* \to (z \to x)^*)^* \le (x \to y)^*$.

4. Conclusion

In this paper, we have introduced the notions of positive implicative *WI*-ideal and associative *WI*-ideal of lattice Wajsberg algebras. We have investigated some of their properties. Also, we have analyzed the relationship of positive implicative *WI*-ideal with implicative *WI*-ideal and *WI*-ideal, and hence an associative *WI*-ideal with *WI*-ideal. Moreover, we provide the condition equivalent for both positive implicative *WI*-ideal and associative *WI*-ideal.

References

- [1] Font, J. M., Rodriguez, A. J., and Torrens, A., *Wajsberg algebras*, STOCHASTICA, Volume 8, Number 1 (1984), 5-31.
- [2] Ibrahim, A., and Shajitha Begum, C., *On WI-Ideals of lattice Wajsberg algebras*, Global Journal of Pure and Applied Mathematics, Volume 13, Number 10 (2017), 7237-7254.
- [3] Ibrahim, A., and Shajitha Begum, C., *Fuzzy and Normal Fuzzy WI-Ideals of Lattice Wajsberg Algebras*, International Journal of Mathematical Archive, Volume 8, Number 11 (2017), 122-130.
- [4] Ibrahim, A., and Shajitha Begum, C., *Intuitionistic Fuzzy WI-Ideals of Lattice Wajsberg Algebras*, International Journal of Fuzzy Mathematical Archive, Volume 15, Number 1 (2018), 7-17.

- [5] Ibrahim, A., and Shajitha Begum, C., *Properties of Annihilators in Lattice Wajsberg Algebras*, Journal of Advances in Mathematics and Computer Science, Volume 26, Number 1(2018), 1-11.
- [6] Ibrahim, A., and Shajitha Begum, C., *Ideals and implicative WI-ideals of Lattice Wajsberg Algebras*, IPASJ International Journal of Computer Science, Volume 6, Issue 4 (2018), 30-38.
- [7] Ibrahim, A., and Shajitha Begum, C., *Fuzzy Implicative WI-ideals of Lattice Wajsberg Algebras*, Journal of Computer and Mathematical Science, Volume 9, Number 8 (2018), 1026-1035.
- [8] Ibrahim, A., and Shajitha Begum, C., Characterizations of Implicative and Fuzzy Implicative WI-ideals of Lattice Wajsberg Algebras, Journal of Applied Science and Computations, Volume 5, Issue 9 (2018), 672-683.
- [9] Ibrahim, A., and Shajitha Begum, C., *Anti fuzzy WI-ideals of Lattice Wajsberg Algebras*, International Journal of Research in Advent Technology, Volume 6, Issue 11 (2018), 2957-2960.
- [10] Ibrahim, A., and Shajitha Begum, C., *Intuitionistic Anti fuzzy WI-ideals of Lattice Wajsberg Algebras*, International Journal of Research and Analytical Reviews, Volume 5, Issue 4 (2018), 364-370.
- [11] Komari, Y., *The Separation Theorem of the* ℵ₀*-valued Łukasiewicz Propositional logic*, Reports of Faculty of Science, Shizuoka University 12 (1978), 1-5.
- [12] Komari, Y., Super-Łukasiewicz Propositional Logics, Nagoya Math. J. 84 (1981), 119-133.
- [13] Wajsberg, M., Beitragezum Metaaussagenkalkul l, Monat. Math. phys. 42 (1935), 221-242.