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1. Introduction

Wajsberg algebras are formulated in terms of the operations “implication” and "quasi complement"
Wajsberg algebra concept was first proposed by Mordchaj Wajsberg [13] in 1935, and analyzed by
Font, Rodriguez, and Torrens [1] in 1984, but they were also considered earlier by Komari [11,12]
under the name of CN algebras, they were the model of No-valued Lukasiewicz logic too. Font,
Rodriguez and Torrens [1] introduced a lattice structure of Wajsberg algebra. The authors [2]
introduced the notion of WIi-ideal of lattice Wajsberg algebra and discussed some related properties.
Further, the authors [3,4,5,6,7,8,9,10] introduced the notions of fuzzy WIi-ideal, normal fuzzy WI-
ideal, intuitionistic fuzzy WI-ideal, annihilator, implicative WIl-ideal, fuzzy implicative WI-ideal, anti
fuzzy Wi-ideal, intuitionistic anti fuzzy WI-ideal of lattice Wajsberg algebra and also investigated
their properties with suitable illustrations.
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In this paper, we introduce the notions of positive implicative WI-ideal and associative
WiI-ideal of lattice Wajsberg algebras. Further, we investigate some of their properties. Also, we prove
that every positive implicative WI-ideal is an implicative WI-ideal, and hence a WIi-ideal, and that
every associative WI-ideal is a WI-ideal. Moreover, we provide the condition equivalent for both
positive implicative WI-ideal and associative WI-ideal.

2. Preliminaries
In this section, we recall some basic definitions and their properties that are useful to develop our main
results.

Definition 2.1 [1]. Let (A, —, *, 1) be an algebra with binary operation * — *and a quasi complement
“*” is said to be Wajsberg algebra if it satisfies the following axioms for all x,y,z e A

Q) 1> x=x;

(i) (X=>Y)>y=(y—>Xx) —>X;
(iii) x=>yY)>(y—>2)—>(x—>2)=1;
(iv) (x* - y*)—>(y—>x):1.

Proposition 2.2 [1].A Wajsberg algebra (A, —, *, 1) satisfies the following axioms for all x,y,ze A,

0] X—>x=1;

(i) If (x>y)=(y—>x)=1thenx=y;
(iii) If (x—>y)=(y—>2z)=1thenx—>z=1;
(iv) (x> (y—>x)=1;

) X=>y)>(z->x)>(2->y) =1,
(vi) x—>1=1;

(vii) X=>(y—>2)=y—>(x—>2);

(viii) x—>0=x—-1"=x";

(ix) ") =x;

(X) x>y )=y->x.

Definition 2.3 [1]. A Wajsberg algebra (A, —, *, 1) is called a lattice Wajsberg algebra if it satisfies
the following conditions for all x,ye A,

(i) The partial ordering ‘<’ on a lattice Wajsberg algebra A, such thatx<y if and only if
X—>y=1;

(i) XAy = (" > y) >y

(i) xXvy)=(x—>y)—>Vy.

Note. From Definition 2.3 an algebra (A, v, A, *, 0, 1) is a lattice Wajsberg algebra with lower
bound 0 and upper bound 1.

Proposition 2.4 [1]. A lattice Wajsberg algebra (A, v, A, *, 0, 1) satisfies the following axioms for
all x,y,zeA,

(i) If x<ythen x—>z>y—>zand z—>x<z-vy;
(i) x<y—z ifandonlyif y<x—z;
(i) XAY)vzi=(Xxv)a(yvi);

(iv) xvy) =" Ay");
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(v) xvy)—=>z=xx—>2)A(y—>2);

(vi) X=>(yv)=(XX—=>y)v(x—>12);
(vii) x=>y)v(y—>x)=1;

(viii) X=>(yv)=(X—=>y)v(x—2);
(ix) XAY) > z=X—>2)Vv(y—>12);
) (XAy)vz=(xvz)a(yvz);

(xi) xXAy)vz=(Xv)a(yvi).

Definition 2.5 [1]. Let A be a lattice. An ideal | of A is a non empty subset of A is said to be a lattice
ideal if it satisfies the following axioms,

0] xel,yeAandy<x imply yelforall x,yel;

(i) x,yel implies xvyelforall x,yel.

Definition 2.6 [2]. The lattice Wajsberg algebra A is said to be lattice H-Wajsberg algebra, if
xvyv((xay)—z)=1 for all x,y,ze A. In a lattice H-Wajsberg algebra A the following conditions

hold,
0] X=>(y=>2)=(x>Yy)>xX—>12);
(i) X=>(X—=>Yy)=(Xx—>Y).

Definition 2.7 [2]. Let A be a lattice Wajsberg algebra. Let I be a nonempty subset of A. Then, | is
said to be WI-ideal of lattice Wajsberg algebra A satisfies,
(i) Oel;

(i) (x> y)eland yel implyxel forall x,yeA.
Definition 2.8 [6]. Let | be a non-empty subset of lattice Wajsherg algebra A. Then, | is called an

implicative WI-ideal of A, if it satisfies the following conditions,
(i) Oel;

(i) (x> y)" >N eland (y>2)" el imply (x> 2)* el forallx,y,zeA.

3. Main Results
3.1. Positive Implicative WI-ideals of Lattice Wajsberg algebras
Definition 3.1.1. A non-empty subset | of a lattice Wajsberg algebra A is called a positive implicative

WiI-ideal of A if it satisfies the following,
0] Oel;

(i) (y>@z->y)) >x" el and xel imply yelforall x,y,zeA.

Example 3.1.2. Let A={0, p,q, r,s,t, 1}be a partial ordering set as given in figure 3.1. Define a
binary operation ‘ — *and a quasi complement “*’ on A as in tables 3.1 and 3.2.
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Figure 3.1 Table 3.1 Table 3.2
Lattice Diagram Complement Implication

Define * A’and “ v "operations on A as follows,

XAy = (" >y =y,

(xvy)=(x—>y)—>yforall x,yeA.

Then, (A, v, A, * 0, 1) is a lattice Wajsberg algebra. It is easy to check that, 1; ={0, r,s}is a positive
implicative WI-ideal of lattice Wajsherg algebra A. But, 1, ={0, p, s}is not a positive implicative

WI-ideal of A. Since, (p—(s— p)*) =0 =qel,.
Proposition 3.1.3. Let | be a non-empty subset of A. If | is a positive implicative WI-ideal of A, then |

is a WI-ideal of A.
Proof. Let | be a positive implicative Wi-ideal of A then from the definition 3.1.1 we have 0e | and

replace X=y and z=xforall x,y,zeA in (ii) of definition 3.1.1, (x> (x> x)")" > y)") el and
yelimply xel forall x,y,ze A

(x>0 >y)Yelandyelimply xel forall x,y,ze A
(x> y))elandyelimply xelforall x,y,ze A
Thus, | isa WI-ideal of A.m

Proposition 3.1.4. Let | be a Wi-ideal of A. Then | is a positive implicative WI-ideal of A if and only

if (x—(y—x)")" el implies xel forall x,yeA.
Proof. Let | be a positive implicative WI-ideal of A and let x=0,y=x2z=y in

((y>z->y)) >x) ) eland xelimply yel then, we have ((x— (y > x)")* >0 el and 0el
imply x e |, which implies that, (x — (y = x)*)*) e I implies x| .

Conversely, since | is a Wl-ideal of A, (y - (z —> y)*)*) e | .Thus, we havey e | .m

Proposition 3.1.5. Let | be a non-empty subset of lattice Wajsberg algebra A. If | is a positive

implicative WI-ideal of A, then it is an implicative WIl-ideal of A.
Proof. Let | be a positive implicative WIl-ideal of A.

We need to prove: | is an implicative Wl-ideal of A. Let((x > y)* >z")eland (y—>2)*el. Itis
enough to show that (x > z)" eI .
Here, (x> y)" - 2)" =" > (x> y))*

=(x> (> y)* [From (vii) of proposition 2.2]
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=(x> (' >2)" [From (x) of proposition 2.2]
=y > (x> 2)" [From (vii) of proposition 2.2]
=(x>2)" >y [From(x) of proposition 2.2]
Therefore, (x> y) > 2)" =(x—>2)" > y)*
We prove that, (x > 2)* > y<((y > 2) > (x> 2)" > 2)
then(y>2) > (x> 2)" 5 2) < (x> 2)" > y)*
(x> > > (y->2)) <(x>2)" >y
Since ((x>2)" > y) ). (y>2)"el,wehave (x> 2)" > 2)" el.
Also,
(x>2)" 52" =((x>2)">0)" >2)"
=(x=>2)" > (0->2")" 2"
=(x> )" > (x> X" > )" >2)° [From (i) of proposition 2.2]

=(x>2)" > (x> )" >0 > 2)"
From (iii) of definition 2.1, we have
(x> (x> x> 5" =(x>2)" > (x> (x> 2)))*

Thus, we have (x > 2)* e | .m

Proposition 3.1.6. Let | be a non-empty subset of lattice H-Wajsberg algebra A. If | is an implicative
WI-ideal of A, then I is a positive implicative WI-ideal of A.
Proof. Let | be an implicative WI-ideal of lattice H-Wajsberg algebra A,

Then, we have (y - (z > y)") el
Thus, we get(y > (- )") = (2> y) > y) = (Y > ) > y) =)
Since, A is a H-Wajsberg algebra, we get y=(y > (z—>y)")" el.m

Proposition 3.1.7. Let M and N be two WI-ideals of lattice Wajsberg algebra A with M c N . If M is
a positive implicative WI-ideal of A then so is N.

Proof. Let (x> (y > x)") eN.Take r=(x > (y>x)")*, X =(x>nr)* and Y = x.
Then, Y 5 X)) =(x> (x> )"

= (x> (x> (x> (y >0’

= (x> (y>%")")
Therefore, (Y - X)* =r*

So, (X >X))'=((x>n">rH*

:r*

=(r->x-rn)*
=(x>(r—>r)"
(X > (Y > X)) =0eM
and so x e M by M is a positive implicative WIl-ideal of A.

Since McN,(x— r)* =XeN, reN implies that xeN. Thus, N is a positive implicative
WI-ideal of A.m
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3.2. Associative WIl-ideals of Lattice Wajsberg algebras

Definition 3.2.1. A subset | of A is said to be an associative WI-ideal of A with respect to x, where X is
a fixed element of A, if it satisfies following condition,
0] Oel

(i) (yox)eland(z—y) > x)" el imply zelforall x,y,ze Aandx=1.

An associative WI-ideal with respect to 1 is whole algebra A. An associative WI-ideal with respect to 0
coincides with WI-ideal.

Example 3.2.2. Let A={0, 1, m, n,1}be a partial ordering set as in figure 3.2. Define “—” and
“*”0on A as in table 3.3 and table 3.4.

x | X =101l |m|n|1
! o |1]1[1]1]1
0|1
®n | Il |[n{1]21|1/1
n
om m i min|1|1]1
‘ mim
/ n I'fmj1]1]|1
nil
®0 1 (0|1l |{m|n|1
110
Figure 3.2 Table 3.3 Table 3.4
Lattice Diagram Complement Implication

Here, (A, A, v, * 0, 1) is a lattice Wajsherg algebra. It is easy to verify that, I3 ={0, m,n} is an
associative WIl-ideal of lattice Wajsberg algebra A.

Proposition 3.2.3. Every associative WI-ideal with respect to x contains x itself.
Proof. Let I be an associative WI-ideal of A.

If x=0then(y —>0)*eland (z—y) >0 elimply zel.

Soyeland (z—>y) elimply zel.
Hence, we have | is a Wl-ideal of A that contain 0. If X=1then 1 = A. If Xx#0,1, take y=0 and z=x

then (x> 0)* 5> x)* =(x—>x)"=0el and (0> x)* =0elimply xel.m

Proposition 3.2.4. Every associative WI-ideal is a WI-ideal of lattice Wajsberg algebra A.

Proof. If yeland (x—>y) el then (y—>0)*eland(x—y)* >0)*el. Since | is an associative
WI-ideal of Athen xel . m

Proposition 3.2.5. Let | be a Wi-ideal of A. | is an associative WI-ideal if and only if
(z—>y) > x)*) el implies (z— (y—>x)))el.

Proof. If (z—y)" > x)") el and (y - x)*) el then((z— (y > x)")")eland (y—>x)*) el

Since | is a Wl-ideal of A, then z € | .Conversely, Let (((z— y)* - x)") el then

(> (>0 > @>0) >0 =((E> >0 >x)->@->))

=((z>x) > (y=>x) > 2>y
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=1"=0¢€l
Hence, ((z—> (y=> X)) 5> z-> y)) >0 el (3.2.1)
equation (3.2.1) comes from (z > y)<(y > X) > (2 > X)

Which implies (z —» x)* = (y > x)™)") <((z > y)")
From our assumption that, (((z— y)* — x)*) el and | is an associative WI-ideal.

Thus, we have (z > (y > x)")*) el .m

Proposition 3.2.6. Let | be a WI-ideal of A. | is an associative WI-ideal if and only if
((y>x)" > x)" elimplies yel.
Proof. If (y—>x)* > x)* el then (y> (x—>x)*)"el.S0, (y=>0" =yel.
Conversely, (z— (y = X)) > x" 5 x)* > (2> y)* > x")"
= (> (Y>>0 >0 >0 > (2> >x) >0
=((z> (Y>>0 >0 50" > (2> >0) > (250" > (->X)) > -y
(3.2.2)
= (> (Y>>0 >0 >0 > (>N >0) > (2> (Y>0) 50" > @-> )
=((2> (Y>>0 >0 50" > (2> (Y>0) > > @Z->9)) > (> >0
<>y >0 > (2> >x) =0
Hence, (z—> (Y= X)) 25X 5 x) > (2> y) >0 el, (Z>(Y->x)) 5% >x" el
From the given condition, we have ((y - x)* > x)" el .
From proposition 3.2.4, we have | is an associative WI-ideal.
Equation (3.2.2) comes from (z > y)<(y = X) > (2> X) 50 (z—> X" > (y> X)) <@z->y)"
that, (z->x) " >@G->x) " >@@->y))=0 and the inequality in (3.2.2) from

x> Y)<@Z->X)>@E->y) then (oY) > EZ>X) ' <x>y) .=

4, Conclusion

In this paper, we have introduced the notions of positive implicative WI-ideal and associative
WI-ideal of lattice Wajsberg algebras. We have investigated some of their properties. Also, we have
analyzed the relationship of positive implicative WIl-ideal with implicative WI-ideal and WI-ideal, and
hence an associative WI-ideal with WI-ideal. Moreover, we provide the condition equivalent for both
positive implicative WI-ideal and associative WI-ideal.
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