

ON CONTRA PRE- ρ **-CONTINUITY AND CONTRA SEMI-** ρ **-CONTINUITY WHERE** $\rho \in \{L, M, R, S\}$

Dr.M.PRIYADARSHINI

Department of Mathematics, Raja Doraisingam Government Arts College,

Sivagangai, INDIA.Email-id:priyadarshinim156@gmail.com

Abstract: In1996, Dontchev introduced contra-continuous functions. In 2013, R.Selvi and and P.Thangavelu are introduced contra-p-continuity where $\rho \in \{L,M,R,S\}$. In 2015, R.Selvi and M.Priyadarshini are introduced pre-p-continuity and semi-p-continuity betweena topological space and a non-empty set where $\rho \in \{L,M,R,S\}$. The purpose of this paper is to introduce the concepts of contra prep-continuity and contra semi-p-continuity between a topological space and a nonempty set.

Keywords:Contra pre-p-continuity, Contra semi-p-continuity, pre-open, pre-closed, semi-open, semi-closed, multi-functions, saturated set, continuity.

AMSSubjectClassification:32A12,54C05,54C60,26E25

1.Introduction

Any function $f:X \to Y$ induces a multi function $f^{-1} \circ f: X \to \mathscr{P}(X)$. It is also induces another multi function $f^{-1} \circ f: Y \to \mathscr{P}(Y)$ provided f is surjective. The purpose of this paper is to introduce the notions of Contra pre- ρ continuity and Contra semi- ρ -continuity where $\rho \in \{L,M,R,S\}$ of a function $f:(X,\tau) \to (Y,\sigma)$ between a topological space and a non-empty set. Navpreetsingh Noorie and Rajni Bala [8] introduced the concept of $f^{\#}$ function to characterize the closed, open and continuous functions. The authors [12] characterized continuity by using $f^{\#}$ functions. In analog way Contra pre- ρ -continuity and Contra semi- ρ -continuity are characterized in this paper.

2.Preliminaries

In this chapter we list some basic definitions and results that are needed to develop the thesis.

Definition 2.1

Let A be a subset of a topological space X. Then A is called

(i) Semi-open [5] if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A))\subseteq A$;

(ii) Pre-open[6] if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$.

Definition 2.2

Let $f:(x,\tau) \rightarrow Y$ be a function. Then f is

- (i) L-continuous if $f^{-1}(f(A))$ is open in X for every open set A in X. [11]
- (ii) M-continuous if $f^{-1}(f(A))$ is closed in X for every closed set A in X.[11]

Definition 2.3

Let $f:X \rightarrow (Y,\sigma)$ be a function. Then f is

- (i) R-continuous if $f(f^{-1}(B))$ is open in Y for every openset B in Y. [11]
- (ii) S-continuous if $f(f^{-1}(B))$ is closed in Y for every closed set B in Y. [11]

Definition 2.4

Let $f:X \rightarrow Y$ be any map and E be any subset of X. Then the following hold. (i) $f^{\#}(E) = \{y \in Y: f^{-1}(y) \subseteq E\}; (ii)E^{\#} = f^{-1}(f^{\#}(E)).$ [8]

Lemma 2.5

Let E be a subset of X and f:X \rightarrow Y be a function. Then the following hold. (i)f[#](E)=Y\f(X\E);(ii)f(E)=Y\f[#](X\E). [8]

Lemma 2.6

Let E be a subset of X and f:X \rightarrow Y be a function. Then the following hold. (i) $f^{-1}(f^{\#}(E))=X \setminus f^{-1}(f(X \setminus E));$ (ii) $f^{-1}(f(E))=X \setminus f^{-1}(f^{\#}(X \setminus E)).$ [12]

Lemma 2.7

Let E be a subset of X and f:X \rightarrow Y be a function.Then the following hold. (i) $f^{\#}(f^{-1}(E))=Y\setminus f(f^{-1}(Y\setminus E));$ (ii) $f(f^{-1}(E))=Y\setminus f^{\#}(f^{-1}(Y\setminus E)).$ [12]

Definition 2.8

Let $f: X \to Y$, $A \subseteq X$ and $B \subseteq Y$. Then we say that A is f-saturated, if $f^{-1}(f(A)) \subseteq A$ and B is f^{-1} -saturated if $f(f^{-1}(B)) \supseteq B$. Equivalently A is f-saturated if and only if $f^{-1}(f(A)) = A$, and B is f^{-1} -saturated if and only if $f(f^{-1}(B)) = B$. [11]

Definition 2.9

Let $f:(X,\tau)\to(Y,\sigma)$ be a function. Then f is pre-continuous if $f^{-1}(B)$ is pre-open in X for every openset B in Y. [6]

Definition 2.10

- (i) Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function. Then f is pre-open if f(A) is pre-open in Y for every pre-open set A in X. [6]
- (ii) Let $f:(X,\tau) \to (Y,\sigma)$ be a function. Then f is pre-closed if f(A) is pre-closed in Y for every pre-closed set A in X. [6]

Definition 2.11

Let $f:(X,\tau) \to (Y,\sigma)$ be a function. Then f is semi-continuous if $f^{-1}(B)$ is semi-open in X for every open set B in Y. [5].

Definition 2.12

- (i) Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function. Then f is semi-open if f(A) is semi-open in Y for every semi-open set A in X.[5]
- (ii) Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function. Then f is semi-closed if f(A) is semi-closed in Y for every semi-closed set A in X.[5]

Definition 2.13

Let $f:(X,\tau) \rightarrow Y$ be a function. Then f is[13]

- (i) Contra L-continuous if $f^{-1}(f(A))$ is open in (X,τ) for every closed set A in (X,τ) .
- (ii) Contra M-continuous if $f^{-1}(f(A))$ is closed in(X, τ) for every open set A in (X, τ).

Definition 2.14

Let $f:X \rightarrow (Y,\sigma)$ be a function. Then f is [13]

- (i) Contra R-continuous if $f(f^{-1}(B))$ is open in (Y,σ) for every closed set B in (Y,σ) .
- (ii) Contra S-continuous if $f(f^{-1}(B))$ is closed in (Y,σ) for every open set B in (Y,σ) .

Definition 2.15

Let $f:(X,\tau) \rightarrow Y$ be a function. Then f is [9]

- (i) pre-L-continuous if $f^{-1}(f(A))$ is pre-open in (X,τ) for every open set A in (X,τ) .
- (ii) semi-L-continuous if $f^{-1}(f(A))$ is semi-open in (X,τ) for every opens et A in (X,τ) .
- (iii) pre-M-continuous if $f^{-1}(f(A))$ is pre-closed in (X,τ) for every closed set A in (X,τ) .
- (iv) semi-M-continuous if $f^{-1}(f(A))$ is semi-closed in (X,τ) for every closed set A in (X,τ) .

Definition 2.16

Let $f:X \rightarrow (Y,\sigma)$ be a function. Then f is [9]

- (i) pre-R-continuous if $f(f^{-1}(B))$ is pre-open in (Y,σ) for every open set B in (Y,σ) .
- (ii) semi-R-continuous if $f(f^{-1}(B))$ is semi-open in (Y,σ) for every open set B in (Y,σ) .
- (iii) pre-S-continuous if $f(f^{-1}(B))$ is pre-closed in (Y,σ) for every closed set B in (Y,σ) .
- (iv) semi-S-continuous if $f(f^{-1}(B))$ is semi-closed in (Y,σ) for every closed set B in (Y,σ) .

3. Contra pre- ρ -continuity and contra semi - ρ -continuity where $\rho \in \{L,M,R,S\}$

Definition 3.1

Let $f:(X,\tau) \rightarrow Y$ be a function. Then f is

- (i) Contra pre-L-continuous if $f^{-1}(f(A))$ is pre-open in (X,τ) for every closed set A in (X,τ) .
- (ii) Contra semi-L-continuous if $f^{-1}(f(A))$ is semi-open in (X,τ) for every closed set A in (X,τ) .
- (iii) Contra pre-M-continuous if $f^{-1}(f(A))$ is pre-closed in (X,τ) for every open set A in (X,τ) .
- (iv) Contra semi-M-continuous if $f^{-1}(f(A))$ is semi-closed in (X,τ) for every open set A in (X,τ) .

Definition 3.2

Let $f:X \rightarrow (Y,\sigma)$ be a function. Then f is

- (i) Contra pre-R-continuous if $f(f^{-1}(B))$ is pre-open in (Y,σ) for every closed set B in (Y,σ) .
- (ii) Contra semi-R-continuous if $f(f^{-1}(B))$ is semi-openin(Y, σ) for every closed set B in (Y, σ).
- (iii) Contra pre-S-continuous if $f(f^{-1}(B))$ is pre-closed in (Y,σ) for every open set B in (Y,σ) .
- (iv) Contra semi-S-continuous if $f(f^{-1}(B))$ is semi-closed in (Y,σ) for every open set B in (Y,σ) .

Example 3.3

Let X={a,b,c} and Y={1,2,3}. Let $\tau = {\Phi,X,{a},{b},{a,c}}.$ Let f:(X, τ) \rightarrow Y defined by f(a)=1, f(b)=2, f(c)=1.Then f is both Contra pre-p-continuous and Contra semi-p-continuous where $\rho \in {L,M}$.

Example 3.4

Let X={a,b,c} and Y={1,2,3,4}. Let $\tau = \{\Phi, X, \{a\}, \{a,b\}\}\$ and $\sigma = \{\Phi, Y, \{1\}, \{2\}, \{1,3,4\}\}$. Let g:X \rightarrow (Y, σ) defined by g(a)=2, g(b)=2 and g(c)=2. Then g is both Contra pre- ρ -continuous and Contra Semi- ρ -continuous where $\rho \in \{R,S\}$.

Definition 3.5

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function. Then f is

- (i) Contra pre-LR-continuous, if it is both Contra pre-L-continuous and Contra pre-R-continuous.
- (ii) Contra pre-LS-continuous, if it is both Contra pre-L-continuous and Contra pre-Scontinuous.
- (iii) Contra pre-MR-continuous, if it is both Contra pre-M-continuous and Contra pre-R-continuous.
- (iv) Contra pre-MS-continuous, if it is both Contra pre-M-continuous and Contra pre-Scontinuous.
- (v) Contra semi-LR-continuous, if it is both Contra semi-L-continuous and Contra semi-R-continuous.
- (vi) Contra semi-LS-continuous, if it is both Contra semi-L-continuous and Contra semi-Scontinuous.
- (vii) Contra semi-MR-continuous, if it is both Contra semi-M-continuous and Contra semi-R-continuous.
- (viii) Contra semi-MS-continuous, if it is both Contra semi-M-continuous and Contra semi-Scontinuous.

We now characterize the contra ρ -continuity defined above by using the concept of open, closed and continuous functions.

Theorem 3.6

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be open and contra continuous. Then *f* is both Contra pre-MR- continuous and Contra semi-MR-continuous.

Proof: Let $A \subseteq X$ be open in X. Since f is open, f(A) is open in Y. Again since f is contra continuous, $f^{-1}(f(A))$ is closed in X. Since every closed set is both pre-closed and semi-closed, $f^{-1}(f(A))$ is both pre-closed and semi-closed. This proves f is Contra pre-M-continuous and Contra semi-M-continuous.

Now let B be aclosed subset of Y. Since f is contra continuous, $f^{-1}(B)$ is open in X. Since f is open, $f(f^{-1}(B))$ is open in Y. Since every open set is both pre-open and semi-open, $f(f^{-1}(B))$ is both pre-open and semi-open. This proves f is both Contra pre-R-continuous and Contra semi-R-continuous. This shows that f is both Contra pre-MR-continuous and Contra semi-MR-continuous.

Theorem 3.7

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be closed and contra continuous. Then f is both Contra pre-LS- continuous and Contra semi-LS-continuous.

Proof: Let $A \subseteq X$ be closed in X. Since *f* is closed, *f*(A) is closed in Y. Again since *f* is contra continuous $f^{-1}(f(A))$ is open in X. Since every open set is both pre-open and semi-open, $f^{-1}(f(A))$ is both pre-open and semi-open. This proves f is Contra pre-L-continuous and Contra semi-L-continuous.

Now let B be an open subset of Y. Since f is contra continuous, $f^{-1}(B)$ is closed in X and since f is closed $f(f^{-1}(B))$ is closed in Y. Since every closed set is both pre-closed and semi-closed, $f(f^{-1}(B))$ is both pre-closed and semi-closed. This proves f is Contra pre-S-continuous and Contra semi – S-continuous. This shows that f is both Contra pre-LS-continuous and Contra semi – LS-continuous.

Corollary 3.8

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be open, closed and contra continuous. Then *f* is both Contra pre- ρ continuous and Contra Semi- ρ -continuous where $\rho \in \{L,M,R,S\}$.

Proof: Follows from Theorem 3.6 and Theorem 3.7.

Theorem 3.9

Let $g: Y \rightarrow Z$ and $f: X \rightarrow Y$ be any two functions. Then the following hold.

- (i) Let *f* be closed and continuous. If g is contra L-continuous then $g \circ f: X \to Z$ is both Contra pre-L-continuous and Contra semi-L-continuous;
- (ii) Let *f* be open and continuous. If g is contra M-continuous the $g \circ f: X \to Z$ is both Contra pre-M-continuous and Contra semi-M-continuous;
- (iii) Let *f* be open, closed and continuous. If g is contra LM-continuous then $g \circ f: X \to Z$ is both Contra pre-LM-continuous and Contra semi-LM-continuous;
- (iv) Let g be open and continuous. If f is contra R-continuous then $g \circ f: X \to Z$ is both Contra pre-R-continuous and Contra semi-R-continuous.
- (v) Let g be closed and continuous. If f is contra S-continuous then $g \circ f: X \to Z$ is both Contra pre-S-continuous and Contra semi-S-continuous;
- (vi) Let g beopen, closed and continuous. If f is contra RS-continuous then $g \circ f: X \to Z$ is both Contra pre-RS-continuous and Contra semi-RS-continuous.

Proof: Suppose g is contra L-continuous. Let *f* be closed and continuous. Let A be closed in X. Then $(g^{\circ} f)^{-1}(g^{\circ} f)(A) = f^{-1}(g^{-1}(g(f(A))))$. Since *f* is closed, *f*(A) is closed in Y. Since g is contra L-continuous, $g^{-1}(g(f(A)))$ is open in Y. Since *f* is continuous, $f^{-1}(g^{-1}(g(f(A))))$ is open in X. Since every open set is both pre-open and semi-open, $f^{-1}(g^{-1}(g(f(A))))$ is both pre-open and semi-open. Therefore, $g^{\circ}f$ is Contra pre-L-continuous and Contra semi-L- continuous. This proves(i).

Suppose g is contra M continuous. Let f be open and continuous. Let A be open in X. Since f is open, f(A) is open in Y. Since g is contraM-continuous, $g^{-1}(g(f(A)))$ is closed in Y. Since f is continuous, $f^{-1}(g^{-1}(g(f(A))))$ is closed in X. Since every closed set is both pre- closed and semi-closed,

 $f^{1}(g^{-1}(g(f(A))))$ is both pre-closed and semi-closed. Therefore, g $\circ f$ is Contra pre-M-continuous and Contra semi-M-continuous. This proves (ii). (iii) follows from (i) and (ii)

Let $f:X \to Y$ be contra R-continuous and $g:Y \to Z$ be open and continuous. Let B be closed in Z. Then $(g^{\circ}f)(g^{\circ}f)^{-1}(B)=(g^{\circ}f)(f^{-1}g^{-1}(B))=g(f(f^{-1}(g^{-1}(B))))$. Since g is continuous, $g^{-1}(B)$ is closed in Y. Since f is contraR-continuous, $ff^{-1}(g^{-1}(B))$ is open in Y. Since g is open, $g(f(f^{-1}(g^{-1}(B))))$ is open in Z. Since every open set is both pre-open and semi- open, $g(f(f^{-1}(g^{-1}(B))))$ is both pre-open and semi-open. Therefore, $g^{\circ}f$ is both Contra pre-R- continuous and Contra semi-R-continuous. This proves (iv).Let $f:X \to Y$ be contra S-continuous and $g:Y \to Z$ be closed and continuous. Let B be open in Z. Since g is continuous, $g^{-1}(B)$ is open in Y. Since f is contra S-continuous, $ff^{-1}(g^{-1}(B))$ is closed in Y. Since g is closed, $g(f(f^{-1}(g^{-1}(B))))$ is closed in Z. Since every closed set is both pre-closed and semi-closed, $g(f(f^{-1}(g^{-1}(B))))$ is both pre-closed and semi-closed. Therefore, $g^{\circ}f$ is Contra pre-S-continuous and Contra semi-S-continuous. This proves (v).(vi) follows from (iv) and (v).

Theorem 3.10

Let $f:(X,\tau) \rightarrow Y$ be a function and A be a subset of X. Then the following hold.

- (i) If $f:(X,\tau) \rightarrow Y$ is contra M-continuous and if A is an open subspace of X then the restriction of f to A is both contra pre-M-continuous and contra semi-M- continuous.
- (ii) If $f:(X,\tau) \rightarrow Y$ is contra L-continuous and if A is a closed subspace of X then the restriction of f to A is both contra pre-L-continuous and contra semi-L-continuous
- (iii) If $f:(X,\tau) \rightarrow Y$ is contra LM-continuous and if A is a clopen subspace of then the restriction of f to A is both contra pre-LM-continuous and contra semi-LM- continuous.

Proof: Suppose $f:(X,\tau) \rightarrow Y$ is contra M-continuous and if A is an open subspace of X. Let $h=f|_A$. Then $h=f^\circ j$ where *j* is the inclusion map *j*:A \rightarrow X. Since A is open, *j* is open and continuous. Since $f:X\rightarrow Y$ is contraM-continuous, using Theorem3.9(ii), *h* is both contra pre-M-continuous and contra semi-M-continuous. This proves

(i) Let f:(X,τ)→Y be contra L-continuous and if A be a closed subspace of X. Since A is closed, j is closed and continuous. Since f:(X,τ)→Y is contra L-continuous, using Theorem3.9 (i), h is both contra pre-L-continuous and contra semi-L-continuous. This proves (ii). (iii) follows from (i) and (ii).

Theorem 3.11

Let $f:X \to (Y,\sigma)$ be a function $f(X) \subseteq Z \subseteq Y$. Suppose $h:X \to Z$ is defined by h(x)=f(x) for all $x \in X$. Then the following hold.

- (i) If $f: X \to (Y, \sigma)$ is contra R-continuous and f(X) be open in Z, then *h* is both contra pre-R-continuous and contra semi-R-continuous.
- (ii) If $f:X \rightarrow (Y,\sigma)$ is contra S-continuous and f(X) is closed in Z, then *h* is both contra pre-S-continuousandcontrasemi-S-continuous.
- (iii) If $f: X \rightarrow (Y, \sigma)$ is contra RS-continuous and f(X) is clopen in Z, then *h* is both contra pre-RS-continuous and contra semi-RS-continuous.

Proof: By the Definition of h,we see that $h=j^{\circ}f$ where $j:f(X) \rightarrow Z$ is an inclusion map. Suppose $f:X \rightarrow (Y,\sigma)$ is contra R-continuous and f(X) is open in Z, that implies the inclusion map *j* is both open and continuous. Then by applying Theorem3.9 (iv), *h* is both contra pre-R-continuous and contra semi-R-continuous. This proves (i).

Suppose $f:X \rightarrow (Y,\sigma)$ is contra S-continuous and f(X) is closed in Z. Since f(X) is closed in Z, the inclusion map *j* is closed and continuous. Then by applying Theorem3.9(v), *h* is both contra pre-S-continuous and contra semi-S-continuous. This proves (ii).(iii) follows from (i) and (ii).

4. Pasting Lemma

We establish the pasting Lemmas for contra pre-R-continuous, contra pre-S- continuous, contra semi-R-continuous and contra semi-S-continuous functions.

Theorem 4.1

Let X=AUB. Let $f:A\to(Y,\sigma)$ and $g:B\to(Y,\sigma)$ be contra R-continuous (resp.contraScontinuous) functions. If f(x)=g(x) for every $x\in A\cap B$, function $h:X\to Y$ defined by $h(x) = \begin{cases} f(x), & x \in A \text{ is contra pre-R-continuous}(resp.contrapre-S-continuous}). \\ g(x), & x \in B \end{cases}$

Proof: Let C be a open(resp.closed) set inY. Therefore,

$$h \circ h^{-1}(C) = h(f^{-1}(C) \cup g^{-1}(C))$$

= h(f^{-1}(C)) \cup h(g^{-1}(C))
= f(f^{-1}(C)) \cup g(g^{-1}(C))

Since *f* is contra R-continuous(resp.contra S-continuous), $f(f^{-1}(C))$ is open (resp.closed) in Y and since *g* is contra R-continuous (resp.contra S-continuous), $g(g^{-1}(C))$ is open (resp.closed) in Y. Therefore, $h^{\circ}h^{-1}(C)$ is also open (resp.closed) in Y. Since every open set is pre-open (every closed set is pre-closed), $h^{\circ}h^{-1}(C)$ is also pre-open (resp.pre-closed) in Y. This shows that *h* is contra pre-R-continuous (resp.contra pre-S-continuous).

Theorem 4.2

Let X=AUB. Let $f:A \to (Y,\sigma)$ and $g:B \to (Y,\sigma)$ be contra R-continuous (resp. contraScontinuous) functions. If f(x)=g(x) for every $x \in A \cap B$, function $h:X \to Y$ defined by $h(x) = \begin{cases} f(x), x \in A \text{ is contra semi-R-continuous (resp. contra semi-S-continuous).} \\ g(x), x \in B \end{cases}$

Proof: Let C be a open (resp.closed)set in Y.Therefore,

$$h \circ h^{-1}(C) = h(f^{-1}(C) \cup g^{-1}(C))$$

= h(f^{-1}(C)) \cup h(g^{-1}(C))
= f(f^{-1}(C)) \cup g(g^{-1}(C))

Since f is contra R-continuous(resp.contra S-continuous), $f(f^{-1}(C))$ is open (resp.closed) in Y and since g is contra R-continuous (resp.contra S-continuous), $g(g^{-1}(C))$ is open (resp.closed) in Y. Therefore $h^{\circ}h^{-1}(C)$ is also open (resp.closed) in Y. Since every open set is semi-open (every closed set is semi-closed), $h^{\circ}h^{-1}(C)$ is also semi-open (resp.semi-closed) in Y. This shows that h is contra semi-R-continuous(resp.contra semi-S-continuous).

5. Characterizations

In this section we characterize contrap-continuity and almost contrap-continuity functions by the hash functions $f^{\#}$ of $f: X \rightarrow Y$.

Theorem5.1

The function $f:(X,\tau) \to Y$ is contra pre-L-continuous (contra semi-L-continuous) if and only if $f^{-1}(f^{\#}(G))$ is pre-closed (semi-closed) in X for every open subset G of X.

Proof:

Suppose *f* is contra pre-L-continuous (contrasemi-L-continuous). Let G be open in X. Then A=X\G is closed in X. By Lemma 2.6 (i) $\int f^1(f^{\#}(G)) = X \int f^1(f(A))$. Since *f* is contra pre-L-continuous (contra semi-L-continuous) and since A is closed in X, $f^{-1}(f(A))$ is pre-open (semi-open) in X. Hence $f^{-1}(f^{\#}(G))$ is pre-closed (semi-closed) in X. Conversely assume that $f^{-1}(f^{\#}(G))$ is pre-closed (semi-closed) in X. By Lemma 2.6

(ii), $f^{-1}(f(A)) = X \setminus f^{-1}(f^{\#}(G))$ where G=X\A. By our assumption, $f^{-1}(f^{\#}(G))$ is pre-closed (semi closed) and hence $f^{-1}(f(A))$ is pre-open (semi-open) in X. Therefore *f* is contra pre-L-continuous (contra semi-L-continuous).

Theorem 5.2

The function $f:(X,\tau) \rightarrow Y$ is contra pre-M-continuous (contra semi-M-continuous) if and only if $f^{-1}(f^{\#}(A))$ is pre-open (semi-open) in X for every closed subset A of X.

Proof: Suppose *f* is contra pre-M-continuous (contra semi-M-continuous). Let A be closed in X. Then G=X\A is open in X. By Lemma2.6 (i), $f^{-1}(f^{\#}(A))=X\setminus f^{-1}(f(G))$. Since f is contra pre-M-continuous (contra semi-M-continuous) and since G is open in X, $f^{-1}(f(G))$ is pre-closed (semi-closed) in X. Hence $f^{-1}(f^{\#}(A))$ is pre-open (semi-open) in X. Conversely assume that $f^{-1}(f^{\#}(A))$ is pre-open (semi-open) in X. Conversely assume that $f^{-1}(f^{\#}(A))$ is pre-open (semi-open) in X for every closed subset A of X. Let G be open in X. By Lemma 2.6 (ii), $f^{-1}(f(G))=X\setminus f^{-1}(f^{\#}(A))$ where A=X\G. By our assumption, $f^{-1}(f^{\#}(A))$ is pre-open (semi-open) and hence $f^{-1}(f(G))$ is pre-closed (semi-closed) in X. Therefore *f* is contra pre-M-continuous(contra semi-M-continuous).

Theorem 5.3

The function $f: X \to (Y, \sigma)$ is contra pre-R-continuous (contra semi-R-continuous) if and only if $f^{\#}(f^{-1}(G))$ is pre-closed (semi-closed) in Y for every open subset G of Y.

Proof: Suppose *f* is contra pre-R-continuous(contra semi-R-continuous). Let G be open in Y. Then A=Y\G is closed in Y. By Lemma 2.7(i), $f^{\#}(f^{-1}(G))=Y\setminus f(f^{-1}(A))$. Since *f* is contra pre-R-continuous (contrasemi-R-continuous) and since A is closed in Y, $f(f^{-1}(A))$ is pre-open (semi-open) in Y. Hence $f^{\#}(f^{-1}(G))$ is pre-closed (semi-closed) in Y.Conversely assume that $f^{\#}(f^{-1}(G))$ is pre-closed (semi-closed) in Y.Conversely assume that $f^{\#}(f^{-1}(G))$ is pre-closed (semi-closed) in Y for every open subset G of Y. Let A be closed in Y. By Lemma 2.7(ii), $f(f^{-1}(A))=Y\setminus f^{\#}(f^{-1}(G))$ where G=Y\A.B your assumption, $f^{\#}(f^{-1}(G))$ is pre-closed (semi-closed) and hence $f(f^{-1}(A))$ is pre-open (semi-open) in Y. Therefore *f* is contrapre-R-continuous(contra semi-R-continuous).

Theorem5.4

The function $f:X \to (Y,\sigma)$ is contra pre-S-continuous (contra semi-S-continuous) if and only if $f^{\#}(f^{-1}(A))$ is pre-open (semi-open) in Y for every closed subset A of Y.

Proof: Suppose f is contra pre-S-continuous (contrasemi-S-continuous). Let A be closed in Y. Then G=Y\A is open in Y. By Lemma2.7(i), $f^{\#}(f^{-1}(A))=X \setminus f(f^{-1}(G))$. Since f is contra pre-S-continuous (contrasemi-S-continuous) and since G is open in Y, $ff^{-1}(G)$) is pre-closed (semi-closed) in Y. Hence $f^{\#}(f^{-1}(A))$ is pre-open (semi-open)in Y. Conversely assume that $f^{\#}(f^{-1}(A))$ is pre-open (semi-open) in Y for every closed subset A of Y.Let G be open in Y. By Lemma2.7 (ii), $f(f^{-1}(G))=X \setminus f^{\#}(f^{-1}(A))$ where A=Y\G. By our assumption, $f^{\#}(f^{-1}(A))$ is pre-open (semi-open) in Y and hence $f(f^{-1}(G))$ is pre-closed (semi-closed) in Y. Therefore f is contra pre-S-continuous (contra semi-S-continuous).

6. Conclution

In this paper the notions of Contra pre- ρ -continuous and Contra Semi- ρ -continuous where $\rho \in \{L,M,R,S\}$ of a function $f:X \rightarrow Y$ between a topological space and a non empty set are introduced. Here we discuss their links with pre-open (semi-open), pre-closed (semi-closed) sets. Also we establishpasting lemmas for Contra pre- ρ -continuous and Contra Semi- ρ -continuous where $\rho \in \{R,S\}$ functions and obtain some characterizations for, Contrapre- ρ - continuous and ContraSemi- ρ -continuous where $\rho \in \{R,S\}$. We have put forward some examples to illustrate our notions.

References

- [1] Abdel Monsef M.E., Studies on some pre-topological concepts, Ph.D. Thesis Tanta University, Egypt, 1980.
- [2] AbdelMonsef M.EandNasefA.A., OnMultifunctions, *Chaos, Solitons and Fractals* 12(13)(2001), 2387-2394.
- [3] Carlos J.R.Borges., A study of Multi Valued Functions, *Pacific Journal of Mathematics*, 23(3)(1967), 451-461.
- [4] DontchevJ., Contra Continuous functions and strongly S-closed spaces, *International J.Math.&Math.Sci.*19(2)(1996),303-310.
- [5] LevineNorman.,(January1963)Semi-Opensets and Semi-Continuity in Topological Spaces, American Mathematical Monthly,Vol.70,No1, PP:36-41.
- [6] MashhourA.S, AbdM.E, Monsef.E.I and Deeb.S.N.,(1982), On Pre-Continuous and Weak Pre Continuous mappings, Proceedings of the Mathematicaland Physical Societyof Egypt53,PP:47-53.
- [7] N.Levine,(1970),GeneralizedclosedsetsinTopology,Rend.Circ.Math.Palermo(2)19, PP:89-96.
- [8] Navpreet singh, Noorie and RajniBala, (2008), Some Characterizations of open, closed and continuous Mappings, International Journal Mathematics & Mathematical Sciences, Article ID527106, Volume-2008, 5pages.
- [9] SelviR., Priyadarshini M,(April2017) Onpre-ρ-Continuity and semi-ρ-Continuity between a Topological space and a non-emptyset, whereρ∈{L,M,R,S},Ph.D.Thesis, Manonmaniam Sundaranar University ,India.
- [10] S.Kenecrossley S.K.Hildebr and(1972), semi-topological properties. Fund.Math.74. PP:233-254.
- [11] SelviR., ThangaveluP., and AnithaM., (2010) ρ -Continuity Between a Topological space and a Non Empty Set, where $\rho \in \{L, M, R, S\}$, International Journal of Mathematical Sciences, 9(12), PP:97-104.

- [12] ThangaveluP.,SelviR (January–June2012) On Characterization of ρ -Continuity where $\rho \in \{L,M,R,S\}$, International journal of applied mathematical analys is and applications, Volume7, PP:153-159.
- [13] ThangaveluP.,SelviR (September6,2013) On Contra ρ Continuity and Almost Contra ρ Continuity where $\rho \in \{L,M,R,S\}$, International journal of Pure and Applied mathematics, Volume87, PP:817-825.
- [14] T.R.Hamlett.(1976), semi-continuous and irresolute functions, Texas Journalof science, vol.27.
- [15] Travis Thompson,(October1977) Semi-Continuous and irresolute Images of S-closed spaces, Proceeding of the American Mathematical Society, Volume66, Number2, PP:359-362.