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Abstract: In this paper, mathematical model pertaining to the dynamic behaviour of urea 
biosensor in non- linear zone at weak inhibition  is discussed. This model is based  on the 
system of non-linear reaction diffusion equations containing a nonlinear term related to the 
Michaelis-Menten kinetics. In this paper Homotopy analysis method is applied to solve the 
non-linear reaction diffusion equations in urea biosensor. A simple and closed-form of 
analytical expression for concentrations of substrate,inhibitor and  product have been derived 
for all possible values of parameters . Furthermore, in this work, the numerical simulation of 
the problem is also reported using Scilab/MATLAB program. An agreement between 
analytical and numerical results is noted. 
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selective electrode;Mchaelis–Mentenkinetics;System of non-linear reaction diffusion 
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1. Introduction 
A biosensor is an analytical device that detects a chemical substance, that combines a biological 
component with a physicochemical detector. An ion-selectiveelectrode (ISE), is  a sensor that 
converts the activity of a specific ion dissolved in a solution into an electrical potential.The biosensor 
system described depends on the property of the enzyme urease,an enzyme  to be inhibited non-
competitively in the presence of fluoride ions and urea. D.Katsakoset al.developed  theoretical 
problems of an inhibitor urea biosensor with immobilized urease and base ion-selective electrode for 
fluoride ions. The basic differential equations describing the behavior of the inhibitor system was 
presented.[1] N.Stoilova et al.conducted Spectrometric measurements and determined the basic 
kinetic parameters of the immobilized system [2]. 
A dynamic quality's value at one time instant depends on its values at previous time instant The 
mathematical modeling of dynamic measurements typically utilizes methodologies and concepts 
from digital signal processing. S.Stoianov et al  discussed the  Dynamic behavior of homogeneous 
biosensor system for urea measuring by ion-selective electrode (ISE) for fluoride ions.[3].Quasi-
Stationary Process is a process that spreads within the system so rapidly that in the time required for 
it to expand to the limits of the system, its state does not have adequate time to change. It is often 
used in biosensor design because the basic transducer has its own inertia and as a rule the interesting 
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zone of the transient process is out of the range of non-stationary behavior. Tz.Georgiev et al 
described the transient processes of biosensor system at homogeneous conditions by a system of 
ordinary non-linear differential equations. 
                     To our knowledge no rigorous analytical solutions for the current co-ordinates 
substrate, inhibitor and product have been reported. In general, an analytical result is more 
stimulating and beneficial than the results of numerical simulation as they are amenable to various 
kinds of manipulation, optimization of parameter and data analysis. In this paper, we have derived an 
approximate analytical expressions for the current co-ordinates using Homotopy analysis method [5–
10] and q homotopy analysis method [11-13].HAM contains a certain auxiliary parameter h , which 
provides us with a simple way to adjust and control the convergence region and rate of convergence 
of the series solution.Theq -HAM contains an auxiliary parameter n as well as  h.q-HAM gives more 
chances of convergence compare to the usual HAM due to the presence of fraction factor associated 
with the solution. The new simple and closed-form of our approximate analytical expressionsof 
current co-ordinates givessatisfactory agreement with the numerical results 
 
 
2.Mathematical formulation of the problem 
 
Transient processes of biosensor system at homogeneous conditions are described by the following  
system of ordinary non-linear differential equations: 
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where substrate [S], inhibitor [I], product [P] are the current co-ordinates ,δ  is the current distance 

and 
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Here mV  is the maximum rate of the enzyme reaction without inhibition , 2φ is Thiele modulus,

IS DD ,  and PD  are diffusion coefficients respect to the substrate, inhibitor and product in the 
active membrane and IS KK ,  are  Michaelis–Menten constants of the substrate and the inhibitor. 
Under  the assumption that the diffusion coefficients respect to the substrate, inhibitor and product in 
the active membrane are equal, the  ratio between the constants of Michaelis for substrate and 
product is equal to unit, the transient processes in the inhibitory biosensor with ISE for fluoride ions 
is described by the following system of differential equations respect to the variable x  and non-
dimensional time t : 
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where Ir +=1  
The initial and boundary conditions are  

,0=t 0,1,0 === PIS  
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,0=x 0,0,0 ===
dx
dP

dx
dI

dx
dS  

,1=x 0,1,1 === PIS   (7)      
 
3.General analytical expressions of concentration of substrate, inhibitor andproduct under 
steady state  condition using Homotopy analysis method 
 Nonlinear phenomena appear in such broad scientific fields like applied mathematics, 
physics, and chemical engineering. Scientists in those disciplines face, constantly, with the task of 
finding solutions for nonlinear partial differential equations. As a matter of fact, the possibility of 
finding exact analytical solutions for those cases is very difficult. Liao proposed a new method in 
1992, namely the Homotopy analysis method (HAM) to solve the linear andnon-linear differential 
equations. The main aim is to overcome the foregoing restrictions and limitations techniques, so that, 
it is a powerful tool to analyze strongly nonlinear problems. The HAM yields a very rapid 
convergence of the solution series in most cases, usually only a few iterations leading to very 
accurate solutions. In this paper, Homotopy  analysis method  and q-Homotopy  analysis method  are 
applied to solve the non-linear differential eqns. (4) - (6) under steady state. Using this method, the 
approximate analyticalexpressions for the dimensionless concentration of the substrate,inhibitorand 
product for steady state conditions are obtained as follows (AppendixA) 
Under steady state condition  eqns. (4) - (6). become  
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where Ir +=1 . 
Using Homotopy Analysis Method (HAM) the approximate analytical solutions for the non-linear 
differential eqns. (8) - (10) are as follows: 
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Using  q-Homotopy Analysis Method (q-HAM) the approximate analytical solutions for the  
non-linear differential eqns. (8) - (10) are as follows: 



 

 

` 

353 
 

2

2
0

24

2)2(0
25

24

2)2(2
0

35
24

2)2(3
0

35
24

0
2)2(2

0
35

2

22
0

2

2

2

12

422
0

22
00

2
0

2
0

2

2

122
0

0)(

φφφρφφ

φ
φφρφφφφ

nhSShShShISh

xnhS

xxhShSIhSShxhS
SxS

+++++

−













−





 +++

+





 −

−=

          (14)     

2

2
0

24

2)2(0
25

24

2)2(2
0

35
24

22)2(3
0

35
24

0
2)2(2

0
35

2

22
0

2

2

2

12

422
0

22
00

2
0

2
0

2

2

122
0

0)(

ρφρφρφρφφρ

ρφ
φφρφφρφρφ

nhSShShShISh

xnhS

xxhShSIhSShxhS
IxI

+++++

−













−





 +++

+





 −

−=  (15)     

2

2
0

24

2)2(0
25

24

2)2(0
35

24

2)2(2
0

35
24

0
2)2(0

35

2

22
0

2

2

2

12

4222
00

22
0

2

2

122
0

)(

φφφρφφ

φ
φφρφφφφ

nhSShShShISh

xnhS

xxhhSIhShxhS
xP

−−−−−

+













−





 +++

−





 −

=   (16) 

where 0S and 0I  the initial concentrations of substrate and inhibitor respectively. 
 
4.General analytical expressions of concentration of substrate ,inhibitor  and product under 
non-steady state condition using Homotopy Analysis Method and Laplace transform technique 
Using Homotopy Analysis Method and Laplace transform method, the  approximate analytical 
expressions of non-steady-state concentrations of substrate ,inhibitor and product (Appendix B) can 
be obtained as follows: 
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where 
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k φ  

 
 
4.1 Limiting cases 
 case 1 : 1<<S and 1<<rS  (very low measuringurea concentrations with low inhibition) 
  The substrate equation (8) is linearized  and  reduce to form: 
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 The exact solution of the eqn.(20)  is 
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case:2: 1>>S  or 01 ≈S  (saturating substrateconcentrations). 
 The inhibitor equation (9) is transformed in the way: 
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5.Numerical simulation 
 In order to investigate the accuracy of the HAM  solution with a finite number of terms, the 
system ofdifferential eqns.(4)-(6)and eqns.(8)-(10) was solved numerically. Toshow the efficiency of 
the present method, our results arecompared with numerical results graphically. The functionpdex4 
(Euler’s method) in Matlab software which is afunction of solving the boundary value problems is 
used tosolve eqns.(4)-(6)and eqns.(8)-(10) numerically. 
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Fig.1:Plots of dimensionless concentration of substrate )(xS  versus dimensionless distance x for  

various values of parameter 2φ andfor the fixed value of the parameter 01.0=ρ using eqn.11. The 
key to the plot: (•••) represents eqn.11 and (—) represents numerical simulation 

 

 

 
 
Fig.2: Plots of dimensionless concentration of inhibitor )(xI  versus dimensionless distance x for  
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various values of parameter ρ  when (a) 01.02 =φ   (b) 1.02 =φ (c) 12 =φ using eqn.12. The key to 
the plot: (•••) represents eqn.12 and (—) represents numerical simulation 
 

 

 

 
 
Fig.3: Plots of dimensionless concentration of inhibitor )(xI  versus dimensionless distance x 

forvarious values of parameter 2φ when (a) 01.0=ρ   (b) 1.0=ρ (c)  1=ρ using eqn.12. The key to 
the plot: (•••) represents eqn.12 and (—) represents numerical simulation 
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Fig.4: Plots of dimensionless concentration of product )(xP  versus dimensionless distance x for  

various values of parameter 2φ when (a) 01.0=ρ (b) 1.0=ρ (c) 1=ρ using eqn.13. The key to the 
plot: (•••) represents eqn.13 and (—) represents numerical simulation 

 
Fig.5: Plots of dimensionless concentration of substrate )(xS  versus dimensionless distance x for  

various values of parameter 2φ andfor the fixed value of the parameter 01.0=ρ eqn.14. The key to 
the plot: (•••) represents eqn.14 and (—) represents numerical simulation 
 

 
Fig.6:Plots of dimensionless concentration of inhibitor )(xI  versus dimensionless distance x for  
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various values of parameter 2φ andfor the fixed value of the parameter 1.0=ρ using eqn.15. The 
key to the plot: (•••) represents eqn.15 and (—) represents numerical simulation 

 
Fig.7: Plots of dimensionless concentration of product )(xP  versus dimensionless distance x for 

 various values of parameter 2φ  andfor the fixed value of the parameter 1.0=ρ using eqn.16. The 
key to the plot: (•••) represents eqn.16 and (—) represents numerical simulation 

 
Fig.8: Plots of dimensionless concentration of substrate )(xS   for increased values of 2φ and for  
the measurement range 10 =S and for the fixed value of the parameter 1.0=ρ . 

 
Fig.9: Plots of dimensionless concentration of substrate )(xS   for small  values of 2φ and for the  
measurement range 10 =S and for the fixed value of the parameter 01.0=ρ .  
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 Fig.10:Plots of dimensionless substrate  concentration profile ),( txS  calculated using eqn.17. as a 

 function of dimensionless distance x . Profiles are presented for the values of the parameters 2φ and 

the dimensionless time parameter t  when (a) 01.02 =φ   (b)  1.02 =φ (c)  12 =φ . 
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(b) 
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Fig.11:Plots of dimensionless substrate  concentration profile ),( txS  calculated using eqn.17 as a  

function of dimensionless distance x . Profiles are presented for the values of the parameters 2φ and 
the dimensionless time parameter 5=t  

 
 

 
Fig.12:Plots of dimensionless inhibitor  concentration profile ),( txI  calculated using eqn.18 as a 
function of dimensionless distance x . Profiles are presented for the values of the parameters

1.0,1.02 == ρφ and the dimensionless time parameter t  

 

  
Fig13:Plots of dimensionless inhibitor concentration profile ),( txI  calculated using eqn.18 as a 
function of dimensionless distance x. Profiles are presented for the values of the  
parametersand the dimensionless time parameter 5=t  and 1.0=ρ  
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(a) 

 



 

 

` 

361 
 

 
 
 
Fig14:Plots of dimensionless product concentration profile ),( txP  calculated using eqn.19 as a  

function of dimensionless distance x . Profiles are presented for the value of the parameter 01.02 =φ
and the dimensionless time parameter t  

 
Fig15Plots of dimensionless product concentration profile ),( txP  calculated using eqn.19 as a  
function of dimensionless distance x . Profiles are presented for the values of the  
parameter 2φ and the dimensionless time parameter 5=t  and 1.0=ρ  
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(c) 

 
(b) 

 
(a) 

 
(c) 

 
 
 
 
 
 
 
 
 
Fig16: Plot of dimensionless  three dimensional  non  steady-state substrate concentrations S  

versus dimensionless distance x for various values of dimensionless time t  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
Fig 17:Plot of dimensionless  three dimensional  non  steady-state product  concentrations P  
versus dimensionless distance x for various values of dimensionless time t  
 
 
 
6. Results and  Discussions  
 
Eqns.(4)-(6) and eqns.(8)-(10) provide simple analytical expressions for the concentration of 
substrate, inhibitor and the product respectively in the terms of the kinetic parameters ρ  and 

2φ obtained using the Homotopy analysis methodTo show the efficiency of our  steady state 
andnon-steady-state results, it is compared with numerical solution. Satisfactory agreement is 
noted.  
 
In the Figs.1-7 our steady-state analytical results (eqns.(11)-(16)) are compared  with simulation 
program for various values of the kinetic parameters ρ  and .2φ In the Figs.10-15 our non -
steady-stateanalytical results (eqns.(17)-(19)) are compared with simulation program for various 
values of of the kinetic parameters ρ  and 2φ  
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The  dimensionless concentration of substrate )(xS  versus  dimensionless distance x  have been 

depicted in Fig.1. In Figs 1(a)- 1(b) the value of 2φ  is varied and it can be seen that )(xS

increases with decrease in 2φ . The changes observed in  dimensionless concentration of 
inhibitor )(xI  with respect to dimensionless distance x  when the values of kinetic parameter ρ
are varied is illustrated in Fig.2.In Figs 2(a)- 2(c) the graph depicts the variation of )(xI with ρ
and it is noted that both are inversely proportional. Fig.3is plotted  by plotting  dimensionless 
concentration of inhibitor )(xI  with respect to dimensionless distance x  by varying the value of  
 

2φ  and it can also be observed that the value of )(xI  increases with decrease in 2φ .Fig.4 
displays the plot of dimensionless concentration of product )(xP  with respect to dimensionless 
distance x   for various value of 2φ . It is inferred that both are inversely related. 
 
In Figs. 5–7the profiles of  dimensionless concentrations of substrate, inhibitor  and  product 
versus  dimensionless distance x have been depicted. InFigs.5,6 it is noted that dimensionless 
concentration of substrate )(xS  with respect to dimensionless distance x  by varying the value of 

2φ and dimensionless concentration of inhibitor )(xI  with respect to dimensionless distance x  

by varying the value of 2φ  are inversely proportional and substrate ),(xS  inhibitor )(xI reach the 

value 1 when .01.02 =φ  From Fig.7 it can also be observed that the value of )(xP  increases with 
increase in 2φ  
 
The  dimensionless concentration of substrate ),( txS  is showcased in fig.10 and it is analysed 
with various values of 2φ .In figs.10(a)-10(c) the plot is made by providing various values to 

2φ and it can be stated that ),( txS  increases with increase in the dimensionless time t. and it 
reaches the value 1 when and 01.0,3 2 == φt  and when and 1.0,2 2 == φt respectively. 
 
In fig.11 the value of 2φ is varied and it can be observed that ),( txS  value increases with 

decrease in 2φ  and reaches  the value 1 when .01.02 =φ  Fig.12 exhibits the concentration of 
inhibitor ),( txI when dimensionless time t  is varied, it can be seen that ),( txI  increases as t
decreases. Fig.13 displays the plot of ),( txI  for various values of 2φ and .ρ It is inferred that 
both are inversely proportional. The dimensionless concentration of product ),( txP versus  
dimensionless distance x  have been depicted in fig.14 and it can be observed that ),( txP  value 
increases with increase in dimensionless time .t Fig.15 depicts the variation of ),( txP with 2φ
and it is noted that both are inversely proportional. 
 
 
7. Conclusion 
 
The modeling of the urea  biosensor with the substrate inhibition is discussed.The analytical 
expressions for the concentration of substrate, inhibitor  and product under steady conditions are 
derived using HAM and q-HAM  method. The q-HAMyields a very rapid convergence of the 
solution series in most cases so that, it is apowerful tool to analyze strongly nonlinear problems. 
The analytical expressions for the concentration of substrate,inhibitor  and product under non- 
steady conditions are obtained by using the complex inversion formula.The numerical 
simulation is in excellent agreement with the analytically obtained results. The influence of 
Thiele modulus and Michaelis–Menten constant is also investigated. Theoretical results obtained 
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in this paper can also be used to analyze the effect of different parameters such as Thiele 
modulus and Michaelis–Menten constant. 
 
Appendix A: Approximate analytical solution for non-linear eqn.(11) using the HomotopyAnalysis 
method. 
        The given differential equation is of the form 
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In order to solve eqn.(A.1) construct the homotopy as follows 
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The approximate solution of Eqn.(A.2) is as follows 
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Substituting Eqn.(A.3) in Eqn.(A.2) and equating the like powers of p 

0)(: 2
0

2
0 =

dx

xSdp       (A.4)    

( )













−++=− 2

02
0

2
0002

0
2

2
1

2
1 )(1)()()()()(: φxS

dx

SdxSxIxSh
dx

xSd

dx
xSdp  (A.5) 

 

( )













−+++=− 2

02
1

2
101012

1
2

2
2

2
2 )()(1)()()()()()()(: φxS

dx
xSdxIxSxSxIxSh

dx
xSd

dx
xSdp (A.6) 

 
The boundary conditions are as follows:    .....3,2,1,0)1(;)1( 00 === iSSS i  

.....3,2,1,0)0(
== i

dx
dSi (A.7) 

Solving Eqns.(A.4),(A.5)and (A.6) and using the boundary conditions (A.7) we obtain the following 
solutions    
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Substituting eqn. (A.8) ,eqn. (A.9) and eqn.(A.10)in eqn. (A.3) and letting 1→p , we get )(xS  
which is eqn. (11) in the text. 
 
Appendix B: To illustrate the basic ideas of the q-homotopy analysis method (q-HAM), consider the 
nonlinear boundary value problem 
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where )(tu  defined over the region η  is the function to be solved under the boundary constraints in 
B defined over the boundary γ  of η . The q-homotopy analysis technique defines a homotopy 
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n
q   denotes the so-called embedded parameter 0≠h , is an auxiliary parameter, 

L is a suitable auxiliary linear operator, 0u is an initial approximation of equation (1) satisfying 
exactly the boundary conditions . It is obvious from equation (2) that 
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The solution of equation (2) exists as a power series in q. 
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The appreciate solutions of the coefficients )(tuk in (3) can be found from the homotopy 
deformation equations.Hence the approximate solution of equation (1) can be obtained as  
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and control the convergence region and rate of homotopy series solutions. 
 Approximate analytical solution for non-linear eqn.(14) using q- Homotopy Analysis 
method 
The given differential equation is of the form 
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In order to solve eqn.(14), construct the homotopy as follows

 
( ) 










−++=










− )()(1)()()()()1( 2

2

2

2

2
xS

dx
xSdxSxIxSqhn

dx
xSdnq φ

     (B.2) 

The approximate solution of eqn.(B.2) is as follows 
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Substituting eqn.(B.3) in eqn.(B.2) and equating the like powers of q 
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The boundary conditions are as follows:    .....3,2,1,0)1(;)1( 00 === iSSS i  

.....3,2,1,0)0(
== i

dx
dSi         (B.7) 

Solving Eqns.(B.4),(B.5)and (B.6) and using the boundary conditions (B.7) we obtain the following 
solutions     
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Substituting eqn. (B.8) , eqn. (B.9) and eqn.(B.10)in Eqn. (B.3) and letting 1→q , we get )(xS  
which is eqn. (14) in the text 
 
Appendix C: Approximate  analytical solution  of  the non- linear differential Equation (17) using 
Homotopy analysis method 
In this  appendix, we illustrate  the procedure for obtaining the approximate  analytical  solution of 
eqn.(17) using the boundary conditions. In order to solve eqn.(13) ,we construct the homptopy as 
follows: 

( )











−

∂
∂

−
∂

∂
=













∂
∂

−
∂

∂
− kS

t
S

x
Sph

t
S

x
Sp 2

2

2

2
1  (C.1) 

The approximate solution  of  eqn.(C1)  is 
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 Substituting eqn.(C.2) into an eqn.(C.1),  and  comparing the coefficients of like powers of p , we 
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The initial and boundary conditions in eqn.(7) become  
,0=t ,...4,3,2,01,1 1 ==−== iSSS io  

,0=x ,...3,2,1,0 == i
dx
dSi  

,1=x ,...4,3,2,1,,1 == iSi         (C.5) 
Now by applying  Laplace transform  to the  eqns. (C.3 )-(C.4) and to the  boundary conditions in 
eqn.(C.5) we obtained the solution of (C.1) as  
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Now, we indicate how eqn. (C.6) can be inverted using the complex inversion formula. If )(sy
represents the Laplace transform of a function )(τy , then according to the complex inversion 
formula we can state that 
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where the integration in eqn. (C.7) is to be performed along a line cs =  in the complex plane where 
iyxs +=  The real number c is chosen such that cs = c lies to the right of all the singularities, but is 

otherwise assumed to be arbitrary. In practice, the integral is evaluated by considering the contour 
integral presented on the right-hand side of eqn. (C.7), which is then evaluated using the so-called 
Bromwich contour. The contour integral is then evaluated using the residue theorem.[14]-[17] 
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In order to invert eqn.(C.6),we need to evaluate  
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The first residue in equation (C.8) is given by 
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The first residue in eqn. (C.11) is given by  
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The second  residue in eqn. (C.11) is given by 
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where    ( )
2
12 π+

=
nA  

From eqn.(C.10)-(C.14) we get ( )txS ,  which is eqn.(14) in the text. 
 
Appendix D:   Nomenclature  

Symbol Description 

S dimensionless concentration of substrate 

I dimensionless concentration of inhibitor 

P dimensionless concentration of product 

T Dimensionless time 
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2φ  Thiele modulus 

 
 
AppendixE: Matlab program to find numerical solutions of eqns.(4) - (6) 
function pdex1 
m=0; 
x = linspace(0,1); 
t = linspace(0,100); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
u3 = sol(:,:,3); 
figure 
plot(x,u1(end,:)) 
title('u1(x,t)') 
xlabel('distance x') 
ylabel('time t') 
 figure 
plot(x,u2(end,:)) 
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('u2(x,t)') 
xlabel('Distance x') 
ylabel('time') 
figure 
plot(x,u3(end,:)) 
title('u3(x,t)') 
xlabel('Distance x') 
ylabel('time') 
figure 
function [c,f,s] = pdex1pde(x,~,u,DuDx) 
c =[1;1;1];  
f =[1;1;1].*DuDx;  
z=.01;z1=.1; 
F=-(z*u(1))/(u(1)+u(1)*u(2)+1); 
F1=-(z*z1*u(1))/(u(1)+u(1)*u(2)+1); 
F2=(z*u(1))/(u(1)+u(1)*u(2)+1); 
s=[F;F1;F2]; 
 
% -------------------------------------------------------------- 
function u0 = pdex1ic(x)         
u0 =[0;1;0];  
% -------------------------------------------------------------- 
function [pl,ql,pr,qr]=pdex1bc(xl,~,xr,ur,t)                        
pl = [0;0;0];  
ql = [1;1;1];  
pr = [ur(1)-1;ur(2)-1;ur(3)-0];  
qr = [0;0;0]; 
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