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1.Preliminaries and Introduction

The concept of fuzzy set theory was introduced by L.A.Zadeh [6] .R.Lowen [4] defined the
fuzzy topology. The concept of soft set was initiated by Molodtsov [5]. Some structural
properties of fuzzy soft topological spaces was discussed in Ruth [2]. In this paper we
investigate the notion of minimal fuzzy soft open sets with respect to fuzzy soft ideals in
Lowen’s sense.Throughout this paper, X be an initial universe and E be the set of all
parameters for X, 1* is the set of all fuzzy sets on X. (where,I=[0,1] and for

AE[0,1],M(X)=A, for all XEX.)

The following definitions and theorems are in Ruth [2] which are needed for our study.

Definition 1.1 [1]. Let AC E.fa is called a fuzzy soft set on X, where f is a mapping from E into I*.
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i.e..f, 2f(e) 2 f4(e) is a fuzzy set on X for each e € A andf, = 0if e € A, where 0 is zero function on

X.fe for each e € E, is called an element of the fuzzy soft set fa.
FS(X,E) denotes the collection of all fuzzy soft sets on X and is called a fuzzy soft universe.lf
fo€FS(X,E) then we understand that D < E. In this paper to each parameter e€ E,f. is equivalent to

fe(x) for all x € X.

Definition 1.2 [1] For two fuzzy soft sets fa and gs on X, we say thatfa is a fuzzy soft subset of gs and

write fa=ggiffe <g., for each e € E.

Definition 1.3. [1] Two fuzzy soft sets fa and gs on X are called equal iffazgs and gsafa.

Defiition 1.4. [1]. Union of two fuzzy soft sets faand gs on X is the fuzzy soft set

hc = fallgs, where C = A U B and he = fovge, for each e€ E. That is, he = fov 0= f. for each e€A-B, he

=0 VQe = g for each eeB-A and he = fevge, for each e€A U B.

Definition 1.5. [1] Intersection of two fuzzy soft sets fa and gs on X isthe fuzzy soft set

hc = fange, where C = A N B and he = e A g, for each e€E.

Definition 1.6. [1] The complement of a fuzzy soft setfa is denoted by £, where f: E — IXis a

mapping given byf,c=1 - f,, for each e € E. Clearly (f§)°=fa.

Definition 1.7. [1] (Null fuzzy soft set) A fuzzy soft set fe on X is calleda null fuzzy soft set and
denoted by @ if f. =0, for each e € E.

Definition 1.8. [1] (Absolute fuzzy soft set) A fuzzy soft set fz on X iscalled an absolute fuzzy soft set
and denoted by £, iffe = 1, for each e € E. Clearly, (E)*=@ and p°=E .

Definition 1.9. [1] (A -absolute fuzzy soft set) A fuzzy soft set fe on X is called a A-absolute fuzzy soft
set and denoted by E?, if f= 1, for each e €E. Clearly, (E")°= E'*

In this paper we write E*ase.
Theorem 1.10. [1] Let A be an index set and fa, gs, he, (fa)i2 (fi)ai,

(g8)i= (gi)si€ FS(X,E), Vi€A, then we have the following properties:
(1) fanfa = fA, falfa = fa.
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(2) fangs = genfa, faligs = gaLifa.
(3) fall (gslihc) = (faligs) Uhc.

(4) fa=fani(falgs), fa = fall(fargs)
(5) faM (e (88)1) = (;ea(Far1(g5)1)
(6) fall(;c (88)1) = (e (fali(g5)1))
(7) p=faCE.

(8) (f4)° = fa.

(9) Gealfa))° = ;ep((FA))°

(10) (o, (FaN)° =, 0 ((FaN)°

(11) Iffa=gs, thengg=fy

Definition 1.11. (Fuzzy soft Ideal) [2] Let A, B € E. A non empty family 7€ FS(X,E) of fuzzysoft
sets is called fuzzy soft ideal on X if

i) fa€ 7, gg=fa implies that gge 7

ii) fa€ 7, gs€ J implies that fa Ligs€ J. (As Jis not empty @ € 7)

Definition 1.12. [2] Let C, D and P< E. A family T SFS(X,E) is called a fuzzy soft topology for X, if
it satisfies the following axioms.

i) For all A€ [0,1], Ac€x .

ii) fc, gp€et implies that fcrgoe t .

iii) If {fip}ieais an indexed subfamily of 1 , then i'élAfiPE T.
The pair (X, 1) is called a fuzzy soft topological space. The members of t are called fuzzy soft open

sets.

2.Minimal fuzzy soft open sets

Definition 2.1. Let (X,7) be a fuzzy soft topological space ,A€ (0,1] ,eq € E, f4 € T, where ACE such
that A < fy(eo), fa is called a local minimal fuzzy soft open set at ey,
W.r.t.)y, If 9gda € 7 and gA(eO)Z /1, then gA¢fA

Example 2.2. Let (X,7) be a fuzzy soft topological space with indiscrete fuzzy soft topology 7 in Ruth
[2]. Let ey € E then to each A€ (0,1] Az is a local minimal fuzzy soft open set at e,.

Definition 2.3. Let (X,7) be a fuzzy soft topological space with fuzzy soft ideal | on X ,e, € E andf, €
T such that f,(eo )# 0. Then fis called a7 — local minimal fuzzy soft open set at,e, if g, € T with

9a(eo) # 0 and g4 & fy then (fy(e) — (ga(€))eck €7
The set of all 7— localminimal fuzzy soft open set at eywill be denoted by min (X,7,7,e,).
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Definition 2.4. Let (X,7) be a fuzzy soft topological space with fuzzy soft ideal Jon X, A€ (0,1] ,e € E,
f4 € T where ACE such that 2 < f,(e).fais called 7— localminimal fuzzy soft open set at e,w.r.t.A,if

9a E fa.ga € T.andA < (ga(e)) then ( fa(e) — (ga(e))eer ) € 7.
The set of all 7 — localminimal fuzzy soft open sets at e ,w.r.t.A is denoted by min(X,z,7,e,, A).

Remarks: 1. Iffg € T then [fz]={gr EFSCX.E)/((Ifz — geD)eecE)E T5.
2. If fg,hg €min (X,7,9,60)= ((Ife — geDeer) €7, he E[fE]

Theorem 2.5. Let (X,7) be a fuzzy soft topological spacewith fuzzy soft ideal Jon X,f; € 7and e, € E
such that f(e,) # 0.Then f% is called 7— localminimal fuzzy soft open set at e, iff for each g € T with
g(eo)i 0, (lfe _gel)eEE)E J. _

Proof: Supposefz is aJ— local minimal fuzzy soft open set.Let g € 7 with g(eg)# 0. Then
gd(eg)Af(eg)# 0 . Asfy M gg E fE,and.fE. Mg € 7,(fA g)(ep)# 0,

we get: ((fe - (fe A ge))e € E)E J. This |mp“e5 that ((fe - ge)ee E) €J

Conversely, suppose gr E fr.g5 € T, 9(eo)# 0and ((f, — ge)ecr) € 7.
Then f is aJ— local minimal fuzzy soft open set.

Theorem 2.6. Let (X,7) be a fuzzy soft topological spacewith fuzzy soft idealJon X, fr € T
And e€ E.Then the following are equivalent.

i) min (X,7,7,e0)=[f¢]

i) for each A€ (0,1] with fz(eg)= 4 ,min(X,7,9,e0,M)=[f%].
Proof: (i)=(ii) Let g; € T with g(eg)= A, by above theorem ((f, — go)ec ) € 7 therefore
min(X,t,9,eq,M)=[f£]-
(ii)=(i) suppose for all L€ (0,1], A <f(e,) and min(X,z,7,e0,M)=[f5]. Let g, € T with g(eo) #
0.Therefore g(eo) = A > 0 for some 1 <f(ep). As min(X,t, 7,e4,0)=[fz],
((fe — ge)ece) € I.Thereforefz emin(X,z, 7,ey,1). Therefore min(X,z, 7,ey,A) € [f&]-

Theorem 2.7. Let Let (X,t) be a fuzzy soft topological spacewith fuzzy soft ideal7onX
f& € Tande, € E and A€ (0,1] withA < f(e,) .Then the following are equivalent.

i)min (X, 7, 7,e9,M)=[f%]
i)min (X, T 7,e0,p)=[fx] for anyp € (0,1] with B <f(e,),1 < B.
Proof (i)=(ii)
Let B=[f;] for any B € (0,1] with B <f(e,).1 < B.
Let gr € T with B <g(e,).Then 1 < B <g(e,) and so A <g(e,), therefore by (i),
it follows that ((f; — ge)ecr) € 7.
This implies that min (X, t, 7,e0,8)= [f&]-
Proof (itf)=(i)
(ii)=(i) is obvious.
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