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1.Preliminaries  and Introduction  

The concept of fuzzy set theory was introduced by L.A.Zadeh [6] .R.Lowen [4] defined the 
fuzzy topology. The concept of soft set was initiated by Molodtsov [5]. Some structural 
properties of fuzzy soft topological spaces was discussed in Ruth [2]. In this paper we 
investigate the notion of minimal fuzzy soft open sets with respect to fuzzy soft ideals in 
Lowen’s sense.Throughout this paper, X be an initial universe and E be the set of all 
parameters for X, IX is the set of all fuzzy sets on X. (where,I=[0,1] and for 
λ∈[0,1],λ̄(x)=λ, for all  x∈X.) 
 
The following definitions and theorems are in Ruth [2] which are needed for our study. 
 

Definition 1.1 [1]. Let A⊆ E.fA is called a fuzzy soft set on X, where f is a mapping from E into IX. 
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i.e.,𝑓𝑓𝑒𝑒 ≜f(e) ≜ 𝑓𝑓𝐴𝐴(e) is a fuzzy set on X for each e ∈ A and𝑓𝑓𝑒𝑒 = 0�if e ∉ A, where 0� is zero function on 

X.fe for each e ∈ E, is called an element of the fuzzy soft set fA. 

 

 FS(X,E) denotes the collection of all fuzzy soft sets on X and is called a fuzzy soft universe.If 

fD∈FS(X,E) then we understand that D ⊆ E. In this paper to each parameter e∈ E,fe is equivalent to 

fe(x) for all x ∈ X. 

 

Definition 1.2 [1] For two fuzzy soft sets fA and gB on X, we say thatfA is a fuzzy soft subset of gB and 

write fA⊑gBiffe ≤ge, for each e ∈ E. 

 

Definition 1.3. [1]  Two fuzzy soft sets fA and gB on X are called equal  iffA⊒gB and gB⊒fA. 

 

Defiition 1.4. [1]. Union of two fuzzy soft sets fA and gB on X is the fuzzy soft set  

hC = fA⊔gB, where C = A ∪ B and he = fe∨ge, for each e∈ E. That is, he = fe∨ 0�= fe for each e∈A-B, he 

=0� ∨ge = ge for each e∈B-A and he = fe∨ge, for each e∈A ∪ B. 

 

Definition 1.5. [1] Intersection of two fuzzy soft sets fA and gB on X isthe fuzzy soft set 

hC = fA⊓gB, where C = A ∩ B and he = fe ˄ ge, for each e∈E. 

 

Definition 1.6. [1] The complement of a fuzzy soft setfA is denoted by 𝑓𝑓𝐴𝐴𝑐𝑐, where fc : E  →  IX is a 

mapping given by𝑓𝑓𝑒𝑒𝑐𝑐= 1� - 𝑓𝑓𝑒𝑒, for each e ∈ E. Clearly (𝑓𝑓𝐴𝐴𝑐𝑐)c=fA. 

 

Definition 1.7. [1] (Null fuzzy soft set) A fuzzy soft set fE on X is calleda null fuzzy soft set and 

denoted by ∅ if fe =0�, for each e ∈ E. 

 

Definition 1.8. [1] (Absolute fuzzy soft set) A fuzzy soft set fE on X iscalled an absolute fuzzy soft set 

and denoted by 𝐸𝐸�  , iffe = 1�, for each e ∈ E. Clearly, (𝐸𝐸�)c = ∅ and ∅ c = 𝐸𝐸�  . 

 

Definition 1.9. [1] (λ -absolute fuzzy soft set) A fuzzy soft set fE on X is called a λ-absolute fuzzy soft 

set and denoted by 𝐸𝐸�λ, if fe= �̅�𝜆 , for each e ∈E.  Clearly, (𝐸𝐸�λ)c=    𝐸𝐸�1-λ. 

 

In this paper we write 𝐸𝐸�λas�̅�𝜆E. 

 

Theorem 1.10. [1]  Let ∆ be an index set and fA, gB, hC, (fA)i≜ (fi)Ai , 

(gB)i≜ (gi)Bi∈ FS(X,E), ∀i ∈∆, then we have the following properties: 

(1) fA⊓fA = fA, fA⊔fA = fA. 
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(2) fA⊓gB = gB⊓fA, fA⊔gB = gB⊔fA. 

(3) fA⊔ (gB⊔hC) = (fA⊔gB) ⊔hC. 

(4) fA = fA⊓(fA⊔gB), fA = fA⊔(fA⊓gB) 

(5) fA⊓( ⊔
𝑖𝑖∈∆ (g𝐵𝐵)𝑖𝑖) = ( ⊔

𝑖𝑖∈∆(fA⊓(g𝐵𝐵)𝑖𝑖)) 

(6) fA⊔( ⊓
𝑖𝑖∈∆ (g𝐵𝐵)𝑖𝑖) = ( ⊓𝑖𝑖∈∆(fA⊔(g𝐵𝐵)𝑖𝑖)) 

(7) ∅⊑fA⊑𝐸𝐸� . 

(8) (𝑓𝑓𝐴𝐴𝑐𝑐)c = fA. 

(9) ( ⊓
𝑖𝑖∈∆(fA)i)c = ⊔𝑖𝑖∈∆((fA)i)c 

(10) ( ⊔
𝑖𝑖∈∆(fA)i)c = ⊓

𝑖𝑖∈∆((fA)i)c 

(11) IffA⊑gB, then𝑔𝑔𝐵𝐵𝑐𝑐⊑𝑓𝑓𝐴𝐴𝑐𝑐 
 

Definition 1.11. (Fuzzy soft Ideal) [2] Let A, B ⊆ E. A non empty family ℐ⊆ FS(X,E) of fuzzysoft 

sets is called fuzzy soft ideal on X if 

i) fA∈ ℐ, gB⊑fA implies that gB∈ ℐ 

ii) fA∈ ℐ, gB∈ ℐ implies that fA ⊔gB∈ ℐ. (As ℐis not empty ∅ ∈ ℐ) 

 
Definition 1.12. [2] Let C, D and P⊆ E. A family τ ⊆FS(X,E) is called a fuzzy soft topology for X, if 

it satisfies the following axioms. 

i) For all λ∈ [0,1], �̃�𝜆E∈τ . 

ii) fC, gD∈τ implies that fC⊓gD∈ τ . 

iii) If {fiP}i𝜖𝜖∆is an indexed subfamily of τ , then ⊔𝑖𝑖∈∆fiP∈ τ . 

The pair (X, τ) is called a fuzzy soft topological space. The members of τ are called fuzzy soft open 

sets. 

 
 
2.Minimal fuzzy soft open sets 
 
Definition 2.1. Let (X,𝜏𝜏) be a fuzzy soft topological space ,λ∈ (0,1] ,𝑒𝑒0 ∈ E,  𝑓𝑓𝐴𝐴 ∈ 𝜏𝜏,  where A⊆E such 
that �̅�𝜆 ≤ 𝑓𝑓𝐴𝐴(𝑒𝑒0),  𝑓𝑓𝐴𝐴 is called a local minimal fuzzy soft open set at 𝑒𝑒0, 
w.r.t.λ, If   𝑔𝑔𝐴𝐴 ∈ 𝜏𝜏 and 𝑔𝑔𝐴𝐴(𝑒𝑒0)≥ �̅�𝜆,  then 𝑔𝑔𝐴𝐴⊄𝑓𝑓𝐴𝐴 

 
Example 2.2. Let (X,𝜏𝜏) be a fuzzy soft topological space with indiscrete fuzzy soft topology 𝜏𝜏 in Ruth 
[2]. Let 𝑒𝑒0 ∈ E then to each λ∈ (0,1] ,λ�𝐸𝐸 is a local minimal fuzzy soft open set at  𝑒𝑒0. 
 
Definition 2.3. Let (X,𝜏𝜏) be a fuzzy soft topological space with fuzzy soft ideal I on X ,eo ∈ E and𝑓𝑓𝐴𝐴 ∈
𝜏𝜏 such that 𝑓𝑓𝐴𝐴(𝑒𝑒0 )≠ 0� . Then 𝑓𝑓𝐴𝐴is called aℐ – local minimal fuzzy soft open set at,𝑒𝑒0 if 𝑔𝑔𝐴𝐴 ∈ 𝜏𝜏 with 
𝑔𝑔𝐴𝐴(𝑒𝑒0) ≠ 0� and 𝑔𝑔𝐴𝐴 ⊑ 𝑓𝑓𝐴𝐴 then ( 𝑓𝑓𝐴𝐴(𝑒𝑒) − (𝑔𝑔𝐴𝐴(𝑒𝑒))𝑒𝑒∈ E ∈ ℐ.  
The set of all  ℐ– localminimal fuzzy soft open set at 𝑒𝑒0will be denoted by min (X,𝜏𝜏,ℐ,𝑒𝑒0). 
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Definition 2.4. Let (X,𝜏𝜏) be a fuzzy soft topological space with fuzzy soft ideal ℐon X, λ∈ (0,1] ,e ∈ E, 
𝑓𝑓𝐴𝐴 ∈ 𝜏𝜏 where A⊆E such that �̅�𝜆 ≤ 𝑓𝑓𝐴𝐴(𝑒𝑒).𝑓𝑓𝐴𝐴is called ℐ– localminimal fuzzy soft open set at e,w.r.t.λ,if 
𝑔𝑔𝐴𝐴 ⊑ 𝑓𝑓𝐴𝐴,𝑔𝑔𝐴𝐴 ∈ 𝜏𝜏,and�̅�𝜆 ≤ �𝑔𝑔𝐴𝐴(𝑒𝑒)� then ( 𝑓𝑓𝐴𝐴(𝑒𝑒) − (𝑔𝑔𝐴𝐴(𝑒𝑒))𝑒𝑒∈ E ) ∈ ℐ. 
The set of all ℐ – localminimal fuzzy soft open sets at e ,w.r.t.λ is denoted by min(X,𝜏𝜏,ℐ,𝑒𝑒, , λ). 
 
Remarks:  1. If𝑓𝑓𝐸𝐸 ∈ 𝜏𝜏 then [𝑓𝑓𝐸𝐸]={𝑔𝑔𝐸𝐸 ∈FS(X,E)/((|𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒|)e ∈ E)∈ ℐ}. 

2. If 𝑓𝑓𝐸𝐸,ℎ𝐸𝐸 ∈min (X,𝜏𝜏,ℐ,𝑒𝑒0)⇒ ((|𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒|)e ∈ E ) ∈ ℐ ,ℎ𝐸𝐸 ∈[𝑓𝑓𝐸𝐸] 

 
Theorem 2.5. Let (X,𝜏𝜏) be a fuzzy soft topological spacewith fuzzy soft ideal ℐon X,𝑓𝑓𝐸𝐸 ∈ ℐ and 𝑒𝑒0 ∈ E 
such that f(𝑒𝑒0) ≠ 0�.Then 𝑓𝑓𝐸𝐸 is called ℐ– localminimal fuzzy soft open set at 𝑒𝑒0 iff for each 𝑔𝑔𝐸𝐸 ∈ 𝜏𝜏 with  
g(𝑒𝑒0)≠ 0�,  (|𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒|)e ∈ E)∈ ℐ. 

Proof:  Suppose𝑓𝑓𝐸𝐸 is aℐ– local minimal fuzzy soft open set.Let 𝑔𝑔𝐸𝐸 ∈ ℐ with  g(𝑒𝑒0)≠ 0�. Then   
g(𝑒𝑒0)∧f(𝑒𝑒0)≠ 0  ���. As𝑓𝑓𝐸𝐸 ⊓ 𝑔𝑔𝐸𝐸 ⊑ 𝑓𝑓𝐸𝐸,and 𝑓𝑓𝐸𝐸 ⊓ 𝑔𝑔𝐸𝐸 ∈ 𝜏𝜏,(f∧ 𝑔𝑔)(𝑒𝑒0)≠ 0�, 
we get:  ((𝑓𝑓𝑒𝑒 − (𝑓𝑓𝑒𝑒 ∧ 𝑔𝑔𝑒𝑒))e ∈ E)∈ ℐ. This implies that ((𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒)e ∈ E) ∈ ℐ. 

Conversely, suppose  𝑔𝑔𝐸𝐸 ⊑ 𝑓𝑓𝐸𝐸,𝑔𝑔𝐸𝐸 ∈ 𝜏𝜏,  g(𝑒𝑒0)≠ 0� and  ((𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒)e ∈ E) ∈ ℐ. 
Then 𝑓𝑓𝐸𝐸   is aℐ– local minimal fuzzy soft open set. 
 
Theorem 2.6. Let (X,𝜏𝜏) be a fuzzy soft topological spacewith fuzzy soft idealℐon X, ,𝑓𝑓𝐸𝐸 ∈ 𝜏𝜏 
And e∈ E.Then the following are equivalent. 

i) min (X,𝜏𝜏,ℐ,𝑒𝑒0)=[𝑓𝑓𝐸𝐸] 
ii) for each λ∈ (0,1] with 𝑓𝑓𝐸𝐸(𝑒𝑒0)≥ �̅�𝜆  ,min(X,𝜏𝜏,ℐ,𝑒𝑒0,λ)=[𝑓𝑓𝐸𝐸]. 

Proof: (i)⇒(ii) Let 𝑔𝑔𝐸𝐸 ∈ 𝜏𝜏 with g(𝑒𝑒0)≥ �̅�𝜆,  by above theorem ((𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒)e ∈ E) ∈ ℐ therefore 
min(X,𝜏𝜏,ℐ,𝑒𝑒0,λ)=[𝑓𝑓𝐸𝐸]. 
(ii)⇒(i) suppose for all λ∈ (0,1],  �̅�𝜆 ≤f(𝑒𝑒0) and min(X,𝜏𝜏,ℐ,e0,λ)=[𝑓𝑓𝐸𝐸].  Let 𝑔𝑔𝑒𝑒 ∈ 𝜏𝜏 with g(e0) ≠
0�.Therefore g(e0) ≥ 𝜆𝜆 > 0� for some �̅�𝜆  ≤f(𝑒𝑒0). As min(X,𝜏𝜏, ℐ,𝑒𝑒0,λ)=[𝑓𝑓𝐸𝐸], 
((𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒)e ∈ E) ∈ ℐ.Therefore𝑓𝑓𝐸𝐸 ∈min(X,𝜏𝜏, ℐ,𝑒𝑒0,λ). Therefore min(X,𝜏𝜏, ℐ,𝑒𝑒0,λ) ∈ [𝑓𝑓𝐸𝐸]. 
 
Theorem 2.7. Let Let (X,𝜏𝜏) be a fuzzy soft topological spacewith fuzzy soft idealℐonX, 

𝑓𝑓𝐸𝐸 ∈ 𝜏𝜏 and𝑒𝑒0 ∈ E and λ∈ (0,1] with�̅�𝜆 ≤ f(𝑒𝑒0) .Then the following are equivalent. 

i)min (X, 𝜏𝜏, ℐ,𝑒𝑒0,λ)=[𝑓𝑓𝐸𝐸] 
ii)min (X, 𝜏𝜏 ℐ,𝑒𝑒0,β)=[𝑓𝑓𝐸𝐸] for anyβ ∈ (0,1] with β� ≤f(𝑒𝑒0),�̅�𝜆 ≤ β�. 
Proof (i)⇒(ii) 
 Let β=[𝑓𝑓𝐸𝐸] for any β ∈ (0,1] with β� ≤f(𝑒𝑒0),�̅�𝜆 ≤ β�. 
Let 𝑔𝑔𝐸𝐸 ∈ 𝜏𝜏  with β� ≤g(𝑒𝑒0).Then �̅�𝜆 ≤ β� ≤g(𝑒𝑒0) and so 𝜆𝜆� ≤g(𝑒𝑒0), therefore by (i), 
it follows that ((𝑓𝑓𝑒𝑒 − 𝑔𝑔𝑒𝑒)e ∈ E) ∈ ℐ. 

This implies that min (X, 𝜏𝜏, ℐ,𝑒𝑒0,β)= [𝑓𝑓𝐸𝐸]. 
Proof (ii)⇒(i) 
 (ii)⇒(i)   is obvious. 
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