

CONNECTEDNESS ON FUZZY BITOPOLOGICAL SPACES

P.Rajalakshmi¹, S.Selvam²

¹Part-time Ph.D., Research Scholar, P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai-630561,(Affiliated to Alagappa University, Karaikudi, Tamilnadu), India.Email¹: nrdharshini2008@gmail.com ²Department of Mathematics, Assistant Professor, Government Arts and Science College, Tiruvadanai-623407, (Affiliated to Alagappa University, Karaikudi, Tamilnadu), India.Email: selvammaths123@gmail.com

Abstract: In this paper we introduce the concept of connectedness in fuzzy bitopological spaces. We define (i-j) fuzzy connected set and study some of its properties. We also investigate the idea of connectedness in fuzzy bitopological spaces with respect to fuzzy ideals by an example.

Keywords : fuzzy bitopological spaces , (i-j) fuzzy connected, (i-j) fuzzy \mathcal{J} – connected.

2010 AMS Subject classification: 54A40.

1. Introduction

In this paper we follow the definition of fuzzy bitopological spaces in Lowen's [1] sense. Various results in fuzzy topological spaces with respect to fuzzy ideals are found in [7]. Based on the results given in [7], we are going to investigate the concept of Connectedness in fuzzy bitopological spaces in our present work.

2. Preliminaries

Definition 2.1. [7] Let A and B are two fuzzy sets of X. Then A intersection B is defined as: $(A \cap B)(x) = \max \{0, A(x) + B(x) - 1\}$ for all $x \in X$.

Definition 2.2. [7] Let (X,τ) be a fuzzy topological space. The cl(A), the closure of a fuzzy set A is a fuzzy set defined by cl(A)(x) = $\bigvee\{\lambda | B \in \tau, B(x) > 1 - \lambda \Rightarrow A \cap B \neq \overline{0}\}$ for all $x \in X$.

Definition 2.3. [7] A non-empty collection \mathcal{I} of fuzzy sets of X is said to be a fuzzy ideal on X, if $A, B \in \mathcal{J} \Rightarrow A \lor B \in \mathcal{J}$ and $A \in \mathcal{J}, B \le A \Rightarrow B \in \mathcal{J}$.

Definition 2.4.[7] If A is a fuzzy set of X, then the support of A is defined as $S(A) = \{x \in X / A(x) > 0\}$. Let X be a non-empty set. A fuzzy set B is said to be finite fuzzy set of X if and only if S(B) is a finite set.

Definition 2.5.[7] Let (X,τ) be a fuzzy topological space. The interior A^0 of a fuzzy set A of X is defined as $A^0 = V\{B: B \le A, B \in \tau\}$.

Lemma 2.6. [7] If $g: X \to Y$ and $A, B \in I^Y$ then $g^{-1}(A \cap B) = g^{-1}(A) \cap g^{-1}(B)$.

Lemma 2.7.[7] Let (X,τ) and (Y,σ) be two fuzzy topological spaces. Let $g: X \to Y$ be a fuzzy continuous function and $A: Y \to [0,1]$ be a fuzzy set of Y. Then $cl(g^{-1}(A))(x) \le g^{-1}(cl(A))(x)$ for all $x \in X$.

Definition 2.8. [3] Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two bitopological spaces. Then a function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called pairwise continuous if $f^{-1}(U)$ is τ_i – open set in (X, τ_1, τ_2) for each σ_i – open set U of (Y, σ_1, σ_2) for i = 1,2.

We may also give similar definition of fuzzy pairwise continuous function in fuzzy bitopological spaces.

Definition 2.9. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two fuzzy bitopological spaces. Then a function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called fuzzy Pairwise continuous if $f^{-1}(U)$ is τ_i – open set in (X, τ_1, τ_2) for each σ_i – open set U of (Y, σ_1, σ_2) for i = 1, 2.

3. (i-j) fuzzy connected spaces

Definition 3.1 Let(X, τ_1, τ_2) be a fuzzy bitopological space. A fuzzy set C is called (i-j) fuzzy disconnected if there exists two fuzzy sets B₁ and B₂ such that

(i) $C = B_1 V B_2$

- (ii) There exists $x_1 \neq y_1 \in X$ such that $B_1(x_1) = C(x_1) \neq 0$ and $B_2(y_1) = C(y_1) \neq 0$.
- (iii) $\operatorname{cl}(B_1)_i \cap B_2 = \overline{0} = B_1 \cap \operatorname{cl}(B_2)_j$, where $i, j \in \{1, 2\}$ and $i \neq j$.

Cis said to be (i-j) fuzzy connected iff C is not (i-j) fuzzy disconnected.

Example 3.2 Consider the two fuzzy topologies $\tau_1 = \{\overline{\alpha}/0 \le \alpha \le 1\}$ and $\tau_2 = \{f/f : X \to [0,1]\}$. We know that (X, τ_1) is fuzzy connected and (X, τ_2) is not fuzzy connected. We shall show that (X, τ_1, τ_2) is (i-j) fuzzy connected.

Suppose there exists two fuzzy sets B_1 and B_2 such that i) $1_X = B_1 \vee B_2$. (ii) there exists $x_1 \neq y_1 \in X$ with $B_1(x_1) = 1_X(x_1) \neq 0$ and $B_2(y_1) = 1_X(y_1) \neq 0$.

Then $B_1 \cap cl(B_2) = \overline{0}$, where $cl(B_2)$ is τ_2 -closed. Also $cl(B_1) \cap B_2 \neq \overline{0}$, where $cl(B_1)$ is τ_1 -closed. That is $cl(B_1) \cap B_2 \neq \overline{0} = B_1 \cap cl(B_2)$. This implies that (X, τ_1, τ_2) is not (i-j) fuzzy disconnected. Hence (X, τ_1, τ_2) is (i-j) fuzzy connected.

Theorem 3.3. Let(X, τ_1, τ_2) be a fuzzy bitopological space. Let A be a (i-j) fuzzy connected set of X and B is τ_i -fuzzy connected set of X, where $i \in \{1,2\}$ with $A \leq B$. Suppose $B = B_1 \vee B_2$ such that with $B_1(x_0) = B(x_0) \neq 0$ and $B_2(y_0) = B(y_0) \neq 0$ for some $x_0 \neq y_0 \in X$ and $cl(B_1)_i \cap B_2 = \overline{0} = B_1 \cap cl(B_2)_i$ then either $A \leq B_1$ (or) $A \leq B_2$.

Proof: As $cl(B_1)_i \cap (B_2) = \overline{0} = B_1 \cap cl(B_2)_i$ we get $cl(B_1 \wedge A)_i \cap (B_2 \wedge A) = \overline{0} = (B_1 \wedge A) \cap cl(B_2 \wedge A)_i$ where $i \in \{1,2\}$. Since $A \leq B_1 \vee B_2$, select $z_0 \in X$ such that $A(z_0) \neq 0$. Therefore $A(z_0) = (B_1 \wedge A)(z_0)(or) \quad A(z_0) = (B_2 \wedge A)(z_0)$. Since B is τ_i - fuzzy connected there is no $y \in X$ such that

 $(y) = (B_2 \wedge A)(y) \neq 0$. If $A(y) \neq 0$ then $B_2(y) < A(y)$. Therefore $A(y) = (B_1 \wedge A)(y)$ for all $y \in X$. Hence $A \leq B_1$. Similarly we can show that $A \leq B_2$.

Theorem 3.4. The image of a (i-j) fuzzy connected set under a fuzzy pairwise continuous map is (i-j) fuzzy connected.

Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two fuzzy bitopological spaces and $g: X \to Y$ be a fuzzy **Proof:** pairwise continuous map.

Let u be a (i-j) fuzzy connected set on X. We prove that g(u) is a (i-j) fuzzy connected set on Y. Suppose g(u) is (i-j) fuzzy disconnected. Then there exists two fuzzy sets A and B such that (i). g(u) = AVB. (ii). There exists $z_1 \neq z_2 \in Y$ such that $A(z_1) = g(u)(z_1) \neq 0$ and $B(z_2) = g(u)(z_2) \neq 0$ 0 and (iii). $cl(A)_i \cap B = \overline{0} = A \cap cl(B)_j$, where $i, j \in \{1,2\}$ with $i \neq j$, by lemma (1.6) and lemma (1.7) $cl(g^{-1}(A))_{i} \cap g^{-1}(B) = \overline{0} = g^{-1}(A) \cap cl(g^{-1}(B))_{i}.$

As $g(u)(z_1) \neq 0$, select $x_1 \in X$ such that $g(x_1) = z_1$ and $u(x_1) > 0$. Similarly select $x_2 \in X$ such that $g(x_2) = z_2$ and $u(x_2) > 0$. Therefore $g^{-1}(A)(x_1) = A(z_1) \neq 0$. Now $(g^{-1}(A)\Lambda u)(x_1) = A(z_1) \neq 0$. $A(g(x_1)) \wedge u(x_1) = u(x_1) \neq 0.$

Similarly $(g^{-1}(B)\Lambda u)(x_2) \neq 0$. Therefore $u = (g^{-1}(A)\Lambda u)V(g^{-1}(B)\Lambda u)$, which is a contradiction to our assumption that uis (i-j) fuzzy connected. Hence g(u) is also (i-j) fuzzy connected.

Definition 3.5. Let(X, τ_1 , τ_2) be a fuzzy bitopological space with a fuzzy ideal Jon X. A fuzzy set D is said to be (i-j) fuzzy \mathcal{J} – connected if there do not exist two fuzzy sets A and B which are not in \mathcal{J} such that i)D = AVB (ii) there exists $x_0 \neq y_0 \in X$ such that $A(x_0) = D(x_0) \neq 0$ and $B(y_0) = D(x_0) \neq 0$ $D(y_0) \neq 0$. (iii) $cl(A)_i \cap B = \overline{0} = A \cap cl(B)_i$ where $i, j \in \{1, 2\}$ with $i \neq j$.

The next example justifies the relation between the (i-j) fuzzy \mathcal{J} - connected and (i-j) fuzzy connected.3

Example 3.6. Consider the fuzzy bitopological space ($\mathbb{R}, \tau_1, \tau_2$) where \mathbb{R} denotes the reals $\tau_1 = \{$ the discrete fuzzy topology on \mathbb{R} } and $\tau_2 = \{g: [0,1]/S(g) \text{ is an open set in the standard topology of } \mathbb{R}\}$. Let \mathcal{J} denotes the fuzzy ideal of all fuzzy sets of \mathbb{R} with finite support.

Let B(x) =
$$\begin{cases} 1 & \text{if } x \in [0,3] \\ \frac{1}{x} & \text{if } x \in \{4,5,6\} \\ 0 & \text{otherewise} \end{cases}$$

Then B is (i-j) fuzzy \mathcal{J} – connected, but not (i-j) fuzzy connected where i, j $\in \{1,2\}$. Let B = CVD with C \cap cl(D)_i = $\overline{0}$ = cl(C)_i \cap D and there existsx₀ \neq y₀ such that C(x₀) = B(x₀) \neq 0 and $D(y_0) = B(y_0) \neq 0$. Then $S(C) \cup S(D) \subseteq [0,3] \cup \{4,5,6\}$. As $B(x) = C(x) \lor D(x) = 1$ for all $x \in [0,3]$ and as $C \cap D = 0$, we get (1 - C) = D on [0,3], $D \le cl(D)_1 \le 1 - C = D$ on [0,3], C(x) = C $1 - cl(D)_1(x)$ for all [0,3]. Similarly $C(x) = 1 - cl(D)_2(x)$ for all $x \in [0,3]$. Also $S(C) \cap [0,3] = 1 - cl(D)_2(x)$ $[0,3] \setminus S(1 - cl(D)_i)$ where $i \in \{1,2\}$. Therefore $S(C) \cap [0,3]$ and $S(D) \cap [0,3]$ are disjoint relative open sets of [0,3] in the relative topology. As [0,3] is connected with respect to the standard topology on \mathbb{R} , we have either $S(C) \cap [0,3] = \emptyset$ (or) $S(D) \cap [0,3] = \emptyset$. Assume that $S(D) \cap [0,3] = \emptyset$. Then $S(D) \subseteq \{4,5,6\}$. So $D \in \mathcal{J}$. Therefore B is not (i-j) fuzzy \mathcal{J} – disconnected. That is B is (i-j) fuzzy \mathcal{J} – connected.

Next we show that B is not (i-j) fuzzy connected. Consider B = fVg where $f(x) = \begin{cases} 1 \text{ if } x \in [0,3] \\ 0 \text{ otherwise} \end{cases}$ $g(x) = \begin{cases} \frac{1}{x} & \text{if } x \in \{4,5,6\} \\ 0 & \text{otherwise} \end{cases}$ Then there exists $x_1 \in [0,3]$ and $y_1 \in \{4,5,6\}$ with $f(x_1) = B(x_1) \neq 0$ and $g(y_1) = B(y_1) \neq 0$.

Consider the following two fuzzy sets (1, 0) = (1, 0) = (2, 0)

$$A_{1}(x) = \begin{cases} 1 \text{ if } x \in (-\infty, 0) \cup (3, \infty) \\ 0 & \text{otherwise} \end{cases}$$
$$A_{2}(x) = \begin{cases} 1 \text{ if } x \in (-\infty, 4) \cup (4, 5) \cup (5, 6) \cup (6, \infty) \\ 0 & \text{otherwise} \end{cases}$$

As $S(A_1)$ and $S(A_2)$ are open sets in the standard topology of \mathbb{R} , we get $A_1, A_2 \in \tau_2$. Clearly A_1, A_2 are in τ_1 also.

Now
$$(1 - A_1)(x) = \begin{cases} 1 & \text{if } x \in [0,3] \\ 0 & \text{otherwise} \end{cases}$$

 $(1 - A_2)(x) = \begin{cases} 1 & \text{if } x \in \{4,5,6\} \\ 0 & \text{otherwise} \end{cases}$.

Since $f = (1 - A_1)$, which is a τ_i -fuzzy closed set, where $i \in \{1,2\}, cl(f)_i = f$. Note that $g \leq (1 - A_2)$. As $(1 - A_2)$ is a τ_i -fuzzy closed set containing g, $cl(g)_i \leq (1 - A_2)$. Now $cl(f)_i \cap g = f \cap g = \overline{0}$ and $f \cap cl(g)_j \leq f \cap (1 - A_2) = \overline{0}$ where $i, j \in \{1,2\}$ and $i \neq j$. That is $f \cap cl(g)_j = \overline{0}$. Hence B is not (i-j) fuzzy connected. Thus every (i-j) fuzzy connected set is (i-j) fuzzy \mathcal{J} – connected but the converse need not be true.

References

- Lowen.R., "Fuzzy topological spaces and fuzzy compactness", J.Math. Appl., 56(1976), pp.621-633.
- [2] MandiraKar, et.al., "Connectedness in Ideal BitopologicalSpaces", International journal of Engineering Research and Appilications, ISSN: 2248 – 9622, Vol. 4, Issue 1 (Version 1), January 2014, pp. 165 – 167.
- [3] ParvinderSingh., "Continuous and Contra Continuous Functions in Bi-topological Spaces", International journal of Mathematics and its Applications, ISSN: 2347-1557, Volume 3, Issue 4-E(2015), pp. 63-66.
- [4] P.Rajalakshmi.et.al., "A study on fuzzy (i,j)-β- compact spaces", International journal of Applied Engineering Research, ISSN NO : 0973 – 4562, Vol. 13, Number 17(2018), pp. 13355 – 13357.
- [5] P.Rajalakshmi.et.al., "New pairwise fuzzy topology through fuzzy ideal", International journal of Statistics and Applied Mathematics, 2018,3(4), pp. 12-15.
- [6] P.Rajalakshmi.et.al., "Pairwise fuzzy Hausdorff space with respect to fuzzy ideal", Journal of Applied Science and Computations, ISSN NO: 1076 – 5131, Vol. VI, june / 2019, pp. 1327 – 1330.
- [7] S.Selvam., "A study on fuzzy topologies", Ph.D. thesis., Alagappa University, Karaikudi, India, (2008).