

ON QUASI – WEAK COMMUTATIVE NEAR – RINGS III

Dr.S.Geetha¹, Dr.G.Gopalakrishnamoorthy²

 ¹Associate Professor, Department of Mathematics, St. Michael College of Engg.and Tech, Kalaiyarkovil – 630 551. Tamilnadu, India. Email :geethae836@gmail.com
²Advisor, Sri KrishnasamyArsts and Science College, Sattur – 626 203.

Tamilnadu, India.

Abstract. A left near – ring N is called weak commutative if xyz = xzy for every $x,y,z \in N$. A left near – ring N is called pseudo commutative if xyz = zyx for every $x,y,z \in N$. A left near – ring N is called quasi weak commutative near- ring if xyz = yxz for every $x,y,z \in N$. In [3,5], we have obtained many interesting results on quasi – weak commutative near – rings (right). In this paper we obtain some more results of quasi-weak commutative near-rings (left).

Key Words: weak commutative, pseudo commutative, quasi - weak commutative, Boolean – like near – rings.

1. Introduction

Throughout this paper, N denotes a left near – ring (N,+,.) with at least two elements. For every non – empty subset A of N, we denote A - $\{0\} = A^*$. The following definition and results are well known.

Example 1.1. (of Left near – ring)

Let (G,+) be any group. Define $a.b = b \forall a, b \in G$. Then (G,+,.) is a Quasi weak commutative near – ring (left).

For '.' is associative: (a.b) c = b.c = c; also a.(b.c) = a.c = c; therefore $(a.b) \cdot c = a \cdot (b.c) \forall a,b,c \in G$.

Also a.(b+c) = b+c; and a.b + a.c = b+c; so, a.(b+c) = a.b + a.cAlso: abc = c = bac; Hence (G,+,.) is a quasi weak commutative near ring (left).

Definition 1.2:

An element a \in N is said to be

(i) Idempotent if $a^2 = a$.

(ii) Nilpotent, if there exists a positive integer k such that $a^k = 0$.

Result: Each near – ring N is isomorphic to a sub direct product of sub directly irreducible near – rings.

Definition 1.4:

A near – ring N is said to be zero commutative if ab = 0 implies ba = 0, where $a, b \in N$.

Definition 1.5:

A near – ring (left) N is said to be Boolean if $a^2 = a \forall a \in N$. It is said to be anti – Boolean if $a^2 = -a \forall a \in N$.

Result: If N is zero symmetric, then

- (i) Every left ideal A of N is an N-subgroup of N.
- (ii) Every ideal I of N satisfies the condition NIN \subseteq I. (ie) every ideal is an N Subgroup.
- (iii) $N^* I^* N^* \subseteq I^*$.

Result: Let N be a near – ring. Then the following are true.

- (i) If A is an ideal of N and B is any subset of N, then $(A:B) = \{ n \in N \text{ such that } n B \subseteq A \}$ is always a left ideal.
- (ii) If A is an ideal of N and B is an N-subgroup, then (A:B) is an ideal. In particular if A and B are ideals of a zero symmetric near ring, then (A:B) is an ideal.

Result:

1. Let N be a regular near - ring, a \in N and a = axa, then ax, xa are idempotents.

- 2. axN = aN and Nxa = Na.
- 3. N is S and S' near rings.

Result: (Lemma 4 Dheena [2]) Let N be a zero – symmetric reduced near – ring. For any a, b \in N and for any idempotent element $e \in N$, abe = aeb.

Result: A near – ring N is sub –directly irreducible if and only if the intersection of all non – zero ideals of N is not zero.

Result (*Gratzer* [7] Each simple near – ring is sub directly irreducible.

Result (*Pliz* [10]) A non – zero symmetric near – ring N has Intersection of factors Property (IFP) if and only if (O:S) is an ideal for any subset S of N.

Result (Oswald [9]) An N – subgroup A of N is essential if $A \cap B = \{0\}$, where B is any N subgroup of N, implies $B = \{0\}$

Definition 1.6:

A near – ring is said to be reduced if N has no non – zero nilpotent elements.

Definition 1.7

A near – ring N is said to be an integral near – ring if N has no non – zero divisors.

Lemma 1.8

Let N be a near – ring if for all a \in N, $a^2 = 0 \implies a = 0$, then N has no non – zero nilpotent elements.

Definition 1.9

Let N be a near – ring. N is said to satisfy intersection of factors property (IFP) if ab = 0=> $anb = 0 \forall n \in N$, where $a,b \in N$.

Definition 1.10

(1) An ideal I of N is called a prime ideal if for all ideals A, B of N, AB is subset of I => A is subset of I or B is subset of I.

(2) I is called a semi – prime ideal if all ideals A of N, A^2 is subset of I implies A is subset of I.

(3) I is called a completely semi – prime ideal, if for any $x \in N$, $x^2 \in I \Rightarrow x \in I$.

(4) A completely prime ideal, if for any x,y $\boldsymbol{\epsilon}$ N, xy $\boldsymbol{\epsilon}$ I => x $\boldsymbol{\epsilon}$ I or y $\boldsymbol{\epsilon}$ I.

(5) N is said to have strong IFP, if for all ideals I of N, ab ϵ I implies anb ϵ I.

Result:(Proposition 2.4[11]) Let N be a pseudo commutative near – ring. Then every idempotent element is central.

Result: [3] Let N be a regular quasi weak commutative near - ring. Then

- (i) $A = \sqrt{A}$, for every N subgroup A of N.
- (ii) N is reduced.
- (iii) N has (IFP).

Result: [3] Let N be a regular quasi weak commutative near – ring. Then every N sub group is an ideal

$$N = Na = Na^2 = aN = aNa$$
 for all a ϵ N.

Result: [3] Let N be a quasi weak commutative near – ring. For every ideal I of N, (I:S) is an ideal of N where S is any subset of N.

Result: [3] Every quasi weak commutative near – ring N is isomorphic to a sub – direct product of sub – directly irreducible quasi weak commutative near – rings.

2. Main Results

Lemma 2.1:

If N is a Boolean (left) near – ring, then for any a, b \in N, ab = 0 => ba = 0.a.

Proof: Let a,b ϵ N.

$$ba = (ba)^2 = ba ba = b(ab)a = b0a = 0a.$$

Lemma 2.2:

If N is a Boolean (left) near – ring, then for any $x, y \in N$, xyx = yx.

Proof: Let $x, y \in N$.

Now,

yx (xyx - yx) =
$$yx^2yx - (yx)^2$$

= yx yx - (yx)^2 = 0

So, by Lemma 2.1, we have: (xyx - yx)yx = 0yx(1) $xyx (xyx - yx) = xyx^2yx - xyxyx$ Also, = xyxyx - xyxyx = 0So, by Lemma 2.1, Now, $xyx - yx = (xyx - yx)^2$ = (xyx - yx)(xyx - yx)= (xyx - yx)xyx - (xyx - yx)yx= 0xyx - 0yxxyx - yx = 0(xyx - yx)(3) Now 0 = x (xyx - yx) $= x \cdot 0 (xyx - yx)$ (using (3)) = 0 (xyx - yx)(using (3)) = xyx - yx

Hence xyx = yx $\forall x, y \epsilon N$.

Theorem 2.3: Every Boolean (left) near – ring is Quasi – weak commutative. That is, if N is a Boolean (left) near – ring then xyz = yxz for all $x,y,z \in N$.

Proof: Let x,y,z ϵ N, Now						
	x(z-xz)y =	$(xz - x^2)$	^{2}z) y =	(xz – xz) y		
		=	0 y			
\Rightarrow	x (z – xz) y (z – xz)	=	0 y (z – xz)			
$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	xy (z – xz)	=	0 y (z – xz)	(by Lemma 2.2)		
\Rightarrow	xyz – (xyx) z	=	0yz-0yxz			
\Rightarrow	xyz – yxz	=	0yz – 0yxz	(by Lemma 2.2)	\rightarrow (4)	
Also,						
	x (z – xz) x	=	$(xz - x^2z)x =$	(xz - xz)x = 0x		
\Rightarrow	(z – xz) x	=	0 x	(by Lemma 2.2)		
\Rightarrow	(z – xz) xy	=	0 xy		\rightarrow (5)	
Now: xy	y (z –xz) xy	=		(by Lemma 2.2)		
		=	0 xy	(using (2))		
xy (z – xz) xy (z – xz)		=	÷ .			
		=	• • •			
•		=	• • •			
i.e, xyz – xyxz		=	0xyz–0xyxz			
		=	0 xyz – 0 yxz	(using Lemma 2.2)	\rightarrow (6)	
From (4) and (5) we get						
0 yz - 0 yxz		=	0 xyz - 0 yxz			
5	•	=	• •	for all x,y,z <i>e</i> N	\rightarrow (7)	
Replacing x by y and y by z in (7) we get						
	0 zz	=	0 yzz			
(i.e)	0 z ²	=	$0 yz^2$			
xy (z – (xy (z – i.e, xyz – From (4 0 yz – 0 Replacin	xz) xy (z – xz) – xz)) ² xz) – xyxz) and (5) we get yxz 0 yz ng x by y and y by z in (7) we 0 zz	= = = = = e get	0 xy (z - xz) 0 xyz - 0 xyzz 0 xyz - 0 yxz 0 xyz - 0 yxz 0 xyz 0 yzz	(using (2))	\rightarrow (6) \rightarrow (7)	

\Rightarrow 0 z		=	0 yz	for all y,z <i>ϵ</i> N	\rightarrow (8)
From (4), we get			•	-	
xyz – yxz		=	0 yz – 0 yxz		
		=	0 z - 0 xz	(using (8))	
		=	0 z - 0 z	(using (8))	
		=	0.		
Hence $xyz = y$	z for all	x,y,z e N.			
Note: If N is anti – Boole	an near ring	g then 2x =	$= 0 \qquad \forall \mathbf{x} \boldsymbol{\epsilon} \mathbf{N}.$		
Proof: Let $x \in N$. Then	$(x + x)^2$		= -(x + x))	
(x + x)(x + x)	=	- (x + x)		
(x + x) x + (x + x) x	=	- (x + x)		
	=	- (x + x)		
$2 x^2 + 2 x^2$	=	- X - X			
-2x - 2x	=	-2x			
- 2x	=	0			
2 x	=	0	∀ x € N.		

Lemma 2.4

If N is anti – Boolean left near – ring then for any a,b ϵ N, ab =0 \Rightarrow ba = - 0a. **Proof:** Let a,b ϵ N. -ba = (ba)² = ba ba = b (ab) a = b 0 a = 0 a \Rightarrow ba = - 0a.

Lemma 2.5

If N is anti Boolean (left) near ring then for any x, y ϵ N, xyx = -yx. **Proof:** Let $x, y \in N$. $\begin{array}{rcl} y \; x \; (\; xyx + yx \;) & = & y \; x^2 \; yx + (\; yx \;)^2 \\ & = & - \; yx \; yx + (\; yx \;)^2 = 0 \end{array}$ By Lemma 2.4 (xyx + yx)yx = -0yx \rightarrow (9) Also $xyx (xyx + yx) = xyx^2yx + xyxyx$ = - xyxyx + xyxyx = 0 By Lemma 2.4, (xyx + yx)xyx = -0xyx \rightarrow (10) Now. $(xyx + yx)^{2}$ -(xyx + yx)= (xyx + yx)(xyx + yx)= (xyx + yx)xyx + (xyx + yx)yx= = - 0 xyx – 0 yx \Rightarrow (xyx + yx) = 0 (xyx + yx) \rightarrow (11) Now x (xyx + yx)0 = = x 0 (xyx + yx)(using (11)) = 0 (xyx + yx)(using (11)) xyx + yx=

Hence xyx = -yx for all x,y ϵ N.

Theorem 2.6

Every anti – Boolean (left) near – ring is anti – quasi weak commutative. That is, if N is anti – Boolean near – ring (in which $x^2 = -x \forall x \epsilon N$), then xyz = -yxz for all $x,y,z \epsilon N$. **Proof:** Let $x,y,z \epsilon N$ Now $-x(z - x^2)y = -(xz - x^2z)y$

Now $-x(z-xz)y = -(xz-x^2z)y$ = -(xz+xz)y

	=	-(2xz)y	
	=	-0 y.	
Therefore	—	- 0 y.	
-x(z-xz)y(z-xz)	=	- 0 y (z – xz)	
-x(-y(z-xz))	=	-0 y (z - xz)	(using Lemma 2.4)
xy(z-xz)	=	-0y(z - xz)	(using Lonnia 2.1)
xyz – xyxz	=	-0yz + 0yz	
xyz - (-yxz)	=	-0yz + 0yz	
xyz + yxz	=	-0yz + 0yz	\rightarrow (12)
Also		0 <u>j</u> 2 : 0 <u>j</u> 112	()
-x(z-xz)x	=	- $(xz - x^2z) x$	
	=	-(xz + xz)x	
	=	- (2xz) x	
	=	- 0 x.	
Using Lemma 2.4,we get			
-(-(z - xz) x)	=	- 0 x.	
(z - xz) x	=	- 0 x.	
(z - xz) xy	=	- 0. xy	\rightarrow (13)
Now by Lemma 2.4,			
xy(z-xz)xy	=	-(z-xz)xy	
	=	- (- 0xy)	(using(13))
	=	Oxy	
\therefore xy (z – xz) xy (z – xz)	=	0 xy (z - xz)	
$(xy(z-xz))^2$	=	0 xy(z-xz)	
-xy(z-xz)	=	0 xyz – 0 xyxz	
-xyz + xyxz	=	0 xyz – 0 xyxz	
-xyz – yxz	=	0 xyz + 0 yxz	(using Lemma 2.4)
(i.e) $xyz + yxz$	=	-0 xyz - 0 yxz	\rightarrow (14)
From (12) and (14) we get,			
-0 yz $+ 0$ yxz	=	0 xyz + o yxz	
\Rightarrow - 0 yz	=	0 xyz	\rightarrow (15)
Replacing x by y and y by z in (15)) we get,	5	
$-0 z^2$	=	$0 yz^2$	
0 z	=	-0 yz ∀y, z	ϵ N \rightarrow (16)
From (12) we get,		5 5,	× ,
xyz + yxz		-0 yz $+ 0$ yzz	
5 5	=	0 z - 0x z	(using (16))
	=	0 z + 0 z	(using (16))
	=	2 0 z	
	=	0	
xyz + yxz	=	0	
\Rightarrow xyz	=	- yxz	$\forall x,y,z \epsilon N$
Hence N is anti – Ouasi – weak Co			

Hence N is anti – Quasi – weak Commutative.

Lemma 2.7

If N is a Boolean (left) near – ring then for any x,y $\boldsymbol{\epsilon}$ N, $x^m y^n x^m = y^n x^m$ where $m \ge 1, n \ge 1$ are fixed integers.

Proof: Let $x, y \in N$			
$y^n x^m (x^m y^n x^m - y^n x^m)$	=	$y^n x^{2m} y^n x^m$ - $y^n x^m y^n x^m$	
	=	$y^n x^m y^n x^m$ - $y^n x^m y^n x^m$	
	=	0	
By Lemma 2.1,			
$(x^m y^n x^m - y^n x^m) y^n x^m$	=	0 y ⁿ x ^m	\rightarrow (17)
Also			

$x^{m}y^{n}x^{m}(x^{m}y^{n}x^{m} - y^{n}x^{m})$	=	$x^m y^n x^{2m} y^n x^m$ - $x^m y^n x^m y^n x^m$	
	=	$x^m y^n x^m y^n x^m$ - $x^m y^n x^m y^n x^m$	
	=	0	
So, by Lemma 2.1,			
$(x^m y^n x^m - y^n x^m) x^m y^n x^m$	=	$0 x^m y^n x^m$	\rightarrow (18)
Now,		(m n m n m)?	
$\mathbf{x}^{\mathbf{m}}\mathbf{y}^{\mathbf{n}}\mathbf{x}^{\mathbf{m}}$ - $\mathbf{y}^{\mathbf{n}}\mathbf{x}^{\mathbf{m}}$	=	$(x^{m}y^{n}x^{m} - y^{n}x^{m})^{2}$	
	=	$(x^{m}y^{n}x^{m} - y^{n}x^{m})(x^{m}y^{n}x^{m} - y^{n}x^{m})$	
	=	$(x^m y^n x^m - y^n x^m) x^m y^n x^m - (x^m y^n x^m - x^m y^m x^m - x^m x^m x^m - x^m x^m x^m x^m x^m - x^m x^m x^m x^m - x^m x^m x^m x^m x^m x^m x^m x^m x^m x^m$	· y ⁿ x ^m) y ⁿ x ^m
	=	$0 x^m y^n x^m - 0 y^n x^m$	
$x^m y^n x^m - y^n x^m$	=	$0 (x^{m}y^{n}x^{m} - y^{n}x^{m})$	\rightarrow (19)
Now,			
0	=	$x^{m}(x^{m}y^{n}x^{m} - y^{n}x^{m})$	
	=	$x^{m} 0 (x^{m}y^{n}x^{m} - y^{n}x^{m})$	(using (19))
	=	$0 (x^{m}y^{n}x^{m} - y^{n}x^{m})$	
	=	$(\mathbf{x}^{m}\mathbf{y}^{n}\mathbf{x}^{m} - \mathbf{y}^{n}\mathbf{x}^{m})$	(using (19))
Hence $x^m y^n x^m =$	$y^n x^m$	$\forall x, y \epsilon N.$	

References

- [1] Dheena P.A note on a paper of Lee, Journal of Indian Math.Soc.,53(1988),227-229.
- [2] Fain, some structure theorems for near rings, Doctoral dissertation, University of Oklanama, 1968.
- [3] Gopalakrishnamoorthy.G,Kamaraj.M and Geetha.S,On quasi- weak commutative Near rings,International Journal of Mathematics Research,Vol5(5),(2013),431 440.
- [4] Gopalakrishnamoorthy.G and Anitha.S, On Commutativity property of Q_{k,n}, Q_{k,∞}, P_{k,n}, P_∞ and Q_∞ rings.Jour,of Inst.of Mathematics and Computer Sciences, Vol 23, No.2 (2010) 63-70.
- [5] Gopalakrishnamoorthy.G, Geetha.S and Anitha.S, On Quasi weak Commutative Near rings II, Malaya Journal of Matematik, 3(3), (2015), 327-334.
- [6] Gopalakrishnamoorthy.G, Geetha.S and Anitha.S, On Quasi- weak Commutative Boolean – like Near – Rings, Malaya Journalof Matematik, 3(3), (2015),318-326.
- [7] Gratzer.George, Universal Algebra, Van Nostrand, 1968.
- [8] Henry E.Heartherly, Regular Near rings, Journalof Indian Maths. Soc, 38(1974), 345 354.
- [9] Oswald A.Near rings in which every N –Subgroup is principal, Proc. London Math.Soc,.3(1974), No 28,67-88.
- [10] Pliz, Giinter, Near-rings, North Holland, Aneterdam, 1983.
- [11] Uma.S, Balakrishnan.R and Tamizh Chelvam.T, Pseudo Commutative near rings, Scientia Magna, 6(2010)No 2, 75-85.