

ON SCALAR WEAK M-POWER COMMUTATIVE ALGEBRAS

S.Anitha¹ and Dr.G.Gopalakrishnamoorthy²

¹Guest Lecturer, Department of Mathematics, Raja Doraising am Government ArtsCollege, Sivagangai – 630561. Tamilnadu, India.

²Advisor,SriKrishnasamyyArsts and Science ,College,Sattur –626 203.Tamilnadu

Abstract: A right near – ring N is called weak commutative if xyz = xzy. A right near – ring N is called weak m – power commutative if $x y^m z = x z^m y$ for all x, y, $z \in N$, where $m \ge 1$ is a fixed integer. An algebra A over a commutative ring R is called scalar weak commutative if for every x,y, $z \in A$ there exists $\alpha = \alpha(x,y,z) \in R$ depending on x,y,z such that $xyz = \alpha xzy$. In this paper we combine the concept of scalar weak commutativity and weak m – power Commutativity as scalar weak m-power commutativity as scalar weak m-power commutativity.

Key words: weak commutative Near-Rings, Scalar weak commutative Near-Rings.

1.Introduction

Let A be an algebra(not necessarily associative) over a commutative ring R. A is called scalar commutative if for each x,y ϵ A,there exists $\alpha \epsilon$ R depending on x,y such that $xy = \alpha yx$. Rich [13] proved that if A is scalar commutative over a field F,then A is either commutative or anti - commutative. Koh, Luh and Putcha [11] proved that if A is scalar commutative with 1 and if R is a principal ideal domain,then A is commutative. A near – ring N is said to be weak - commutative ring R is called scalar weak commutative, if for every x,y,z ϵ A, there exists $\alpha = \alpha(x,y,z) \epsilon$ R depending on x,y,z such that $xyz = \alpha xzy$ [8].

In this paper we define scalar weak m-power commutativity and prove many interesting results analogous to our own results [8].

2. Preliminaries:

In this section we give some basic definitions and well known results which we use in the sequel.

Definition 2.1. [12]

Let N be a near – ring N is said to be weak commutative if xyz = xzy for all $x,y,z \in N$.

Definition 2.2

Let N be a near – ring.N is said to be anti - weak commutative if xyz = -xzy for all $x, y, z \in N$.

Definition 2.3. [2]

Let A be an algebra(not necessarily associative) over a commutative ring R.A is called scalar commutative if for each x, y ϵ A, there exists $\alpha = \alpha(x, y) \epsilon$ R depending on x, y such that xy = α yx. A is called scalar anti - commutative if xy = - α yx.

Lemma 2.4. [5]

Let N be a distributive near- ring. If $xyz = \pm xzy$ for all x,y,z ϵ N, then N is eitherweak commutative or weak anti-commutative.

3.Main Results:

Definition 3.1:

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called scalar weak m - power commutative if for every x,y,z ϵ A ,there exists scalars $\alpha \epsilon R$ depending on x,y,z such that $xy^m z = \alpha xz^m y$.

Definition 3.2:

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called scalar weak m - power anti - commutative if for every x,y,z ϵ A, there exists scalar $\alpha \epsilon$ R depending on x,y,z such that $xy^mz = -\alpha xz^my$.

Theorem 3.3:

Let A be an algebra (not necessarily associative) over a field F.Let $m \in Z^+$. Let $(x+y)^m = x^m + y^m$ holds for all x, $y \in A$. Assume $\alpha^m = \alpha$ for all $\alpha \in R$. If for each x, $y, z \in A$, there exists scalar $\alpha \in F$ depending on x, y, z such that $xy^m z = \alpha xz^m y$ then A is either weak m-power commutative or weak m - power anti - commutative.

Proof: Suppose $xy^m z = xz^m y$ for all x,y,z ϵ A, there is nothing to prove. Suppose not, we shall prove that

$$xy^{m}z = -xz^{m}y \text{ for all } x,y,z \in A.$$
First we shall prove that if $xy^{m}z \neq xz^{m}y$, then

$$xy^{m+1} = xz^{m+1} = 0.$$
So, assume

$$xy^{m}z \neq xz^{m}y.$$
Since A is scalar weak m-power commutative, there exists $\alpha = \alpha(x,y,z) \in F$ such that

$$xy^{m}z = \alpha xz^{m}y \qquad \rightarrow (1)$$
Also there exists a scalar $\gamma = \gamma(x,y+z,z) \in F$ such that

$$x(y+z)^{m}z = \gamma xz^{m}(y+z) \qquad \rightarrow (1)$$
Also there exists a scalar $\gamma = \gamma(x,y+z,z) \in F$ such that

$$x(y+z)^{m}z = \gamma xz^{m}(y+z) \qquad \rightarrow (2)$$
(1) - (2) gives

$$xy^{m}z - xy^{m}z - xz^{m+1} = \alpha xz^{m}y - \gamma xz^{m}(y+z) = \alpha xz^{m}y - \gamma xz^{m+1} + \gamma xz^{m+1} = \alpha xz^{m}y - \gamma xz^{m}y$$

$$\begin{array}{l} \Rightarrow (1-\gamma)xz^{m-1} &= (\gamma\cdot\alpha)xz^my \rightarrow (3) \\ \text{Now, } xz^m y \neq 0 \text{ for if } xz^m y = 0 \text{ then from (1) we get } xy^m z = 0 \text{ and so } xy^m z = xz^m y, \\ \text{contradicting our assumption that } xy^m z + xx^m y. \\ \text{Also } \gamma \neq 1, \text{ for if } \gamma = 1, \text{ then from (3) we get } \alpha = \gamma = 1. \\ \text{Then from (1) we get } xy^m z = xz^m y, \text{ gain a contradiction.} \\ \text{Now, from (3) we get } xz^{m-1} = \frac{\gamma-\alpha}{1-\gamma}xz^m y \\ \text{ i.e., } xz^{m-1} = \beta xz^m y \text{ for some } \beta \in F. \rightarrow (4) \\ \text{Similarly, } xy^{m-1} = \delta xz^m y \text{ for some } \beta \in F. \rightarrow (5) \\ \text{Now corresponding to each choice of \alpha_1, \alpha_2, \alpha_3, \alpha_4 in F, there is an \eta \in F such that \\ x(\alpha_1 y + \alpha_2 z)^m (\alpha_3 y + \alpha_4 z) = \eta (\alpha_3 y + \alpha_4 z)^m (\alpha_1 y + \alpha_2 z) \\ \text{ i.e., } x(\alpha_1^m)^m + \alpha_2^m x^m) (\alpha_3 y + \alpha_4 z) = \eta (\alpha_3 y^m + \alpha_4^m x^m) (\alpha_1 y + \alpha_2 z) \\ \text{ since } \alpha^m = \alpha \text{ for all } \alpha \in F, we get: \\ x(\alpha_1 y^m + \alpha_2 z^m) (\alpha_3 y + \alpha_4 z) = \eta (\alpha_3 y^m + \alpha_4 z^m) (\alpha_1 y + \alpha_2 z) \\ x(\alpha_1 \alpha_3 y^{m-1} + \alpha_2 \alpha_3 yy^m z + \alpha_1 \alpha_4 z^m y + \alpha_2 \alpha_4 x^{m-1}) \\ = \eta (\alpha_1 \alpha_3 \delta xz^m) + \alpha_1 \alpha_3 xy^m z + \alpha_2 \alpha_3 xz^m y + \alpha_2 \alpha_4 xz^{m-1}) \\ = \eta (\alpha_1 \alpha_3 \delta xz^m y + \alpha_1 \alpha_4 xy^m z + \alpha_2 \alpha_3 xz^m y + \alpha_2 \alpha_4 \beta xz^m y) \\ \alpha_1 \alpha_3 \delta \alpha^{-1} x \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha z^{-1} x + \alpha_2 \alpha_4 \beta \alpha^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta xz^m y + \alpha_2 \alpha_3 xz^m z + \alpha_1 \alpha_4 xz^m y + \alpha_2 \alpha_4 \beta xz^m y) \\ \alpha_1 \alpha_3 \delta \alpha^{-1} x \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1} x \alpha_2 \alpha_4 \beta^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta xz^m y + \alpha_2 \alpha_3 xz^m y + \alpha_2 \alpha_4 \beta xz^m y) \\ (\alpha_1 \alpha_3 \delta x^{-1} + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1} + \alpha_3 \alpha_4 \beta^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta xz^m y + \alpha_2 \alpha_3 xz^m y - \alpha_2 \alpha_4 \beta \alpha^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta x^m y + \alpha_2 \alpha_3 xz^m y - \alpha_2 \alpha_3 xz^m y + \alpha_2 \alpha_4 \beta xz^m y) \\ (\alpha_1 \alpha_3 \delta \alpha^{-1} + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1} + \alpha_3 \alpha_4 \beta^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta x^{-1} + \alpha_1 \alpha_4 \alpha_2 \alpha_3 \alpha^{-1} + \alpha_3 \alpha_4 \beta^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta x^{-1} + \alpha_1 \alpha_4 \alpha_2 \alpha_4 \alpha^{-1} x^m y - \alpha_2 \alpha_3 \beta^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta x^{-1} + \alpha_1 \alpha_4 \alpha_2 \alpha_3 \alpha^{-1} + \alpha_3 \alpha_4 \beta^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta \alpha^{-1} + \alpha_1 \alpha_4 \alpha_2 \alpha_4 \alpha^{-1} + \alpha_3 \alpha_4 \alpha^{-1} xy^m z \\ = \eta (\alpha_1 \alpha_3 \delta \alpha^{-1}$$

Note: Taking m = 1, we get Theorem 3.2[8].

Lemma 3.4:

Let A be an algebra (not necessarily associative) over a commutative ring R.Let m ϵ Z⁺. Suppose A is scalar weak m-power commutative.Then for all x,y,z ϵ A, $\alpha \epsilon$ R, α xy^mz = 0 iff α xz^my = 0. Also xy^mz = 0 iff xz^my = 0.

Proof: Let x,y,z ϵ A and $\alpha \epsilon$ R such that α xy^mz = 0.

Since A is scalar weak m- power commutative there exists $\beta = \beta(\alpha x, z, y) \in \mathbb{R}$ such that $\alpha x z^m y = \beta(\alpha x) y^m z$.

$$\alpha xz^{m}y = \beta(\alpha xy^{m}z) = 0.$$

Conversely assume $\alpha xz^m y = 0$. Since A is scalar weak m - power commutative there exists $\gamma = \gamma(\alpha x, y, z) \in \mathbb{R}$ such that

$$\begin{aligned} \alpha x y^m z &= \gamma \alpha \ x z^m y \\ \text{i.e., } \alpha x y^m z &= \gamma \alpha \ x z^m y = 0 \end{aligned}$$

Thus $\alpha x y^m z = 0$ iff $\alpha x z^m y = 0$.

Now assume $xy^m z = 0$. Since A is scalar weak m - power commutative, there exists scalar $\delta(x,z,y) \in R$ such that $xz^m y = \delta xy^m z = 0$.

Conversely assume $xz^my = 0$. Then there exists scalar $\eta = \eta(x,y,z) \epsilon$ R such that $xy^mz = \eta xz^my = 0$.

Then $xy^mz = 0$ iff $xz^my = 0$.

Note: Taking m = 1,we get Lemma 3.3 [8].

Lemma 3.5.

Let A be an algebra(not necessarily associative) over a commutative ring R. Let $m \in Z^+$. Suppose $(x+y)^m = x^m + y^m$ for all $x, y \in A$ and every element of R is m - potent (i.e., $\alpha^m = \alpha$ for all $\alpha \in R$). Let $x, y, z, u \in A, \alpha, \beta \in R$ such that $y^m u = u^m y, xz^m y = \alpha xy^m z$. $x(z+u)^m \ y = \beta \ xy^m(z+u)$, then $x(y^m u - \alpha y^m u - \beta \ y^m u + \alpha \beta y^m u) = 0$. **Proof:** Given

$$\begin{aligned} x(z+u)^m y = \beta xy^m(z+u) & \rightarrow (8) \\ xz^m y = \alpha xy^m z & \rightarrow (9) \\ y^m u = u^m y & \rightarrow (10) \end{aligned}$$
From (8) we get
$$\begin{aligned} x(z^m + u^m)y = \beta xy^m z + \beta xy^m u \\ xz^m y + x u^m y = \beta xy^m z + \beta xy^m u \rightarrow (4) \\ \alpha xy^m z + x u^m y = \beta xy^m z - \beta xy^m u = 0 \quad (using(9)) \\ \alpha xy^m z + x y^m u - \beta xy^m z - \beta xy^m u = 0 \quad (using(10)) \\ xy^m (\alpha z + u - \beta z - \beta u) = 0 \end{aligned}$$
By Lemma 3.4, we get
$$\begin{aligned} x (\alpha z^m + u^m - \beta^m z^m - \beta^m u^m)y = 0 \\ x (\alpha z^m + u^m - \beta^m z^m - \beta^m u^m)y = 0 \\ x (\alpha z^m y + u^m y - \beta xz^m y - \beta x u^m y = 0 \\ \alpha xz^m y + x u^m y - \alpha \beta xy^m z - \beta x u^m y = 0 \quad (using(9)) \rightarrow (11) \end{aligned}$$
Multiply (11) by α , we get
$$\begin{aligned} \alpha xz^m y + \alpha x u^m y = \alpha \beta xy^m z + \beta x y^m u = 0 \quad \rightarrow (12) \end{aligned}$$
(11) - (12) gives
$$\begin{aligned} \alpha xz^m y + x u^m y - \alpha \beta xy^m z - \beta x u^m y - \alpha x u^m y + \alpha \beta xy^m z + \alpha \beta xy^m u \end{aligned}$$

= 0

$$(x u^{m}y - \alpha x u^{m}y - \beta x u^{m}y + \alpha\beta x y^{m}u) = 0$$

x(y^mu - \alpha y^{m}u - \beta y^{m}u + \alpha\beta y^{m}u) = 0

Corrollary 3.6

Taking u = y, we get:

$$x (y^{m+1} - \alpha y^{m+1} - \beta y^{m+1} + \alpha \beta y^{m+1}) = 0.$$

$$x (y^m - \alpha y^m) (y - \beta y) = 0.$$

Theorem 3.7

Let A be an algebra (not necessarily associative) over a commutative ring R. Let $m \in Z^+$.Suppose $(x+y)^m = x^m + y^m$ for all x, y \in A and that A has no zero divisors.Assume every element of R is m - potent. If A is scalar weak m - power commutative, then A is weak m - power commutative.

Proof: Let x,y,z ϵ A. Since A is scalar weak commutative, there exists $\alpha = \alpha(x,z,y) \epsilon$ R and $\beta = \beta(x,z,y) \epsilon$ R, such that:

$$\begin{array}{ll} x \ z^{m} \ (y+z) = \beta x (y+z)^{m} z & \rightarrow (13) \\ x z^{m} y = \alpha x y^{m} z & \rightarrow (14) \end{array}$$

From (13) we get

$$xz^{m}y + xz^{m+1} - \beta xy^{m}z - \beta xz^{m+1} = 0 \longrightarrow (15)$$

i.e., $\alpha xy^{m}z + xz^{m+1} - \beta xy^{m}z - \beta xz^{m+1} = 0$ (using (14))
$$x (\alpha y^{m} + z^{m} - \beta y^{m} - \beta z^{m}) z = 0$$

i.e., $x (\alpha y + z - \beta y - \beta z)^{m} z = 0$

By Lemma 2.3, we get

$$xz^{m} (\alpha y + z - \beta y - \beta z) = 0$$

i.e., $\alpha xz^{m} y + xz^{m+1} - \beta xz^{m} y - \beta xz^{m} z = 0$
 $\alpha xz^{m} y + xz^{m+1} - \alpha \beta xy^{m} z - \beta xz^{m+1} = 0$ (using (14)) \rightarrow (16)
Multiply (15) by α
 $\alpha xz^{m} y + \alpha xz^{m+1} - \alpha \beta xy^{m} z - \alpha \beta xz^{m+1} = 0$ \rightarrow (17)

(16) - (17) gives:

$$\begin{split} xz^{m+1} &- \alpha \ xz^{m+1} - \beta xz^{m+1} + \alpha \beta xz^{m+1} = 0 \\ x(z^2 - \alpha z^2 - \beta z^2 + \alpha \beta \ z^2) \ z^{m-1} = 0 \\ x \ (z - \alpha z) \ (z - \beta z \) \ z^{m-1} = 0 \end{split}$$

Since A has no zero divisors z = 0 or $z - \alpha z = 0$ or $z - \beta z = 0$. If z = 0, then $xy^m z = xz^m y$. If $z = \alpha z$, then from (2), we get $\alpha xz^m y = \alpha xy^m z$, i.e., $\alpha (xz^m y - xy^m z) = 0$. Since $\alpha \neq 0$, $xz^m y - xy^m z = 0$. If $z = \beta z$, then from (15) we get: $xz^m y + xz^{m+1} - xy^m z - xz^{m+1} = 0$

i.e.,
$$xz^m y = xy^m z$$
 (since $\beta = \beta^m$)

Thus A is scalar weak m power commutative.

Note: Taking m =1,we get Theorem 3.6[8].

Definition 3.8

Let R be any ring.Let m > 1 be a fixed integer .An element a ϵ R is said tobe m-potent if $a^m = a$.

Lemma 3.9:

Let A be an algebra with unity over a P.I.D R.Let m ϵZ^+ . Assume $(x+y)^m = x^m + y^m$

for all x,y ϵ A and that every element of R is m-potent.If A is scalar weak m-power commutativez ϵ A such that $O(z^{m+1}) = 0$, then $xy^m z = xz^m y$ for all x,y,z ϵ A. **Proof:**

Let $z \in A$ such that $O(z^{m+1}) = 0$. Let $x, y, z \in A$. Then there exists scalars $\alpha = \alpha(x,z,y) \in R$ and $\beta = \beta(x,z,y+z) \in R$ such that $x z^{m} (y + z) = \beta x (y+z)^{m} z$ \rightarrow (18) and $xz^my = \alpha xy^mz$ \rightarrow (19) From (19) we get: $x z^m (y+z) = \beta x (y+z)^m z$ $xz^{m}y + xz^{m+1} = \beta xy^{m}z + \beta xz^{m+1}$ \rightarrow (20) $\alpha x y^{m} z + x z^{m+1} - \beta x y^{m} z - \beta x z^{m+1} = 0 \quad (using (19))$ $x (\alpha y^{m} + z^{m} - \beta y^{m} - \beta z^{m})z = 0$ x $(\alpha y + z - \beta y - \beta z)^m z = 0$ (since R is m-potent) By Lemma 3.5, we get: $x z^{m} (\alpha y + z - \beta y - \beta z) = 0$ $\alpha \mathbf{x} \mathbf{z}^{m} \mathbf{y} + \mathbf{x} \mathbf{z}^{m+1} - \beta \mathbf{x} \mathbf{z}^{m} \mathbf{y} - \beta \mathbf{x} \mathbf{z}^{m+1} = 0$ $\alpha \ge z^m + x \ge z^{m+1} - \alpha \beta \ge y^m \ge -\beta \ge z^{m+1} = 0$ (using (19)) \rightarrow (21) Multiply (20) by α , we get $\alpha \ge z^{m} \ge y + \alpha \ge z^{m+1} = \alpha \beta \ge y^{m} \ge + \alpha \beta \ge z^{m+1}$ \rightarrow (22) From (21) and (22) we get $\alpha xz^{m}y + xz^{m+1} - \alpha\beta xy^{m}z - \beta xz^{m+1} - \alpha xz^{m}y + \alpha xz^{m+1} = \alpha\beta xy^{m}z + \alpha\beta xz^{m+1} = 0$ $(\alpha\beta xz^{m+1} - \alpha x z^{m+1} - \beta xz^{m+1} + x z^{m+1}) = 0$ x (1- α - β + $\alpha\beta$) x z^{m+1} = 0 $(1 - \alpha)(1 - \beta) \times z^{m+1} = 0$ \rightarrow (23) Thus for each z ϵ A, there exists scalars $\gamma \epsilon$ R and $\delta \epsilon$ R such that $\gamma x z^{m+1} = 0$ \rightarrow (24) and δ (x+1)z^{m+1} = 0 \rightarrow (25) $\gamma x (25) - \delta x (24)$ gives Therefore $\gamma \delta x \ z^{m+1} + \gamma \delta \ z^{m+1} - \gamma \delta x \ z^{m+1} = 0$ $v\delta z^{m+1} = 0$ Since O(z^{m+1}) = 0,we get $\gamma = 0$ (or) $\delta = 0$ Hence from (23) we get $(1 - \alpha)(1 - \beta) = 0$, i.e., either $\alpha = 1$ (or) $\beta = 1$. If $\alpha = 1$, from (18) we get If $\beta = 1$, from (18) we get

i.e., x
$$z^m y = xy^m z$$
.

Lemma 3.10

Let A be an algebra with identity over a P.I.D R.Let m ϵZ^+ . Suppose that $(x+y)^m = x^m + y^m$ for all x,y ϵA and that every element of R is m-potent.Suppose that A is scalar weak m-power commutative.Assume further that there exists a prime $p\epsilon R$ such that $p^m A = 0$. Then A is weak m-power commutative.

Proof: Let $x, y \in A$ such that $O(x^m y) = p^k$ for some $k \in Z^+$. We prove by induction on k that $ux^m y = uy^m x$ for all $u \in A$.

If k = 0, then $O(x^m y) = p^0 = 1$ and so $x^m y = 0$. So $ux^m y = 0$. By Lemma 3.5 $uy^m x$ for all $u \in A$. So assume that k > 0 and that the statements true for all 1 < k. If $ux^m y - uy^m x$ for all $u \in A$, then there is nothing to prove. So, let $ux^m y - uy^m x \neq 0$. Since A is scalar weak m- power commutative , there exists scalars $\alpha = \alpha(u, x, y) \in R$ and $\beta =$

 β (u,x+y,y) ϵ R such that:

$$ux^m y = \alpha uy^m x$$
 \rightarrow (26)

and

$$u (x+y)^m y = \beta u y^m (x+y) \qquad \rightarrow (27)$$

From (27) we get:

$$\begin{aligned} u (x^{m} + y^{m}) y = \beta uy^{m} x + \beta uy^{m+1} & \rightarrow (28) \\ \alpha uy^{m} x + \beta uy^{m+1} = \beta uy^{m} x + \beta uy^{m+1} & (using (26)) \\ \alpha uy^{m} x - \beta uy^{m} x = \beta uy^{m+1} - u y^{m+1} \\ (-\beta) uy^{m} x = (\beta - 1) u y^{m+1} & \rightarrow (29) \end{aligned}$$
If $(\alpha - \beta) uy^{m} x = 0$ then $(\beta - 1) u y^{m+1} = 0$.
Since $u y^{m+1} \neq 0, \beta = 1$. Hence from (28) we get
 $ux^{m} y = uy^{m} x$, contradicting our assumption that $ux^{m} y \neq uy^{m} x$.
So $(\alpha -) uy^{m} x \neq 0$. In particular $\alpha - \beta \neq 0$. Let $\alpha - \beta = p^{t} \delta$
For some $t \in \mathbb{Z}^{*}$ and $\delta \epsilon \mathbb{R}$ with $(\delta, p) = 1$.
If $t \geq k$, then since $O(x^{m} y) = p^{k}$ we would get
 $(\alpha -) uy^{m} x = 0$.
From (29) we get:
 $p^{k-t} (\beta - 1) uy^{m-1} = p^{k-t} (\alpha - \beta) uy^{m} x = 0$.
From (29) we get:
 $p^{k-t} (\beta - 1) uy^{m-1} = p^{k-t} (\alpha - \beta) uy^{m} x = p^{k-t} \delta uy^{m} x = 0$.
From (29) we get:
 $p^{k-t} (\beta - 1) uy^{m-1} = p^{k-t} (\alpha - \beta) uy^{m} x = 0$.
From (29) we get:
 $p^{k-t} (\beta - 1) uy^{m-1} = p^{k-t} (\alpha - \beta) uy^{m} x = 0$.
From (29) we get:
 $p^{k-t} (\beta - 1) uy^{m-1} = p^{k-t} (\beta - 1) uy^{m-1} = p^{k-t} \delta uy^{m} x = 0$.
From (29) we get:
 $p^{k-t} (\beta - 1)$.
Let $\beta - 1 = p^{t} \gamma$ for some $\gamma \in \mathbb{R}$.
Then from (29) weget
 $(\alpha -) uy^{m} x = (\beta - 1) uy^{m+1} = p^{t} \delta uy^{m-1} p^{t} \delta uy^{m} x = p^{t} \gamma uy^{m+1} p^{t} (\delta x - \gamma y) uy^{m} = 0$.
By Lemma 3.5, we get:
 $p^{t} u (\delta x - \gamma y)^{m} y = 0$.
Hence by induction hypothesis,
 $(\delta x - \gamma y)^{m} (uy) w = (uy)^{m} (\delta x - \gamma y) w$ for all $w \in \mathbb{A}$.
Taking $u = 1$, we get
 $(\delta x - \gamma y)^{m} (1, y) w = (1, y)^{m} (\delta x - \gamma y) w$
 $\delta (x^{m} y w - yy^{m+1} w = \delta xy^{m} w - \gamma y^{m+1} w = \delta xy^{m} w - \gamma y^{m+1} w = \delta xy^{m} w - \gamma y^{m+1} w$

Since, (, p) = 1, there exists μ , $\delta \epsilon$ R such that

$$\mu p^{m} + \gamma \delta = 1.$$

$$\therefore \mu p^{m} (wx^{m}y - wy^{m}x) + \gamma \delta (wx^{m}y - wy^{m}x) = wx^{m}y - wy^{m}x$$

 $0 + 0 = wx^m y - wy^m x \quad (\because p^m A)$

 $wx^m y - wy^m x = 0 \text{ for all } w \in A.$ Hence the proof.

References:

- [1] R.Coughlin and M.Rich, On Scalardependent algebras, J.Math24(1972),696-702.
- [2] R.Coughlin, K.Kleinfield and M.Rich, Scalars dependent algebras, proc.Amer.Soc, 39(1973),69-73.
- [3] G.Gopalakrishnamoorthy, M.Kamaraj and S.Geetha, On quasi- weak commutative Near - rings, International Journal of Mathematics Research, Vol5(5), (2013), 431- 440.
- [4] G.Gopalakrishnamoorthy,S.Geetha and S.Anitha,On quasi- weak commutative Near - rings – II,Malaya Journal of Mathematik,Vol3(3),(2015),327-337.
- [5] G.Gopalakrishnamoorthy and S.Geetha,On (m,n) power commutativity of rings and Scalar (m,n) - power commutativity of Algebras,Jour. of Mathematical Sciences, Vol 24(3),2013,97-110.
- [6] G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On quasi- weak m-power commutative Near – rings and On quasi- weak (m,n) - power commutative Near – rings, IOSR Journal of Mathematics, Vol12(4) Ver II, (2016), 87 – 90.
- [7] G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On weak m-power commutative Near rings and On weak (m,n) power commutative Near rings, IOSR Journal of Mathematics, Vol12(6), (2016), 44-47.
- [8] G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Scalar weak commutative Algebras, IOSR Journal of Mathematics, Vol3(2) VerI (2017), 107 114.
- [9] G.Gopalakrishnamoorthy, M.Kamaraj and S.Anitha, On scalar quasi- weak Commutative Algebras, IOSR Journal of Mathematics, Vol14(3), (2018), 30 - 37.
- [10] G.Gopalakrishnamoorthy, M.Kamaraj and S.Anitha, On scalar quasi- weak m-power Commutative Algebras, IOSR Journal of Mathematics, Vol14(4), (2018), 14-19.
- [11] K.Koh,J.Luh and M.S.Putcha,On the associativity and commutativity of algebras Over commutative rings,Pacific Journal of Mathematics 63(2),(1976),423-430.
- [12] Pliz, Gliner, Near- rings, North Holland, Anater dam (1983).
- [13] M.Rich, A Commutativity theorem for algebras, Amer. Math. Monthly, 82(1975), 377-379.