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AbstractA right near – ring N is called weak commutative if xyz = xzy for every x, y, z ∈ N. 
A right near – ring N is called pseudo commutative, if xyz = zyx for all x, y, z ∈ N. A right 
near – ring N is called quasi weak commutative, if xyz = yxz for everyx, y, z ∈ N. It is quite 
natural to investigate the properties of a right near – ring N satisfying xyz = yzx for 
everyx, y, z ∈ N. We call such a near –ring as cyclic commutative near – ring. We obtain some 
interesting results on cyclic commutative near – rings. 

 

 

1.  Introduction 

Through out this paper N denotes a right – near ring with at least two elements. For any non –empty 
subset A of N, we denote A – {0} = A*. 

Definition 1.1 An element a ∈ 𝐍𝐍 is said to be  

1. Idempotent if a2 = a  

2. Nilpotent, if there exists a positive integer k such that ak = 0 

Definition 1.2 A near – ring N is said to be regular if for each a∈ N,there exists b ∈ N such that: 

a = aba. 

 Result: (Theorem 1.62 Pilz [9]) Each Near – ring N is isomorphic to subdirect product of 
subdirectly irreducible near – ring. 

Definition 1.3 A near – ring N is said to be zero commutative if ab = 0 implies ba = 0, where a, b ∈ 
N.  
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 Result: If N is zero symmetric, then every left ideal A of N is an N – subgroup of N. Every ideal I of 
N satisfies the condition NIN⊆ I. (i.e) every ideal is an N – subgroup N*I*N*⊆ I* 
 
Result: Let N be a near – ring. Then the following are true. 

• If A is an ideal of N and B is any subset of N, then (A:B) = {n ∈ N such that nB⊆ A} is 
always a left ideal. 

• If A is an ideal of N and B is an N – subgroup , then (A:B) is an ideal. 
• In particular if A and B are ideals of a zero – symmetric near – ring, then (A:B) is an ideal. 

 
 Result:  

1. Let N be a regular near – ring, a∈ N and a = axa, then ax, xa are idempotents and so the set 
of idempotent elements of N is non – empty. 

2. axN = aN and Nxa = Na. 
3.  N is S and 𝐒𝐒′ near – rings. 

Result: Let N be a zero – symmetric reduced near – ring. For any a, b ∈ N and for any idempotent 
element e ∈ N, abe = aeb. 

Result:  (Gatzer [6]  and Fain [3]) A near –ring N is subdirectly irreducible if and only if the 
intersection of all non – zero ideals of N is not zero. 

Result:  (Gatzer [6]) Each simple near –ring  issubdirectly irreducible. 

Result: (Pilz [9])  Any non - zero  symmetric near – ring N has IFP if and only if (o:s) is an ideal for 
any subset S of N. 

Result: (Oswald [8]) An N – subgroup A of N is essential if 𝐀𝐀 ∩ 𝐁𝐁 = {0}, where B is any N 
subgroup of N implies B = {0}. 

Definition1.13 

A near – ring N is said to be reduced if N has no non – zero nilpotent elements. 
 
Definition 1.4 
A near – ring N is said to be integral near –ring, if N has no non – zero divisors. 
 
 Lemma 1.5 

Let N be a near – ring. If for all a∈ N, a2 = 0 implies a = 0, then has no non – zero nilpotent 
elements. 
 
Definition 1.6 
 Let N be a near – ring. N is said to satisfy intersection of factors property(IFP) if ab = 0,  
anb = 0 for all n ∈ N, where a,b ∈ N  
 
Definition 1.7 
 1. An ideal I of N is called a prime ideal if for all A,B of N, AB is a subset of I ⇒ A is subset 
of I or B is subset of I. 
 2. I is called semi – prime ideal if for all ideals A of N, A2 is subset of I implies A is subset 
of I. 
 3. I is called a completely semi – prime ideal if for any x ∈ N, x2∈ I ⇒x ∈ I 
 4. A completely  prime ideal if for any x, y ∈ I ⇒x∈I or y ∈ I 
 5. N is said to have strong IFP, if for all ideals I of N, ab∈ I implies anb ∈I for all n ∈N. 
 
 Result: Let N be a Pseudo commutative near – ring. Then every idempotent element is central. 
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Result: Let N be a regular quasi weak commutative near – ring. Then: 
1. A = √𝐀𝐀 , for every N subgroup A of N 
2.N is reduced 
3. N has IFP 

 
Result: Let N be a regular quasi weak commutative near – ring. Then every N sub group is an ideal 
N = Na = Na2 = aN = aNa for all a ∈ N 
 
Result: Let N be a quasi weak commutative near – ring. For every ideal I of N, (I :S ) is an ideal of N 
where S is any subset of N. 
 
Result: Every quasi weak commutative near – ring N is isomorphic to a sub – direct product of sub – 
directly irreducible quasi weak commutative near – rings. 

 
 

2.  Main Results 
 

Theorem 2.1. Let N be a regular cyclic commutative near – ring. Then 

i) P⋂Q = PQ for any two N – subgroups P,Q of N 

ii) P = P2 for every N subgroup (Ideal) P of N 

iii) If P is a proper N – subgroup of N, then each element if P is a zero divisor. 

iv) NaNb =  Na⋂Nb =  Nabforall a, b ∈ N 

v) Every N- subgroup of N is essential if N is integral 

Proof: 

(i) Let P and Q be two subgroup of N. Then by  [2] they are ideals.         Hence PQ ⊆ Q. So 

PQ ⊆ P⋂Q. 

Let a ∈ P ∩ Q. Since N is regular, there exists b∈ N, such that a = aba = (ab), a∈ (PN)Q ⊆

PQ. Hence P⋂Q = PQ . This Completes (i) 

(ii) Taking Q = P in (i) we get P = P2 

(iii) Let P be a proper  N- subgroup of N 

Let 0 ≠ a ∈ P.  Then by (ii) Na =  (Na)2 =  NaNa 

If for every n ∈ N, there exists x, y ∈ N such that na =  xaya 

So, (n − xay)a = 0 . If a is not a zero divisor, then n – xay = 0.  

That is, n = xay∈ NPN⊆ P. 

Hence N = P, contradicting P is a proper ideal of N. So a is a zero divisor of N. 

This proves (iii) 

(iv) SinceNa and Nb are N – subgroups, Na⋂Nb =  NaNb 

 Since Na ⊆ N, Na ∩ N =  Na =  NaNa ⊆ NaN                    ............... (1) 

 and Nais an ideal 
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 This implies that,NaN = (Na)N ⊆ Na =  Na ⋂N................. (2) 

 Hence Na = Na ∩ N = NaN 

 This implies Nab = (Na)b = (NaN)b = NaNb =  Na ∩ Nb 

 This proves (iv) 

 

v) Let P be a non –zero N – subgroups of N. 

 Suppose there exists an N – subgroup Q of N such thatP ∩ Q = {0}.                                                                             

 Then by (i)PQ = {0} and since N is an integral near – ring, Q = {0}.  

 This proves (v). 

 

 Theorem 2.2 

 Let N be a regular Cyclic Commutative near –ring and P be a proper N subgroup of N. 

Then the following are equivalent 

(i) P is a prime ideal 

(ii) P is completely prime ideal 

(iii) P is a primary ideal 

(iv) P is a maximal ideal 

Proof:  Let P be a proper N – subgroup of N. 

 (i) ⟹ (ii) 

Assume P is prime. Let  ab ∈ P.  By Theorem 2.1 (iv), NaNb =  Nab ⊆ NP ⊆ P. Also by   [2], Na and 

Nb are ideals of N.  Since P is prime, NaNb ⊆ P implies Na ⊆ P or Nb ⊆ P 

Since N is regular, there exists x, y ∈ N such that a = axa and b = byb. 

If Nb ⊆ P, then b = byb ∈ Nb ⊆ P, that is, either a∈ P or b∈ P. Hence P is completely prime. 

(ii)⟹ (i) is obvious. 

(ii) ⟹ (iii) 

Let a, b, c ∈ N. By Theorem 2.1 (iv) Nab = NaNb. Since Na ∩ Nb= Nb ∩ Na, we have Nab = Nba for 

all a,b∈N. Then Nabc = Nacb = Nbca. Suppose abc∈ P and ab ∉ P by (ii) c ∈ P . Again suppose abc∈ 

P and ac ∉ P . Since N is regular, acb∈ Nacb⊆NP ⊂ P. Thus acb = (ac)b∈ P implies b ∈ P (by (ii)) 

Continuing in the same way, we can early prove that if abc∈ P and if the product of any two of a,b,c 

does not belong to P, then the third belongs to P . This Proves (iii) 

 (iii) ⇒ (ii) 

Let abc∈ P and a ∉ P . Since N is regular, a = axa for some x ∈ N. We shall now prove that xa∉ P. 

Suppose xa∈ P, then a = axa = a (ax) ∈ NP ⊆P. Which is a contradiction. Therefore xa∉ P. Also x(ab) 

∈ NP ⊆P. Thus xab ∈ P and xa ∉P . As P is a prime ideal of N, bk∈ P for some integer. 

Hence b ∈ √P . But by Theorem 1.8 (a) [4], √P  = P. So b ∈ P. 
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(i) ⟹ (iv) 

Let J be an ideal of N such that P ⊆ J ⊆ N. Suppose P = J, there is nothing to prove. 

Assume P does not contains J. We shall prove that J = N. Let a ∈J/P. Since N is regular, there exists x 

∈ N such that a = axa . Then a =axa= xaa (Cyclic Commutative)  = xa2.  So for all n ∈ N, na = nxa2 and 

this implies ( n – nxa)a = 0. Since N has IFP, we get ( n – nxa)ya = 0 for all y ∈ N. That is, (n – nxa) 

Na  = 0 . Consequently N (n – nxa) Na  = N0 = {0 }. If b = n – nxa, then NbNa = {0}  ⊆ P. Since P is 

prime ideal and Na and Nb are ideals in N, either Na⊆ P or Nb⊆ P. If Na⊆ P, then a = axa∈ P, which 

is a contradiction. Hence Nb⊆ P ⊆ J. 

Since N is regular, there exists g ∈ N such that b = byb. That is, b = (by)b∈ Nb⊆ J. That is, b = n- nx∈ 

J. Since a∈ J, nxa ∈nJ⊆ J. Therefore n∈J.Hence J = N. So P is maximal  (iv) ⇒ (i) is obvious. 

This completes the proof of the theorem. 

 

Theorem2.3 

              Any Cyclic Commutative near – ring N with left identity is commutative 

Proof:  Let a,b∈N and c ∈ N be the left identity. Then ab = abe = bea = (be)a = ba. Hence N is 

commutative. 

 

Theorem 2.4 

Let N be a sub directly irreducible cyclic commutative near – ring. Then N is either simple 

with each non – zero idempotent element in an identity or the intersection of non – zero ideals of N 

has no non – zero idempotents. 

Proof:  Let N be a sub directly irreducible cyclic commutative near – ring. Suppose that N is simple. 

Let e ∈ N be non – zero idempotent element.  Then by result 8 [4],  N has IFP by Theorem 1.00 [4], (o 

: e) is an ideal. Since e ∉ (o : e) and N is simple, we get (o :e) ={ 0 }. Hence (ene – en)e = ene2 –ene = 

ene – ene , for all n ∈ N. This implies ene – en = 0 

That is:    ene = en                 ......(3) 

Also since N is cyclic commutative  

    ene = nee = ne2 =ne ...... (4) 

(3) and (4) gives  ne = en , for all n ∈ N     ......(5) 

Also,  (ne – n)e = ne2 – ne = nee – ne = 0 for all n ∈ N. 

This implies:    ne = n for all n ∈ N  ......(6) 

(5) and (6) gives:     ne = en = n     ......(7) 

Hence e is an identity. 
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Suppose N is not simple. 

Let I be the intersection of non-zero ideal of N. Since N is subdirectly irreducible, we have I ≠ {0} 

Suppose that I contains a non-zero idempotent e. We claim that e is a right identity. If not, there exists 

n ∈ N such that ne ≠ n.  Hence ne – n ≠ o. Since (ne – n)e = 0, we have ne – n ∈ (o : e) and hence (o: e) 

is a non-zero ideal of N. Therefore I ⊆ (o : e). Hence e ∈ I ⊂ (o : e), that is e ∈(o : e) 

This contradiction leads to conclude that e is a right identity of N. Hence for all n ∈ N, n = ne ∈ NI⊂ I.  

This implies that I = N, again a contradiction. Hence the intersection of the non-zero ideal of N has 

non-zero idempotents. This proves the theorems. 

  

Theorem 2.5 

 Let N be a regular cyclic commutative near-ring. Then the following are equivalent 

(i) N is sub directly irreducible. 

(ii) Non-zero idempotents of N are not zero divisors. 

(iii) N is simple. 

Proof: (i) ⇒ (ii) 

Let J be the set of all non-zero idempotents of N, which are zero divisors too. We shall prove that J is 

empty. Suppose J ≠ P. Let I = ⋂{ (o:e) / e ∈ J }.  Since N is sub directly irreducible,     I ≠ {0}, by 

Result 9 ([6] [3]).  Let a∈ I be a non-zero element. 

Since N is regular, there exists b ∈N, such that a = aba         ......(8) 

Also ab, ba are idempotents. Since  

s a = 0. This is a contradiction as a ≠ 0.  Hence J is empty. 

(ii)⟹(iii) 

Let I be a non –zero ideal of N and 00 ≠ a∈ I, ae = 0, for all e ∈ J.......(9) 

Then (ae)b = 0.  Since N is zero symmetric. b(ae) = 0. That is, (ba)e = 0. Hence ba is a zero 

divisor and so ba∈ J.  So by (9), a(ba) = 0. That i ≠ x = xyx......(10) 

Also yx is an idempotent element of N.  Therefore for every n ∈ N, nx = nxyx .  That is (n – nxy) x = 

Since N has IFP (n – nyx)yx = 0, by (ii) n – nxy = 0.That is, for every n ∈ N, n = nxy ∈ NIN ⊂ I 

Thus N ⊂ I.This prove that N has no non-zero trivial ideal of N. So N is simple. 

(iii) ⟹ (i) 

This follows from the result. 

 

Corollary 2.6 

                Let N be a regular cyclic commutative near – ring. Then N is subdirectly irreducible if and 

only if N is a field. 
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Proof:  By theorem 2.4 and 2.5, every non-zero idempotents is an identity. Let a ≠ 0 ∈ N.  Since N is 

regular, a = aba for some b ∈ N. That is, a = (ab)a. That is inverse exists for every a ∈ N. Hence N is a 

field. The converse is obvious. 

  

Theorem 2.7 

 Let N be a regular cyclic commutative near-ring. Then N is isomorphic to a sub direct 

product of fields. 

Proof:  By result 1.22[4], N is isomorphic to sub direct product of sub directly irreducible near-rings 

Nα ‘s, where each Nα is regular weak commutative. 

 

Corollary 2.8 

 Let N be a regular cyclic commutative near-ring. Then N has no non-zero divisors if and 

only if N is a field. 

Proof: Proof follows from the theorem. 
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