

ON CYCLIC COMMUTATIVITY NEAR – RINGS III

G.Gopalakrishnamoorthy¹, R.Veega²

¹Principal,Sri Krishnasamy Arts and Science College, Sattur,Tamilnadu, India ²Asst.Professor in Mathematics, Dr.G.R.Damodaran College of Education, Coimbatore,Tamilnadu, India.

AbstractA right near – ring N is called weak commutative if xyz = xzy for every x, y, $z \in N$. A right near – ring N is called pseudo commutative, if xyz = zyx for all x, y, $z \in N$. A right near – ring N is called quasi weak commutative, if xyz = yxz for everyx, y, $z \in N$. It is quite natural to investigate the properties of a right near – ring N satisfying xyz = yzx for everyx, y, $z \in N$. We call such a near –ring as cyclic commutative near – ring. We obtain some interesting results on cyclic commutative near – rings.

1. Introduction

Through out this paper N denotes a right – near ring with at least two elements. For any non –empty subset A of N, we denote $A - \{0\} = A^*$.

Definition 1.1 An element $a \in \mathbf{N}$ is said to be

- 1. Idempotent if $a^2 = a$
- 2. Nilpotent, if there exists a positive integer k such that ak = 0

Definition 1.2 A near – ring N is said to be regular if for each $a \in N$, there exists $b \in N$ such that:

a = aba.

Result: (Theorem 1.62 Pilz [9]) Each Near – ring N is isomorphic to subdirect product of subdirectly irreducible near – ring.

Definition 1.3 A near – ring N is said to be zero commutative if ab = 0 implies ba = 0, where $a, b \in N$.

Result: If N is zero symmetric, then every left ideal A of N is an N – subgroup of N. Every ideal I of N satisfies the condition NIN \subseteq I. (i.e) every ideal is an N – subgroup N*I*N* \subseteq I*

Result: Let N be a near – ring. Then the following are true.

- If A is an ideal of N and B is any subset of N, then (A:B) = {n ∈ N such that nB⊆ A} is always a left ideal.
- If A is an ideal of N and B is an N subgroup, then (A:B) is an ideal.
- In particular if A and B are ideals of a zero symmetric near ring, then (A:B) is an ideal.

Result:

- 1. Let N be a regular near ring, $a \in N$ and a = axa, then ax, xa are idempotents and so the set of idempotent elements of N is non empty.
- 2. axN = aN and Nxa = Na.
- 3. N is S and \mathbf{S}' near rings.

Result: Let N be a zero – symmetric reduced near – ring. For any a, $b \in N$ and for any idempotent element $e \in N$, abe = aeb.

Result: (Gatzer [6] and Fain [3]) A near –ring N is subdirectly irreducible if and only if the intersection of all non – zero ideals of N is not zero.

Result: (Gatzer [6]) Each simple near –ring issubdirectly irreducible.

Result: (Pilz [9]) Any non - zero symmetric near – ring N has IFP if and only if (0:s) is an ideal for any subset S of N.

Result: (Oswald [8]) An N – subgroup A of N is essential if $\mathbf{A} \cap \mathbf{B} = \{0\}$, where B is any N subgroup of N implies $\mathbf{B} = \{0\}$.

Definition1.13

A near – ring N is said to be reduced if N has no non – zero nilpotent elements.

Definition 1.4

A near – ring N is said to be integral near –ring, if N has no non – zero divisors.

Lemma 1.5

Let N be a near – ring. If for all $a \in N$, $a^2 = 0$ implies a = 0, then has no non – zero nilpotent elements.

Definition 1.6

Let N be a near – ring. N is said to satisfy intersection of factors property(IFP) if ab = 0, anb = 0 for all $n \in N$, where $a, b \in N$

Definition 1.7

1. An ideal I of N is called a prime ideal if for all A,B of N, AB is a subset of I \Rightarrow A is subset of I or B is subset of I.

2. I is called semi – prime ideal if for all ideals A of N, A^2 is subset of I implies A is subset of I.

3. I is called a completely semi – prime ideal if for any $x \in N$, $x^2 \in I \Rightarrow x \in I$

4. A completely prime ideal if for any x, $y \in I \Rightarrow x \in I$ or $y \in I$

5. N is said to have strong IFP, if for all ideals I of N, $ab \in I$ implies $anb \in I$ for all $n \in N$.

Result: Let N be a Pseudo commutative near – ring. Then every idempotent element is central.

Result: Let N be a regular quasi weak commutative near – ring. Then:

1. $A = \sqrt{A}$, for every N subgroup A of N 2.N is reduced 3. N has IFP

Result: Let N be a regular quasi weak commutative near – ring. Then every N sub group is an ideal $N = Na = Na^2 = aN = aNa$ for all $a \in N$

Result: Let N be a quasi weak commutative near – ring. For every ideal I of N, (I : S) is an ideal of N where S is any subset of N.

Result: Every quasi weak commutative near – ring N is isomorphic to a sub – direct product of sub – directly irreducible quasi weak commutative near – rings.

2. Main Results

Theorem 2.1. Let N be a regular cyclic commutative near – ring. Then

- i) $P \cap Q = PQ$ for any two N subgroups P,Q of N
- ii) $P = P^2$ for every N subgroup (Ideal) P of N
- iii) If P is a proper N subgroup of N, then each element if P is a zero divisor.

iv) $N_a N_b = N_a \cap N_b = N_{ab}$ forall $a, b \in N$

v) Every N- subgroup of N is essential if N is integral

Proof:

(i) Let P and Q be two subgroup of N. Then by [2] they are ideals. Hence $PQ \subseteq Q$. So $PQ \subseteq P \cap Q$.

Let $a \in P \cap Q$. Since N is regular, there exists $b \in N$, such that a = aba = (ab), $a \in (PN)Q \subseteq PQ$. Hence $P \cap Q = PQ$. This Completes (i)

- (ii) Taking Q = P in (i) we get $P = P^2$
- (iii) Let P be a proper N- subgroup of N

Let $0 \neq a \in P$. Then by (ii) $Na = (N_a)^2 = N_a N_a$ If for every $n \in N$, there exists $x, y \in N$ such that $n_a = x_a y_a$ So, (n - xay)a = 0. If a is not a zero divisor, then n - xay = 0. That is, $n = xay \in NPN \subseteq P$. Hence N = P, contradicting P is a proper ideal of N. So a is a zero divisor of N. This proves (iii)

(iv) Since N_a and N_b are N – subgroups, $N_a \cap N_b = N_a N_b$

Since $N_a \subseteq N, N_a \cap N = N_a = N_a N_a \subseteq N_a N$ (1) and N_a is an ideal This implies that, $N_a N = (N_a)N \subseteq N_a = N_a \cap N$(2) Hence $N_a = N_a \cap N = N_a N$ This implies $N_{ab} = (N_a)b = (N_aN)b = N_aN_b = N_a \cap N_b$ This proves (iv)

v) Let P be a non -zero N - subgroups of N.
Suppose there exists an N - subgroup Q of N such that P ∩ Q = {0}.
Then by (i)PQ = {0} and since N is an integral near - ring, Q = {0}.
This proves (v).

Theorem 2.2

Let N be a regular Cyclic Commutative near –ring and P be a proper N subgroup of N. Then the following are equivalent

- (i) P is a prime ideal
- (ii) P is completely prime ideal
- (iii) P is a primary ideal
- (iv) P is a maximal ideal

Proof: Let P be a proper N – subgroup of N.

$$(i) \Rightarrow (ii)$$

Assume P is prime. Let $ab \in P$. By Theorem 2.1 (iv), $N_aN_b = N_{ab} \subseteq NP \subseteq P$. Also by [2], N_a and N_b are ideals of N. Since P is prime, $N_aN_b \subseteq P$ implies $N_a \subseteq P$ or $N_b \subseteq P$

Since N is regular, there exists $x, y \in N$ such that a = axa and b = byb.

If $N_b \subseteq P$, then $b = byb \in N_b \subseteq P$, that is, either $a \in P$ or $b \in P$. Hence P is completely prime.

(ii) \Rightarrow (i) is obvious.

$$(ii) \Longrightarrow (iii)$$

Let a, b, $c \in N$. By Theorem 2.1 (iv) Nab = NaNb. Since $N_a \cap N_b = N_b \cap N_a$, we have Nab = Nba for all $a,b\in N$. Then Nabc = Nacb = Nbca. Suppose $abc\in P$ and $ab \notin P$ by (ii) $c \in P$. Again suppose $abc\in P$ and $ac \notin P$. Since N is regular, $acb\in Nacb\subseteq NP \subset P$. Thus $acb = (ac)b\in P$ implies $b \in P$ (by (ii))

Continuing in the same way, we can early prove that if $abc \in P$ and if the product of any two of a,b,c does not belong to P, then the third belongs to P. This Proves (iii)

$$(iii) \Rightarrow (ii)$$

Let $abc \in P$ and $a \notin P$. Since N is regular, a = axa for some $x \in N$. We shall now prove that $xa \notin P$. Suppose $xa \in P$, then a = axa = a (ax) $\in NP \subseteq P$. Which is a contradiction. Therefore $xa \notin P$. Also $x(ab) \in NP \subseteq P$. Thus $xab \in P$ and $xa \notin P$. As P is a prime ideal of N, $bk \in P$ for some integer.

Hence $b \in \sqrt{P}$. But by Theorem 1.8 (a) [4], $\sqrt{P} = P$. So $b \in P$.

$(i) \Longrightarrow (iv)$

Let J be an ideal of N such that $P \subseteq J \subseteq N$. Suppose P = J, there is nothing to prove.

Assume P does not contains J. We shall prove that J = N. Let $a \in J/P$. Since N is regular, there exists $x \in N$ such that a = axa. Then a = axa = xaa (Cyclic Commutative) $= xa^{2}$. So for all $n \in N$, na = nxa2 and this implies (n - nxa)a = 0. Since N has IFP, we get (n - nxa)ya = 0 for all $y \in N$. That is, (n - nxa) Na = 0. Consequently N (n - nxa) Na $= N0 = \{0\}$. If b = n - nxa, then NbNa $= \{0\} \subseteq P$. Since P is prime ideal and Na and Nb are ideals in N, either Na $\subseteq P$ or N_b $\subseteq P$. If Na $\subseteq P$, then $a = axa \in P$, which is a contradiction. Hence N_b $\subseteq P \subseteq J$.

Since N is regular, there exists $g \in N$ such that b = byb. That is, $b = (by)b \in Nb \subseteq J$. That is, $b = n - nx \in J$. J. Since $a \in J$, $nxa \in nJ \subseteq J$. Therefore $n \in J$. Hence J = N. So P is maximal (iv) \Rightarrow (i) is obvious.

This completes the proof of the theorem.

Theorem2.3

Any Cyclic Commutative near - ring N with left identity is commutative

Proof: Let $a,b\in N$ and $c\in N$ be the left identity. Then ab = abe = bea = (be)a = ba. Hence N is commutative.

Theorem 2.4

Let N be a sub directly irreducible cyclic commutative near - ring. Then N is either simple with each non - zero idempotent element in an identity or the intersection of non - zero ideals of N has no non - zero idempotents.

Proof: Let N be a sub directly irreducible cyclic commutative near – ring. Suppose that N is simple. Let $e \in N$ be non – zero idempotent element. Then by result 8 [4], N has IFP by Theorem 1.00 [4], (o : e) is an ideal. Since $e \notin (o : e)$ and N is simple, we get (o : e) ={ 0 }. Hence (ene – en)e = ene² – ene = ene – ene , for all $n \in N$. This implies ene – en = 0

That is:	ene = en	(3)
----------	----------	-----

Also since N is cyclic commutative

$$ene = nee = ne^2 = ne \dots (4)$$

(3) and (4) gives ne = en, for all $n \in N$ (5)

Also, $(ne - n)e = ne^2 - ne = nee - ne = 0$ for all $n \in N$.

This implies: $ne = n \text{ for all } n \in N \dots(6)$

(5) and (6) gives: ne = en = n(7)

Hence e is an identity.

Suppose N is not simple.

Let I be the intersection of non-zero ideal of N. Since N is subdirectly irreducible, we have $I \neq \{0\}$ Suppose that I contains a non-zero idempotent e. We claim that e is a right identity. If not, there exists $n \in N$ such that $ne \neq n$. Hence $ne - n \neq o$. Since (ne - n)e = 0, we have $ne - n \in (o : e)$ and hence (o: e) is a non-zero ideal of N. Therefore $I \subseteq (o : e)$. Hence $e \in I \subset (o : e)$, that is $e \in (o : e)$

This contradiction leads to conclude that e is a right identity of N. Hence for all $n \in N$, $n = ne \in NI \subset I$. This implies that I = N, again a contradiction. Hence the intersection of the non-zero ideal of N has non-zero idempotents. This proves the theorems.

Theorem 2.5

Let N be a regular cyclic commutative near-ring. Then the following are equivalent

- (i) N is sub directly irreducible.
- (ii) Non-zero idempotents of N are not zero divisors.
- (iii) N is simple.

Proof: (i) \Rightarrow (ii)

Let J be the set of all non-zero idempotents of N, which are zero divisors too. We shall prove that J is empty. Suppose $J \neq P$. Let $I = \bigcap \{ (o:e) / e \in J \}$. Since N is sub directly irreducible, $I \neq \{0\}$, by Result 9 ([6] [3]). Let $a \in I$ be a non-zero element.

Since N is regular, there exists $b \in N$, such that a = aba(8)

Also ab, ba are idempotents. Since

s a = 0. This is a contradiction as a \neq 0. Hence J is empty.

(ii)⇒(iii)

Let I be a non –zero ideal of N and $00 \neq a \in I$, ae = 0, for all $e \in J$(9)

Then (ae)b = 0. Since N is zero symmetric. b(ae) = 0. That is, (ba)e = 0. Hence ba is a zero divisor and so ba \in J. So by (9), a(ba) = 0. That i \neq x = xyx.....(10)

Also yx is an idempotent element of N. Therefore for every $n \in N$, nx = nxyx. That is (n - nxy) x =Since N has IFP (n - nyx)yx = 0, by (ii) n - nxy = 0. That is, for every $n \in N$, $n = nxy \in NIN \subset I$

Thus $N \subset I$. This prove that N has no non-zero trivial ideal of N. So N is simple.

$$(iii) \Longrightarrow (i)$$

This follows from the result.

Corollary 2.6

Let N be a regular cyclic commutative near – ring. Then N is subdirectly irreducible if and only if N is a field.

Proof: By theorem 2.4 and 2.5, every non-zero idempotents is an identity. Let $a \neq 0 \in N$. Since N is regular, a = aba for some $b \in N$. That is, a = (ab)a. That is inverse exists for every $a \in N$. Hence N is a field. The converse is obvious.

Theorem 2.7

Let N be a regular cyclic commutative near-ring. Then N is isomorphic to a sub direct product of fields.

Proof: By result 1.22[4], N is isomorphic to sub direct product of sub directly irreducible near-rings N α 's, where each N α is regular weak commutative.

Corollary 2.8

Let N be a regular cyclic commutative near-ring. Then N has no non-zero divisors if and only if N is a field.

Proof: Proof follows from the theorem.

References

- [1] Foster .A.L., The theory if Boolean like rings. Amer. Math. Soc, Vol.59,1946.
- [2] Gopalakrishnamoorthy . G and Geetha.S, on Quasi weak commutative near-ring, Int.Jour of Math. Research, Vol.5, No 5,2013, 431 440.
- [3] Gopalakrishnamoorthy . G and Anitha.S, On Commutative Property of Q k,n,Qk,m, Pk,n,Pmand Qm Rings, jour. OF Inst. Of Mathematicsand Computer Sciences, Vol.23, No.2 (2010) 63-70.
- [4] KetselaHailu, BerhanuBekeleBelayneh, ZelabesmTeshome and K. Venkateswarlu, Boolean like semi ring of fractions, Inter. Jour.Of Math.Archieve, Vol.3, No.4, 2012, 1554 1560.
- [5] Pilz.Gunter, Near Rings, The theory and its applications, North Holland, 1983.
- [6] Swaminathan.V, Boolean like rings, Ph.D.dissertation, Andhra University, India , 1982.
- [7] Swaminathan.V, On Fosters Boolean like rings, Math. Seminar Notes, Kobe University, Japan, Vol.8, 1980, 347 -367.
- [8] Uma.S, Balakrishnan.R and TamizhChelvam.T, Pseudo Commutative near –rings, Scientia Magna, Vol.6,No.2, 2010, 75 -85.
- [9] Yaqub.A, A generalization of certain Rings of A.L. Foster, University of California, 1962.