

FIXED POINT THEOREMS IN GENERALIZED *b*-FUZZY METRIC SPACES FOR PROXIMAL CONTRACTION

D. Poovaragavan¹ and M. Jeyaraman²

¹Department of Mathematics, Govt. Arts College for Women, Sivagangai, Part-time Ph.D., Research Scholar, PG & Research Department of Mathematics,Raja Doraisingam Government Arts College, Sivagangai.Affiliated to Alagappa University, Karaikudi.E-mail:

poovaragavan87@gmail.com.

²P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Affiliated to Alagappa University, Karaikudi, Tamilnadu, India. *E-mail: jeya.math@gmail.com*

Abstract: In this paper, we prove the existence of some fixed point in Generalized b – Fuzzy Metric Spaces for mapping satisfying proximal contractive conditions.

Keywords:t- norm, Generalized b – Fuzzy Metric Spaces, F-bounded, Fuzzy Approximately Compact, Proximal Contraction.

AMS Subject Classification: 47H10, 47H04.

1. Introduction

Fuzzy set was defined by Zadeh [5] in 1965 which is a mathematical frame to vagueness or uncertainity in daily life. Kramosil and Michalek [4] introduced fuzzy metric spaces and this concept was modified by George and Veeramani in 1994[1]. In 2006, S. Sedghi and N. Shobe proved common fixed point theorem in \mathcal{M} – fuzzy metric spaces.On the other hand, Bakhtin [11] introduced the notion b – metric spaces. Sedghi and Shobe [10] combined the concepts of fuzzy set and b – metric space to introduce a b – fuzzy metric space. Hussain, Salimi and Parvaneh [6] derived any new fixed point results of mappings defined on triangular partially ordered fuzzy b – metric spaces. In 2016, S. Nadban [9] studied the concepts of fuzzy quasi b – metric and fuzzy quasi pseudo b – metric spaces. In 2007, Dosenovic, Javaheri and Shobe [12] proved coupled coincidence fixed point theorems in complete b – fuzzy metric spaces.

2. Preliminaries

Definition 2.1

A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is said to be continuous t-norm if for any $a, b, c, d \in [0,1]$, the following conditions hold:

- i. * is associative and commutative,
- ii. * is continuous,
- iii. a * 1 = a,
- iv. $a * b \le c * d$ whenever $a \le c$ and $b \le d$.

Three examples of a continuous t-norm are a * b = ab, $a * b = \min\{a, b\}$ and $a * b = \max\{a + b - 1, 0\}$.

Definition 2.2

A quadruple (X, \mathcal{M} , *, b) is called a generalized b – fuzzy metric spaces with $b \ge 1$ if X is an arbitrary non-empty set, * is a continuous t-norm and \mathcal{M} is a fuzzy set on $X^3 \times (0, \infty)$, satisfying the following conditions for each $x, y, z, a \in X$ and t, s > 0,

- i. $\mathcal{M}(x, y, z, t) > 0$,
- ii. $\mathcal{M}(x, y, z, t) = 1$ if and only if x = y = z,
- iii. $\mathcal{M}(x, y, z, t) = \mathcal{M}(p\{x, y, z\}, t)$, where p is a permutation function,
- iv. $\mathcal{M}(x, y, z, t+s) \ge \mathcal{M}\left(x, y, a, \frac{t}{b}\right) * \mathcal{M}\left(a, z, z, \frac{s}{b}\right),$
- v. $\mathcal{M}(x, y, z, \cdot) : (0, \infty) \to [0, 1]$ is continuous.

Note that generalized b – fuzzy metric spaces are a generalized fuzzy metric spaces if b = 1, but the converse does not hold in general.

Definition 2.3

Let $(X, \mathcal{M}, *, b)$ be a generalized b – fuzzy metric space. For t > 0, the open ball B(x, r, t) with center $x \in X$ and radius 0 < r < 1 is defined by $B(x, r, t) = \{y \in X : \mathcal{M}(x, y, y, t) > 1 - r\}$.

Definition 2.4

Let $(X, \mathcal{M}, *, b)$ be a generalized b – fuzzy metric space, then

- i. A sequence $\{x_n\}$ in X is said to be convergent to x if for each t > 0, $\mathcal{M}(x, x, x_n, t) \to 1$ as $n \to \infty$.
- ii. A sequence $\{x_n\}$ in X is said to be a Cauchy sequence if for each $0 < \mathcal{E} < 1$ and t>0, there exist $n_0 \in \mathbb{N}$ such that $\mathcal{M}(x_n, x_n, x_m, t) > 1 \mathcal{E}$ for each $n, m \ge n_0$.
- iii. A generalized b fuzzy metric spaces are said to be complete if every Cauchy sequence is convergent.

Definition 2.5

Let *A* and *B* be two nonempty subsets of a generalized *b* – fuzzy metric space(*X*, \mathcal{M} , *, *b*). Define $A_0(t) = \{x \in A : \mathcal{M}(x, y, y, t) = \mathcal{M}(A, B, B, t) \text{ for some } y \in B\}$ and $B_0(t) = \{y \in B : \mathcal{M}(x, y, y, t) = \mathcal{M}(A, B, B, t) \text{ for some } x \in A\},\$

where, $\mathcal{M}(A, B, B, t) = \sup\{\mathcal{M}(a, b, b, t) : a \in A, b \in B\}$. A distance of a point $x \in X$ from a nonempty set A is defined by $\mathcal{M}(x, A, A, t) = \sup \mathcal{M}(x, a, a, t)$, where t > 0.

Definition 2.6

A point *x* in *A* is said to be the optimal coincidence point of a pair (g, T) of mappings $T : A \to B$ and $g : A \to A$ if $\mathcal{M}(gx, Tx, Tx, t) = \mathcal{M}(A, B, B, t)$ holds.

Definition 2.7

Let *A*, *B* be nonempty subsets of a generalized *b* - fuzzy metric space (*X*, \mathcal{M} , *, *b*). A set *B* is said to be fuzzy approximately compact with respect to *A* if for every sequence $\{y_n\}$ in *B*, if $\mathcal{M}(x, y_n, y_n, t) \rightarrow \mathcal{M}(x, B, B, t)$ for some $x \in A$, then $x \in A_0(t)$.

Let Ω be the set of all mappings $\eta : (0,1] \rightarrow [0,\infty)$ which satisfy the following properties:

- i. η is continuous and decreasing,
- ii. $\eta(t) = 0$ iff t = 1,
- iii. For any $r, s \in (0,1]$ with r * s > 0, we have $\eta(r * s) \le \eta(r) + \eta(s)$, where * is any continuous t-norm.

Definition 2.8

A mapping $T : A \to B$ is said to be generalized b – fuzzy proximal contraction of type –I with respect to $\eta \in \Omega$, if there exist $k \in (0,1)$ such that for any $x, y, u, v \in A$ and t > 0, we have $\mathcal{M}(u, Tx, Tx, t) = \mathcal{M}(A, B, B, t)$ and $\mathcal{M}(v, Ty, Ty, t) = \mathcal{M}(A, B, B, t)$ which implies that $\eta[\mathcal{M}(u, v, v, t)] \leq k\eta[\mathcal{M}(x, y, y, t)].$

3. Main Result

Theorem 3.1

Let $(X, \mathcal{M}, *, b)$ be a complete generalized b – fuzzy metric space and $T : A \to B$ be a generalized b – fuzzy proximal contraction of type – I with $T(A_0(t)) \subseteq B_0(t)$ for each t > 0. If B is fuzzy approximately compact with respect to a non-empty closed subset A in X. Then there exists an element $x^* \in A$ such that $\mathcal{M}(x^*, Tx^*, Tx^*, t) = \mathcal{M}(A, B, B, t)$.

Proof:

Let x_0 be an arbitrary element in $A_0(t)$. As $T(A_0(t)) \subseteq B_0(t)$, we may choose an element $x_1 \in A_0(t)$ such that $\mathcal{M}(x_1, Tx_0, Tx_0, t) = \mathcal{M}(A, B, B, t)$.

Also, since $Tx_1 \in T(A_0(t)) \subseteq B_0(t)$, it follows that there exists an element $x_2 \in A_0(t)$ such that the following equation holds: $\mathcal{M}(x_2, Tx_1, Tx_1, t) = \mathcal{M}(A, B, B, t)$.

Continuing this way, we can obtain a sequence $\{x_n\}$ in $A_0(t)$ such that it satisfies:

 $\mathcal{M}(x_n, Tx_{n-1}, Tx_{n-1}, t) = \mathcal{M}(A, B, B, t)$ and $\mathcal{M}(x_{n+1}, Tx_n, Tx_n, t) = \mathcal{M}(A, B, B, t)$

for each positive integer n and for $k \in (0,1)$.

As *T* is generalized b – fuzzy proximal contraction of type –I with respect to $\eta \in \Omega$, we have $\eta[\mathcal{M}(x_n, x_{n+1}, x_{n+1}, t)] \le k\eta[\mathcal{M}(x_{n-1}, x_n, x_n, t)]$, for all $n \ge 0$. As η is a decreasing mapping on $[0, \infty)$, we obtain that

$$\begin{split} \eta[\mathcal{M}(x_n, x_{n+1}, x_{n+1}, t) &\leq k\eta[\mathcal{M}(x_{n-1}, x_n, x_n, t)] \\ &\leq k^2 \eta[\mathcal{M}(x_{n-2}, x_{n-1}, x_{n-1}, t)] \\ &\vdots \\ &\leq k^n \eta[\mathcal{M}(x_0, x_1, x_1, t)], \text{ for each } t > 0. \end{split}$$

On taking limit as $n \to \infty$ on both sides of the above inequality,

we have $\lim_{n \to \infty} \eta[\mathcal{M}(x_n, x_{n+1}, x_{n+1}, t)] = 0.$

Now, we show that $\{x_n\}$ is a Cauchy sequence.

Suppose that there exists some $n_0 \in \mathbb{N}$ with $m > n > n_0$ such that,

$$\begin{split} \eta[\mathcal{M}(x_{n}, x_{m}, x_{m}, t)] &\leq \eta[\mathcal{M}\Big(x_{n}, x_{n}, x_{n}, \frac{t}{b} - \sum_{i=n}^{m-1} \frac{a_{i}t}{b}\Big) * \mathcal{M}\Big(x_{n}, x_{m}, x_{m}, \sum_{i=n}^{m-1} \frac{a_{i}t}{b}\Big)] \\ &= \eta[1 * \mathcal{M}\Big(x_{n}, x_{m}, x_{m}, \sum_{i=n}^{m-1} \frac{a_{i}t}{b}\Big)] \\ &\leq \eta(1) + \eta[\mathcal{M}\Big(x_{n}, x_{m}, x_{m}, \sum_{i=n}^{m-1} \frac{a_{i}t}{b}\Big)] \\ &= \eta[\mathcal{M}\Big(x_{n}, x_{m}, x_{m}, \sum_{i=n}^{m-1} \frac{a_{i}t}{b}\Big)] \end{split}$$

Where $\{a_i\}$ is a decreasing sequence of positive numbers satisfying $\sum_{i=n}^{m-1} a_i = 1$. Moreover, we obtain that

$$\begin{split} \eta[\mathcal{M}(x_{n}, x_{m}, x_{m}, t)] &\leq \eta[\mathcal{M}\left(x_{n}, x_{m}, x_{m}, \sum_{i=n}^{m-1} \frac{a_{it}}{b}\right)] \\ &\leq \eta[\mathcal{M}\left(x_{n}, x_{n+1}, x_{n+1}, \frac{a_{n}t}{b^{2}}\right) * \mathcal{M}\left(x_{n+1}, x_{n+2}, x_{n+2}, \frac{a_{n+1}t}{b^{2}}\right) * \\ &\cdots * \mathcal{M}\left(x_{m-1}, x_{m}, x_{m}, \frac{a_{m-1}t}{b^{2}}\right)] \\ &\leq \eta[\mathcal{M}\left(x_{n}, x_{n+1}, x_{n+1}, \frac{a_{n}t}{b^{2}}\right) + \eta[\mathcal{M}\left(x_{n+1}, x_{n+2}, x_{n+2}, \frac{a_{n+1}t}{b^{2}}\right) + \\ &\cdots + \eta[\mathcal{M}\left(x_{m-1}, x_{m}, x_{m}, \frac{a_{m-1}t}{b^{2}}\right)] \\ &\leq k^{n}\eta[\mathcal{M}\left(x_{0}, x_{1}, x_{1}, \frac{a_{n}t}{b^{2}}\right) + k^{n+1}\eta[\mathcal{M}\left(x_{0}, x_{1}, x_{1}, \frac{a_{n+1}t}{b^{2}}\right)] \\ &\cdots + k^{m-1}\eta[\mathcal{M}\left(x_{0}, x_{1}, x_{1}, \frac{a_{m-1}t}{b^{2}}\right)]. \end{split}$$

Hence,

$$\eta[\mathcal{M}(x_n, x_m, x_m, t)] \le k^n \eta[\mathcal{M}\left(x_0, x_1, x_1, \frac{a_n t}{b^2}\right) + k^{n+1} \eta[\mathcal{M}\left(x_0, x_1, x_1, \frac{a_{n+1} t}{b^2}\right)] \cdots + k^{m-1} \eta[\mathcal{M}\left(x_0, x_1, x_1, \frac{a_{m-1} t}{b^2}\right)].$$
(3.1.1)

Assume that,

$$\eta[\mathcal{M}(x_0, x_1, x_1, qt)] = \max\{\eta[\mathcal{M}(x_0, x_1, x_1, \frac{a_n t}{b^2})], \eta[\mathcal{M}(x_0, x_1, x_1, \frac{a_{n+1} t}{b^2})], \cdots, \eta[\mathcal{M}(x_0, x_1, x_1, \frac{a_{m-1} t}{b^2})]\}$$

For some $q \in \left\{\frac{a_i}{b^2} : n \le i \le m-1 \text{ and } b \ge 1\right\}$, then the inequality (3.1.1) becomes $\eta[\mathcal{M}(x_n, x_m, x_m, t)] \le k^n \eta[\mathcal{M}(x_0, x_1, x_1, qt)] + k^{n+1} \eta[\mathcal{M}(x_0, x_1, x_1, qt)]$ $\cdots + k^{m-1} \eta[\mathcal{M}(x_0, x_1, x_1, qt)]$ $\le (k^n + k^{n+1} + \cdots + k^{m-1}) \eta[\mathcal{M}(x_0, x_1, x_1, qt)]$

$$= k^{n} (1 + k + \dots + k^{m-n-1}) \eta[\mathcal{M}(x_{0}, x_{1}, x_{1}, qt)]$$

$$\leq \frac{k^n}{1-k}\eta[\mathcal{M}(x_0, x_1, x_1, qt)]$$

That is, for all $n \in \mathbb{N}, \eta[\mathcal{M}(x_n, x_m, x_m, t)] \leq \frac{k^n}{1-k} \eta[\mathcal{M}(x_0, x_1, x_1, qt)].$ On taking limit as $n \to \infty$ on both sides of the above inequality, we have

$$0 \leq \lim_{n,m\to\infty} \eta [\mathcal{M}(x_n, x_m, x_m, t)] \leq 0$$

By the continuity of η , we have $\lim_{n,m\to\infty} \eta \mathcal{M}(x_n, x_m, x_m, t) = 1$.

Thus, $\{x_n\}$ is a Cauchy sequence in a closed subset A of a complete generalized b – fuzzy metric space $(X, \mathcal{M}, *, b)$.

Hence there exists some $x^* \in A$ such that $\lim_{n \to \infty} \eta \mathcal{M}(x_n, x^*, x^*, t) = 1$, for all t > 0.

As the sequence $\{x_n\}$ converges to x^* , we obtain that $\mathcal{M}(x^*, Tx_n, Tx_n, t) \rightarrow \mathcal{M}(x^*, B, B, t)$.

If, we consider $Tx^* = y$ (say) in B. Since $\{Tx_n\} \subseteq B$ and B is a fuzzy approximately compact with respect to $A, \{Tx_n\}$ has a subsequence which converges to some y in B, therefore $\mathcal{M}(x^*, y, y, t) = \mathcal{M}(A, B, B, t)$ and hence $x^* \in A_0(t)$. Thus, $\mathcal{M}(x^*, Tx^*, Tx^*, t) = \mathcal{M}(A, B, B, t)$.

For Uniqueness: If there is another point $y^* \neq x^*$ in *A*. Then we have $\mathcal{M}(x^*, Tx^*, Tx^*, t) = \mathcal{M}(A, B, B, t)$ and $\mathcal{M}(y^*, Ty^*, Ty^*, t) = \mathcal{M}(A, B, B, t)$ Since, *T* is generalized b – fuzzy proximal contraction of type – I, so $\eta[\mathcal{M}(x^*, y^*, y^*, t)] \leq k\eta[\mathcal{M}(x^*, y^*, y^*, t)] < \eta \mathcal{M}(x^*, y^*, y^*, t)]$. Gives a contradiction. Hence the result.

Theorem 3.2

Let $(X, \mathcal{M}, *, b)$ be complete generalized b – fuzzy metric space, let $T : X \to X$ be a mapping satisfying

(3.2.1) $\eta[\mathcal{M}(Tx,Ty,Ty,t)] \leq k\eta[\mathcal{M}(x,y,y,t)].$

(3.2.2) *T*is continuous.

Then *T* has a fixed point $x^* \in X$ and $\{T^n x_0\}$ Converges to x^* .

Proof:

Let A = B = X, first we will prove that *T* is *b* – fuzzy proximal contraction of type –I. Let *x*, *y*, *u*, *v* \in *X*, satisfy the following conditions:

 $\mathcal{M}(u, Tx, Tx, t) = \mathcal{M}(A, B, B, t)$ and $\mathcal{M}(v, Ty, Ty, t) = \mathcal{M}(A, B, B, t)$.

Since $\mathcal{M}(A, B, B, t) = 1$, so we have u = Tx and v = Ty. Since T satisfies condition (3.2.1)

hence $\eta[\mathcal{M}(u, v, v, t)] = \eta[\mathcal{M}(Tx, T, y, Ty, t)] \le k \eta[\mathcal{M}(x, y, y, t)]$

which implies that *T* is a generalized b – fuzzy proximal contraction of type – I with respect to $\eta \in \Omega$. If we choose y = Tx, then

 $\mathcal{M}(A, B, B, t) = \mathcal{M}(y, Tx, Tx, t) = \mathcal{M}(Tx, Tx, Tx, t).$

Set *B* is approximative compact with respect to *A*, the conditions of Theorem 3.1 are satisfied, so there exists $x^* \in X$ such that $\mathcal{M}(x^*, Tx^*, Tx^*, t) = \mathcal{M}(A, B, B, t)$, which implies that $Tx^* = x^*$.

References

- [1] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90(3) (1997), 365-368.
- [2] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10(1) (1960), 313-334.
- [3] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Ulianowsk, Gos. Ped. Inst., 30 (1989), 26-37.
- [4] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11(5) (1975), 336-344.
- [5] L. A. Zadeh, Fuzzy Sets, Infromations and control, 8(3) (1995), 338-353.
- [6] N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractios in parametric and fuzzy *b* metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 719-739.
- [7] N. Saleem, M. Abbas, Z. Raza, Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces, Iranian Journal of fuzzy systems, 13(3) (2016), 113-124.
- [8] S. Czerwik, Contraction mappings in b metric space, Acta Math. Inf. Univ. Os-traviensis, 1 (1993), 5-11.
- [9] S. Nadaban, Fuzzy *b* metric spaces, International Journal of Computers Communications &Control, 11(2) (2016), 273-281.
- [10] S. Sedghi, N. Shobe, Common fixed point theorems in b fuzzy metric spaces, Nonlinear Function Analysis and Application, 17(3) (2012), 349-359.
- [11] S. Sedghi, N. Shobe, Fixed point theorem in M Fuzzy metric Spaces with property (E), Advances in Fuzzy mathematics, 1(1) (2006), 55-65
- [12] T. Dosenovic, A. Javaheri, S. Sedghi, N. Shobe, Coupled fixed point theorem in *b* fuzzy metric spaces, NOVISAD J. MATH., 47(1) (2017), 77-88.
- [13] Z. Raza, N. Saleem, M. Abbas, Optimal coincidence points of proximal quasi-contraction mappings in non-Archimedean fuzzy metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 3787-3801.