

NOVEL CONCEPTS OF SOME OPEN SETS IN BITOPOLOGICAL SPACES

¹M. Ramaboopathi and ²K. M. Dharmalingam

^{1,2} Department of Mathematics, The Madura College, Madurai District, Tamil Nadu, India. E-mail: ¹mrboopathi24@gmail.com, ²kmdharma6902@yahoo.in

Abstract. In this paper, new classes of some open sets are $(i, j)^*$ -S-open set, $(i, j)^*$ - S_T -set, $(i, j)^*$ -Hclosed set $(i, j)^*$ - α^* -sets and $(i, j)^*$ - B_{α}^* -sets. We introduced and investigated on the line of research.

1. Introduction

In 1963, J.C.Kelly [2] expressed the geometrical existence of bitopological space that is a non empty set X together with two arbitrary topologies defined on X and it plays an important role to study the shapes of objects. General topologist have introduced and investigated of open sets in bitopological spaces. In 1967, C. W. Patty [6] introduced some properties of bitopological spaces. In 1991, M. L. Thivagar *et al.*, [3] established the properties of a new type of biological open sets which are entirely different from Kellys pairwise open sets called $\tau_{1,2}$ -open set and $\tau_1\tau_2$ -open set. In 2006, M. L. Thivagar *et al.*, [5] also discussed the weak forms of some an open sets with their continuity and defined various types of bitopological generalized closed sets and so on. Many researcher [7, 8] [resp. $(1,2)^*$ -regular and $(1,2)^*$ -semi-preopen set] studied new sets in bitopological spaces. Sheik John *et al.*, [10] was various notions of topology by allowing for bitopological spaces instead of topological spaces. In this paper, new classes of some open sets are $(i, j)^*$ -S-open set, $(i, j)^*$ - S_{τ} -set, $(i, j)^*$ -H closed set $(i, j)^*$ - α^* -sets and $(i, j)^*$ - \mathcal{B}_{α}^* -sets. We introduced and investigated on the line of research.

2. Preliminaries

All over this paper, (X, τ_1, τ_2) (momentarily, X) represent bitopological spaces.

Definition 2.1.

Let I be a subset of X. Then I is called $\tau_{1,2}$ -open [9] if $Y = O \cup Q$ where $O \in \tau_1$ and $Q \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is said to be $\tau_{1,2}$ -closed.

So as to $\tau_{1,2}$ -open sets but not direction of form a topology.

Proposition 2.2. [1] In a bitopological space (X,τ_1,τ_2) , each $(1,2)^*$ -semi-open set is $(1,2)^*$ - β -open.

In the rest of the paper, we denote a bitopological space by (X, τ_1, τ_2) , where $(X, \tau_1, \tau_2) = (X, \tau_i, \tau_j)$. The operators int and cl of a subset *H* of *X* are represent by $\tau_{i,,j}$ -*int*(*H*) and $\tau_{i,j}$ -*cl*(*H*).

In future a bitopological space (X, τ_i, τ_j) will be simply called as a space.

3. $(i, j)^*$ -S-open sets and $(i, j)^*$ -T-sets

Definition 3.1.

A subset H of a space (X,τ_i,τ_j) is said to be(i, j)*-S-open if $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H)) \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)).

 $H^c = X - H$ is $(i, j)^* - S$ -closed.

Definition 3.2.

A subset H of a space (X, τ_i, τ_j) is called a $(i, j)^*$ - \mathcal{T} -set if $\tau_{i,j}$ -int $(H) = \tau_{i,j}$ int $(\tau_{i,j}$ -cl(H)).

Theorem 3.3. For a subset of a space (X, τ_i, τ_j) , the following results are receive.

(*i*) any $(i, j)^*-\alpha$ -open set is $(i, j)^*-S$ -open.

- (*ii*) any $(i, j)^*$ - \mathcal{T} -set is $(i, j)^*$ - \mathcal{S} -open.
- **Proof.** (i) Let *H* is be a $(i, j)^*$ - α -open set, $H \subseteq \tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(H)) \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)). Then $\tau_{i,j}$ -cl $(H) \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)) and $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H) \subseteq \tau_{i,j}$ -cl $(H) \subseteq \tau_{i,j}$ -cl(H). Thus *H* is $(i, j)^*$ - \mathcal{S} -open.
- (ii) Let *H* is a $(i, j)^*$ - \mathcal{T} -set, we have $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H)) = \tau_{i,j}$ -int $(H) \subseteq H$. Then $\tau_{i,j}$ -int $(\tau_{i,j}$ cl $(H)) \subseteq \tau_{i,j}$ -int $(H) \subseteq \tau_{i,j}$ -int(H). Thus *H* is $(i, j)^*$ - \mathcal{S} -open.

Proposition 3.4. A subset H of a space (X,τ_i,τ_j) is $(i, j)^*$ -semi-open $\Leftrightarrow \tau_{i,j}$ -cl $(H) = \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)). **Proof.** \Rightarrow A suming that *H* is $(i, j)^*$ -semi-open set, then $H \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)) and $\tau_{i,j}$ -cl $(H) \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)). But $\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(H)) \subseteq \tau_{i,j}$ -cl(H). Hence $\tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)).

Conversely, let the condition hold. We have $H \subseteq \tau_{i,j}-cl(H)$ and $\tau_{i,j}-cl(H) = \tau_{i,j}-cl(\tau_{i,j}-int(H))$. Therefore H is $(i, j)^*$ -semi-open.

Theorem 3.5. For a subset of space (X, τ_i, τ_j) , the following relations are receive:

(i) each $\tau_{i,j}$ -open set is $(i, j)^*$ -semi-open.

(*ii*) each $(i, j)^*$ - α -open set is $(i, j)^*$ -semi-open.

Proof. (i) *H* is a $\tau_{i,j}$ -open set \Rightarrow *H* = $\tau_{i,j}$ -*int*(*H*) $\subseteq \tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(*H*)). So *H* is (*i*, *j*)*-semi-open.

(ii) *H* is an $(i, j)^*-\alpha$ -open set $\Rightarrow H \subseteq \tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(H))) \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)). Thus *H* is $(i, j)^*$ -semi-open.

Proposition 3.6. Let H be a subset of a space (X,τ_i,τ_j) . Then H is $(i, j)^*-\beta$ -closed $\Leftrightarrow \tau_{i,j}int(\tau_{i,j}-cl(\tau_{i,j}-int(H))) = \tau_{i,j}-int(H)$.

Proof. \Longrightarrow Since *H* is $(i, j)^*$ - β -closed set, $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(H))) \subseteq H$ and then $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H))) $\subseteq \tau_{i,j}$ -int(H). But $\tau_{i,j}$ -int $(H) \subseteq \tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H))). Thus we have $\tau_{i,j}$ -int $(H) = \tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H))).

⇐let the condition hold. We have $\tau_{i,j}$ -*int*($\tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(H))) = $\tau_{i,j}$ -*int*(H) ⊆H. Therefore H is $(i, j)^*$ - β -closed.

Theorem 3.7. For a subset H of a space (X, τ_i, τ_j) , the following relations are equivalent:

(*i*) H is (i, j)*-semi-closed.

(*ii*) H is $(i, j)^*-\beta$ -closed and $(i, j)^*-\beta$ -closed.

Proof. (1) \Rightarrow (2): Let *H* be $(i, j)^*$ -*S*-semi-closed. By Proposition 2.2, *H* is $(i, j)^*$ -*S*- β -closed. Since *H* is $(i, j)^*$ -*S*-semi-closed, $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(*H*)) $\subseteq H$ and $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(*H*)) $\subseteq \tau_{i,j}$ -int(*H*). It gives that $\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(*H*)) $\subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(*H*)). Thus $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(*H*)) $\subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(*H*)) and so *H* is $(i, j)^*$ -*S*-closed.

(2) \Rightarrow (1): Since *H* is $(i, j)^*$ -*S*-closed, $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(*H*)) $\subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(*H*)) and $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(*H*)) $\subseteq \tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int(*H*))). Since *H* is $(i, j)^*$ - β -closed, $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int(*H*))) \subseteq *H*. Then $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(*H*)) \subseteq *H* and so *H* is $(i, j)^*$ -semi-closed.

Remark: In a space (X,τ_i,τ_j) , then the notions of $(i, j)^*-\beta$ -closed sets and the notions of $(i, j)^*-S$ -closed sets are independent.

Example 3.8. Let $X = \{j_1, j_2, j_3, j_4\}$ with $\tau_i = \{\phi, X, \{j_2\}, \{j_3, j_4\}\}$ and $\tau_j = \{\phi, X, \{j_2, j_3, j_4\}\}$ then the $\tau_{i,j} = \{\phi, X, \{j_2\}, \{j_3, j_4\}, \{j_2, j_3, j_4\}\}$. In the space (X, τ_i, τ_j) , then

(*i*) the subset $\{j_2, j_3, j_4\}$ is $(i, j)^*-\beta$ -closed but not $(i, j)^*-S$ -closed.

(*ii*) the subset $\{j_1, j_3\}$ is $(i, j)^* - S$ -closed but not $(i, j)^* - \beta$ -closed.

Theorem 3.9.

In a space (X,τ_i,τ_j) . Then a subset of X is $(i, j)^*-\alpha$ -open \Leftrightarrow it is both $(i, j)^*-S$ -open and $(i, j)^*$ -pre-open.

Proof. \Rightarrow Let *H* be an $(i, j)^*$ - α -open set. Then $H \subseteq \tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H))). It implies that $\tau_{i,j}$ - $cl(H) \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H)) and $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(\tau_{i,j}$ - $int(H))) \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H)). Hence, *H* is $a(i, j)^*$ -S-open set. On the other hand, since *H* is an $(i, j)^*$ - α -open set, *H* is a $(i, j)^*$ -pre-open set.

 \leftarrow Let *H* be both $(i, j)^*$ -*S*-open and $(i, j)^*$ -pre-open. Since *H* is $(i, j)^*$ -*S*-open, we have $\tau_{i,j}$ -*int*($\tau_{i,j}$ -*cl*(*H*)) $\subseteq \tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(*H*)) and hence $\tau_{i,j}$ -*int*($\tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(*H*)). Since *H* is $(i, j)^*$ -pre-open, we have $H \subseteq \tau_{i,j}$ -*int*($\tau_{i,j}$ -*cl*(*H*)). Therefore we obtain that $H \subseteq \tau_{i,j}$ *int*($\tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(*H*))) which proves that *H* is an $(i, j)^*$ -*α*-open set.

Remark. In a space (X,τ_i,τ_j) , then the notions of $(i, j)^*-S$ -open sets and the notions of $(i, j)^*$ -pre-open sets are independent.

Example 3.10. Let $X = \{j_1, j_2, j_3, j_4\}$ with $\tau_i = \{\phi, X, \{j_1\}, \{j_2, j_4\}\}$ and $\tau_j = \{\phi, X, \{j_1, j_2, j_4\}\}$ then the $\tau_{i,j} = \{\phi, X, \{j_1\}, \{j_2, j_4\}, \{j_1, j_2, j_4\}\}$. In the space, then

(i) the subset $\{j_1, j_3\}$ is $(i, j)^*$ -S-open but not $(i, j)^*$ -pre-open.

(*ii*) the subset $\{j_1, j_2, j_4\}$ is $(i, j)^*$ -pre-open but not $(i, j)^*$ -S-open.

Proposition 3.11. Two subsets H and K of a space (X,τ_i,τ_j) . If $H \subseteq K \subseteq \tau_{i,j}$ -cl(H) and H is(i, j)*-S-open \Rightarrow K is(i, j)*-S-open.

Proof. Assuming that $H \subseteq K \subseteq \tau_{i,j}$ -cl(H) and H is $(i, j)^*$ -S-open in X. Then, we have $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(H)) \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H)). Since $H \subseteq K$, $\tau_{i,j}$ - $cl(\tau_{i,j}$ - $int(H)) \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(K)) and $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(H)) \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(K)). Since $K \subseteq \tau_{i,j}$ -cl(H), we have $\tau_{i,j}$ - $cl(K) \subseteq \tau_{i,j}$ - $cl(H) = \tau_{i,j}$ -cl(H) and $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(K)) \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -cl(H)). Therefore $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(K)) \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(K)). This shows that K is a $(i, j)^*$ -S-open set.

Corollary 3.12. For a space (X,τ_i,τ_j) . If $H \subseteq X$ is $(i, j)^*-S$ -open and $(i, j)^*$ -dense in (X,τ_i,τ_j) , then each subset of X containing H is $(i, j)^*-S$ -open. **Proof.** It is obvious by Proposition 3.11.

Proposition 3.13. In a space (X, τ_i, τ_j) , each $\tau_{i,j}$ -closed set is a $(i, j)^*$ - \mathcal{T} -set. **Proof.** Let H be a $\tau_{i,j}$ -closed set. Then $H = \tau_{i,j}$ -cl(H) and we have $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(H)) = \tau_{i,j}$ -int(H) which proves that H is a $(i, j)^*$ - \mathcal{T} -set.

Remark. The reverse part of Proposition 3.13 is need not true from the following Example.

Example 3.14. In Example 3.8, then the subset $\{j_1\}$ is $(i, j)^*-\mathcal{T}$ -set but not $\tau_{1,2}$ -closed.

Theorem 3.15.

A subset H of a space (X,τ_i,τ_j) is $(i, j)^*$ -semi-closed \Leftrightarrow H is $a(i, j)^*$ - \mathcal{T} -set.

Proof. Let *H* be a $(i, j)^*$ -semi-closed set in *X*. Then *X*–*H* is $(i, j)^*$ -semi-open. By Proposition 3.4, we have $\tau_{i,j}$ - $cl(X-H) = \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(X-H)). It follows that $X - \tau_{i,j}$ - $int(H) = \tau_{i,j}$ - $cl(X - \tau_{i,j}$ - $cl(H)) = X - \tau_{i,j}$ - $int(\tau_{i,j}$ -cl(H)). Thus, $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(H)) = \tau_{i,j}$ -int(H) and hence *H* is a $(i, j)^*$ -*T*-set in *X*.

On the other hand side, let *H* be $a(i, j)^*$ - \mathcal{T} -set. Then $\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(H)) = \tau_{i,j}$ - $int(H) \subseteq H$. Therefore *H* is $(i, j)^*$ -semi-closed.

4. $(i, j)^*$ - \mathcal{S}_T -set

Definition 4.1.

A subset H of a space(X, τ_i , τ_j) issaid to be $a(i, j)^* - S_T$ -setif H is $(i, j)^*$ -semi-open and a $(i, j)^*$ -

 \mathcal{T} -set.

Theorem 4.2. Let H be a subset of a space(X, τ_i , τ_j). Then H is (i, j)*- S_T -set \Leftrightarrow H is both (i, j)*- β -open and (i, j)*-semi-closed.

Proof. *H* is $(i, j)^* - S_T$ -set \Rightarrow *H* is both $(i, j)^*$ -semi-open and a $(i, j)^* - T$ -set. Since every $(i, j)^*$ -semi-open set is $(i, j)^* - \beta$ -open, *H* is both $(i, j)^* - \beta$ -open and a $(i, j)^* - T$ -set. By Theorem 3.15, we obtain the result.

Conversely, let *H* be $(i, j)^*$ -semi-closed and $(i, j)^*$ - β -open. Since *H* is a $(i, j)^*$ -semi-closed, by Theorem 3.18 *H* is a $(i, j)^*$ - \mathcal{T} -set. Since *H* is $(i, j)^*$ - β -open, $H \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ - $int(\tau_{i,j}$ - $cl(\mathcal{H}))) = \tau_{i,j}$ - $cl(\tau_{i,j}$ - $int(\mathcal{H}))$. Therefore *H* is $(i, j)^*$ -semi-open. Since *H* is both $(i, j)^*$ -semi-open and a $(i, j)^*$ - \mathcal{T} -set, *H* is $(i, j)^*$ - $\mathcal{S}_{\mathcal{T}}$ -set.

Remark. In a space (X, τ_i, τ_j) , then the notions of $(i, j)^*$ - β -open and the notions of $(i, j)^*$ -semi-closed are independent.

Example 4.3. In Example 3.10, then

(i) the subset $\{j_2\}$ is $(i, j)^*-\beta$ -open but not $(i, j)^*$ -semi-closed.

(ii) the subset $\{j_3\}$ is $(i, j)^*$ -semi-closed but not $(i, j)^*$ - β -open.

5. $(i, j)^*$ - \mathcal{H} -closed sets

Definition 5.1.

A subset H of a space (X,τ_i,τ_j) is called $(i, j)^*-\mathcal{H}$ -closedif $H = \tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)). $H^c = X-H$ is $(i, j)^*-\mathcal{H}$ -open.

Theorem 5.2. Let H a subset of a space (X, τ_i, τ_j) . Then the following relations are equivalent.

(*i*) $H = \phi$ is (i, j)^{*}- \mathcal{H} -closed.

(*ii*) There exists a non-empty $\tau_{i,j}$ -open set $F : F \subseteq H = \tau_{i,j}$ -cl(F).

(iii) There exists a non-empty $\tau_{i,j}$ -open set $F : H = F \cup (\tau_{i,j}$ -cl(F) –F).

Proof. (1) \Rightarrow (2). Suppose $H = \phi$ is a $(i, j)^*$ - \mathcal{H} -closed set. Then $H = \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H)). Let $F = \tau_{i,j}$ -int(H). F is the required $\tau_{i,j}$ -open set. $F \subseteq H = \tau_{i,j}$ -cl(F).

(2) \Rightarrow (3). Since $H = \tau_{i,i}$ -cl(F) = F \cup ($\tau_{i,i}$ -cl(F) -F) where F is a nonempty $\tau_{1,2}$ -open set,(3) follows.

 $(3) \Rightarrow (1).H = F \cup (\tau_{i,j}-cl(F) - F) \text{ implies that } H = \tau_{i,j}-cl(F) = \tau_{i,j}-cl(\tau_{i,j}-int(F)) \subseteq \tau_{i,j}-cl(\tau_{i,j}-int(H)), \text{ since } F$ is $\tau_{i,j}$ -open and $F \subseteq H$. Again $\tau_{i,j}-int(H) \subseteq H$ implies that $\tau_{i,j}-cl(\tau_{i,j}-int(H)) \subseteq \tau_{i,j}-cl(H) = \tau_{i,j}-cl(F) = H$. Therefore $H = \tau_{i,j}-cl(\tau_{i,j}-int(H))$. H is $(i, j)^*$ - \mathcal{H} -closed.

Theorem 5.3.

Let H be a subset of a space (X,τ_i,τ_j) . If H is $(i, j)^*$ - β -open, then $\tau_{i,j}$ -cl(H) is $(i, j)^*$ - \mathcal{H} -closed. **Proof.** Assuming that H is $(i, j)^*$ - β -open. Then $H \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(H))) and so $\tau_{i,j}$ -cl $(H) \subseteq \tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H))) \subseteq \tau_{i,j}$ -cl(H) which implies that $\tau_{i,j}$ -cl $(H) = \tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(H))). Therefore $\tau_{i,j}$ -cl(H) is $(i, j)^*$ - \mathcal{H} -closed.

Theorem 5.4. For a subset H of a space (X, τ_i, τ_j) . Then the following properties are equivalent.

(i) H is $(i, j)^*$ - \mathcal{H} -closed.

(*ii*) H is (i, j)*-semi-open and $\tau_{i,j}$ -closed.

(*iii*) H is (i, j)^{*}- β -open and $\tau_{i,j}$ -closed.

Proof. (1) \Rightarrow (2). *H* is $(i, j)^*$ - \mathcal{H} -closed \Rightarrow *H* = $\tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(*H*)) and $\tau_{i,j}$ -*cl*(*H*) = $\tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(*H*)). Since $H \subseteq \tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(*H*)), *H* is $(i, j)^*$ -semi-open. Also, $H = \tau_{i,j}$ -*cl*(*H*) and so *H* is $\tau_{i,j}$ -closed.

(2) \Rightarrow (3). It follows from the fact that every $(i, j)^*$ -semi-open set is a $(i, j)^*$ - β -open.

(3)⇒(1). *H* is $(i, j)^*$ - β -open and $(i, j)^*$ -closed $\Rightarrow H \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ - $int(\tau_{i,j}$ -cl(H))) and $H = \tau_{i,j}$ -cl(H). Now $\tau_{i,j}$ - $cl(\tau_{i,j}$ - $int(H)) \subseteq \tau_{i,j}$ -cl(H) = H. Also, $H \subseteq \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H)). Therefore $H = \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H)) which implies that *H* is $(i, j)^*$ - \mathcal{H} -closed. \Box

Remark. In a space (X, τ_i, τ_j) , then

- (i) the notions of $(i, j)^*$ -semi-open sets and the notions of $\tau_{i,j}$ -closed sets are independent.
- (ii) the notions of (i, j)^{*}- β -open sets and the notions of $\tau_{i,j}$ -closed sets are independent.

Example 5.5. In Example 3.10, then (i) the subset $\{j_1\}$ is $(i, j)^*$ -semi-open but not $\tau_{i,j}$ -closed. (ii) the subset $\{j_3\}$ is $\tau_{i,j}$ -closed but not $(i, j)^*$ -semi-open.

6. $(i, j)^*$ - α^* -sets and $(i, j)^*$ - \mathcal{B}_{α^*} -sets

Definition 6.1. A subset H of a space (X, τ_i, τ_j) is called

- (i) $(i, j)^* \alpha^*$ -set if $\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H))) = \tau_{i,j}$ -int(H).
- (*ii*) $(i, j)^* \mathcal{B}_{\alpha^*}$ -set if $H = L \cap M$, where L is $\tau_{i,j}$ -open and M is $(i, j)^* \alpha^*$ -set.

Proposition 6.2. For a subset H of a space (X, τ_i, τ_j) , the following are equivalent.

- (*i*) $H \in (i, j)^* \alpha^*(X, \tau_i, \tau_j)$.
- (*ii*) H is $(i, j)^*$ -semi-pre closed.
- (*iii*) $\tau_{i,j}$ -int(H) is (**i**, **j**)^{*}-regular open.

Proof. Obvious.

Proposition 6.3. In a space (X, τ_i, τ_j) , then

- (*i*) H is a $(i, j)^*$ - \mathcal{T} -set \Rightarrow H \in $(i, j)^*$ - α^* (X, τ_i, τ_j) .
- (*ii*) H is(i, j)*-semi-open and(i, j)*- \mathcal{T} -set \Leftrightarrow H \in (i, j)*- α * (X, τ_i, τ_j).
- (*iii*) H is $(i, j)^*$ - α -open and H $\in (i, j)^*$ - $\alpha^* (X, \tau_i, \tau_j) \Leftrightarrow$ H is $(i, j)^*$ -regular-open.
- **Proof.** (i) Let *H* be $a(i, j)^*$ - \mathcal{T} -set, then $\tau_{i,j}$ -*int*(H) = $\tau_{i,j}$ -*int*($\tau_{i,j}$ -*cl*(H)) and $\tau_{i,j}$ -*int*($\tau_{i,j}$ -*cl*($\tau_{i,j}$ -*int*(H))) = $\tau_{i,j}$ -*int*(T)) = $\tau_{i,j}$ -*int*(T)) = $\tau_{i,j}$ -*int*(H). Therefore, *H* is an $(i, j)^*$ - α^* -set.
- (ii) Let *H* be $(i, j)^*$ -semi-open and $H \in (i, j)^* \alpha^* (X, \tau_i, \tau_j)$). Since *H* is $(i, j)^*$ -semi-open, $\tau_{i,j}$ -cl $(\tau_{i,j}$ int $(H)) = \tau_{i,j}$ -cl(H) and hence $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H)) = \tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(H))) = \tau_{i,j}$ -int(H). Therefore, *H* is a $(i, j)^*$ - \mathcal{T} -set.
- (iii) Let *H* be an $(i, j)^*$ - α -open set and $H \in (i, j)^*$ - $\alpha^* (X, \tau_i, \tau_j)$. By Proposition 6.2 and the Definition of $(i, j)^*$ - α -open set, we have $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int(H)) = H and hence $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H)) = \tau_{i,j}$ -int $(\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(T)) = H. The converse is obvious.

Remark. In a space (X,τ_i,τ_j) , the union of two $(i, j)^*-\alpha^*$ -sets but not $(i, j)^*-\alpha^*$ -set. As shown in the following Example.

Example 6.4. Let $X = \{j_1, j_2, j_3\}$ with $\tau_i = \{\phi, X, \{j_1\}\}$ and $\tau_j = \{\phi, X, \{j_3\}\}$ then the $\tau_{i,j} = \{\phi, X, \{j_1\}, \{j_3\}, \{j_1, j_3\}\}$. In the space (X, τ_i, τ_j) , then the subsets $A = \{j_1\}$ and $B = \{j_3\}$ are $(i, j)^* - \alpha^*$ -set. But $A \cup B = \{j_1, j_3\}$ is not $(i, j)^* - \alpha^*$ -set.

Proposition 6.5. In a space (X,τ_i,τ_j) , then $(\mathbf{i},\mathbf{j})^* - \alpha^* - (X,\tau_i,\tau_j) \subseteq (\mathbf{i},\mathbf{j})^* - \mathcal{B}_{\alpha^*}(X,\tau_i,\tau_j)$ and $\tau_{i,j}$ -open $\subseteq (\mathbf{i},\mathbf{j})^* - \mathcal{B}_{\alpha^*}(X,\tau_i,\tau_j)$.

Proof. Since $X \in \tau_{i,j}$ -open $\cap (i, j)^* - \alpha^* - (X, \tau_i, \tau_j)$, the inclusions are obvious.

Lemma 6.6. In a space (X,τ_i,τ_j) . If either H,K is $(i, j)^*$ -semi-open, then $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(H \cap K)$) = $\tau_{i,j}$ -int $(\tau_{i,j}$ -cl(H)) $\cap \tau_{i,j}$ -int $(\tau_{i,j}$ -cl(K)).

Proof. For any subset $H, K \subseteq X$, we generally have $\tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(H \cap K)) \subseteq \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(H)) \cap \tau_{i,j}$ -int $(\tau_{i,j}$ -cl(K)). Assume that H is $(i, j)^*$ -semi-open. Then we have $\tau_{i,j}$ - $cl(H) = \tau_{i,j}$ - $cl(\tau_{i,j}$ -int(H)). Therefore $\tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(H)) \cap \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(K)) = \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(\tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(T)) \cap \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(K)) = \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(\tau_{i,j}$ -int $(T)) \cap \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(\tau_{i,j}$ -int $(T)) \cap \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(\tau_{i,j}$ -int $(H) \cap \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(\tau_{i,j}$ -int $(T)) \cap \tau_{i,j}$ -int $(\tau_{i,j}$ - $cl(\tau)$ -int $(T) \cap \tau_{i,j}$ -int (τ) -

Proposition 6.7.

A subset H is $\tau_{i,j}$ -open in a space (X,τ_i,τ_j) \Leftrightarrow it is a $(\mathbf{i}, \mathbf{j})^*$ - α -open set and a $(i, j)^*$ - \mathcal{B}_{α^*} -set. **Proof.** It is obvious that every $\tau_{i,j}$ -open set is a $(\mathbf{i}, \mathbf{j})^*$ - α -open set and a $(i, j)^*$ - \mathcal{B}_{α^*} -set. let H be a $(\mathbf{i}, \mathbf{j})^*$ - α -open set and a $(i, j)^*$ - \mathcal{B}_{α^*} -set. let H be a $(\mathbf{i}, \mathbf{j})^*$ - α -open set and a $(i, j)^*$ - \mathcal{B}_{α^*} -set. let H be a $(\mathbf{i}, \mathbf{j})^*$ - α -open set and a $(i, j)^*$ - \mathcal{B}_{α^*} -set. let H be a $(\mathbf{i}, \mathbf{j})^*$ - α -open set and a $(i, j)^*$ - \mathcal{B}_{α^*} -set. Since H is a $(i, j)^*$ - \mathcal{B}_{α^*} -set, there exist $G \in \tau_{i,j}$ -open and $Q \in (i, j)^*$ - $\alpha^*(X, \tau_i, \tau_j)$ such that $H = G \cap Q$. Since H is a $(\mathbf{i}, \mathbf{j})^*$ - α -open set, by using Lemma 6.7, we have $H \subseteq \tau_{i,j}$ -int $(\tau_{i,j}$ -cl $(\tau_{i,j}$ -int $(Q)) = \tau_{i,j}$ -int $(\tau_{i,j}$ -cl(G)) $\cap \tau_{i,j}$ -int $(Q) = G \cap \tau_{i,j}$ -int(Q) $\subseteq H$. Consequently, we obtain $H = G \cap \tau_{i,j}$ -int(H) and H is $\tau_{i,j}$ -open.

Remark. The following example shows that the family of $(i, j)^*$ - α -open set and the family of $(i, j)^*$ - \mathcal{B}_{α^*} -set are independent.

Example 6.8. Let $X = \{j_1, j_2, j_3, j_4\}$ with $\tau_i = \{\phi, X, \{j_1\}\}$ and $\tau_j = \{\phi, X, \{j_3\}\}$ then the $\tau_{i,j} = \{\phi, X, \{j_1\}, \{j_3\}, \{j_1, j_3\}\}$. In the space (X, τ_i, τ_j) , then

- (i) $\{j_1, j_2, j_3\}$ is $(i, j)^* \alpha$ -open set but not $(i, j)^* \mathcal{B}_{\alpha^*}$ -set.
- (*ii*) $\{j_2\}$ is $(i, j)^* \mathcal{B}_{\alpha^*}$ -set but not $(i, j)^* \alpha$ -open set.

References

- [1] K. M. Dharmalingam and M. Ramaboopathi, *New forms of generalized closed sets in bitopological spaces*, Journal of Applied Science and Computations, VI(III)(2019), 712-718.
- [2] J. C. Kelly, *Bitopological spaces*, Proc. London. Math Soc., 3(13)(1963), 71-89.
- [3] M. Lellis Thivagar, *Generalization of pairwise* α*-continuous functions*, Pure and Applied Mathematicka Sciences., 28(1991), 55-63.
- [4] M. Lellis Thivagar and O. Ravi, *On stronger forms of* (1,2)*-*quotient mappings in bitopological spaces*, Int. J. Math. Game theory and Algebra. Vol. 14, No. 6, (2004), 481-492.
- [5] M. Lellis Thivagar and O. Ravi, A bitopological (1,2)*-semi generalized continuous mappings, Bull. Malayasian Math. Soc., 29(1) (2006), 79-88.
- [6] C. W. Patty, *Bitopological spaces*, Duke Math. J., 34 (1967), 387-392.
- [7] O. Ravi, E. Ekici and M. Lellis Thivagar, On (1,2)*-sets and decompositions of bitopological (1,2)*continuous mappings, Kochi J. Math., 3 (2008), 181-189
- [8] O. Ravi and M. Lellis Thivagar, A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malaysian Math. Sci. Soc., (2)(29)(1)(2006), 76-88.

- [9] O. Ravi and M. Lellis Thivagar, *On stronger forms of* (1,2)*-*quotient mappings in bitopological spaces*, Internat. J. Math. Game Theory and Algebra., 14(6)(2004), 481-492.
- [10] M. Sheik John and P. Sundaram, g*-closed sets in bitopological spaces, Indian J. Pure Appl. Math., 35(1)(2004), 71-80.