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1.  Introduction 
 
After the introdution of fuzzy sets by L.A.Zadeh [13], several researchers explored on the 

generalization of the notion of fuzzy set.The concept of intuitionistic Multi fuzzy subset was 

introduced by K.T.Atanassov [1], as a generalization of the notion of fuzzy set. AzrielRosenfeld[2] 

defined a fuzzy groups. Vasu.M, Sivakumar.D&Arjunan.K[12] defined an anti-Multi fuzzy subfield of 

a field. We introduce the concept of intuitionistic Multi fuzzy subfield of a fieldand established some 

results. 

2.  Preliminaries 
 
Definition 2.1. 

 Let X be a non-empty set. A fuzzy subset A of X is a function A : X →[0, 1]. 

Definition 2.2. [7]. 

A multi fuzzy subset A of a set X is defined as an object of the form A = { 〈 x, A1(x), A2(x), 

A3(x), …, An(x) 〉 / x∈X}, where Ai : X→[0, 1] for all i. Here A is called multi fuzzy subset of X with 

dimension n. It is denoted as A = 〈 A1, A2, A3, …, An〉.  
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Example 2.3 Let X = { a, b, c } be a set. Then A = {〈 a, 0.4, 0.3, 0.7〉, 〈 b, 0.2, 0.7, 0.8〉, 〈 c, 0.4, 0.1, 

0.5〉 } is a multi fuzzy subset of X with the dimension three. 

 
Definition 2.4 

 An intuitionistic fuzzy set (IFS)  A in X is defined as an object having the form A = {(x , 
µA(x),γA(x)) / x ∈ X}, where µA: X→ [0,1] and γA: X→ [0,1] define the degree of membership and 
the degree of non-membership of the element x∈X respectively and every x in X satisfying 0 ≤ µA(x) 
+γA(x) ≤ 1. 

 
Example 2.5. An intuitionistic subset A={(a, 0.3, 0.6),(b, 0.3, 0.5),(c, 0.2, 0.5)}of a set X={ a,b,c}. 
 
Definition 2.6. 

An intuitionisticmulti fuzzy subset A of a set X is defined as an object of the form A = { ( x, 
µA1(x), µA2(x), .., µAn(x), γA1(x), γA2(x), .., γAn(x) )/ x∈X}, where µAi : X→[0, 1] and γAi : 
X→[0, 1] for all i, define the degrees of membership and the degrees of non-membership of the 
element x∈X respectively and every x in X satisfying 0 ≤ µAi(x) + γAi(x) ≤ 1 for all i. It is denoted 
as A = (µA ,γA ) where µA = ( µA1,µA2, …, µAn) and γA= (γA1, γA2,…,γAn ). 
 
Example 2.7. Let X = { a, b, c } be a set. Then A = { (a, (0.4, 0.3, 0.2), (0.2, 0.4, 0.4) ),  ( b, (0.2, 0.4, 

0.3), (0.3, 0.5, 0.7) ), ( c, (0.4, 0.1, 0.5), (0.5, 0.6, 0.4) } is a intuitionistic multi fuzzy subset of X with 

the dimension three. 

 
Definition 2.8. 

Let A and B be any two intuitionistic multi fuzzy subset of X. We define the following 
relations and operations: 
(i) A ⊆ B if and only if µAi(x) ≤ µBi(x) and γAi(x) ≥ γBi(x) for all x∈X and for all i. 
(ii) A = B if and only if µAi(x) = µBi(x) andγAi(x) = γBi(x) for all x∈X and for all i. 
(iii)A∩B if and only if (A∩B)(x)={min{µAi(x),µBi(x)},max{γAi(x),γBi(x)}}forall x∈X and  
for all i. 
(iv)A∪B if and only if (A∪B)(x)={max{µAi(x),µBi(x)},min{γAi(x),γBi(x)}}for all x∈X and  
for all i.  
 
Definition 2.9 

Let ( F, +, ∙ ) be a field. A multi fuzzy subset A of F is said to be a multi 

fuzzysubfield(MFSF) of F if the following conditions are satisfied: 

(i)Ai( x−y ) ≥min { Ai(x), Ai(y) }, for all x, y∈F, for all i, 

(ii)Ai(xy-1) ≥min { Ai(x), Ai(y) }, for all x, y≠ 0∈F,for all i, where 0 is the additive identity  
element of F. 
 
 
Definition 2.10 

Let (F, +, .) be a field. Anintuitionistic multi fuzzy subset A of F is said to be anintuitionistic multi 

fuzzysubfield(ILFSF) of F if it satisfies the following axioms: 
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(i) µAi(x−y)   ≥ min {µAi(x),µAi(y) }, for all x, y∈F, for all i, 

(ii) µAi(xy-1) ≥ min {µAi(x) , µAi(y) }for all x , y ≠ 0 in F, for all i 

(iii) νAi(x−y) ≤ min {νAi(x) , νA(y) }for all x , y in F,for all i 

       (iv)      νAi(xy-1) ≤ min{νAi(x) ,νA(y) }for all x , y≠ 0 in F, for all iwhere 0 is the additive  

                  identity element of F. 

 

 

3.  Some properties 

Theorem 3.1:  
If A is an intuitionistic multi fuzzy subfield of a field ( F, +, ∙ ), then µAi(−x) = µAi(x), for 

all x in F andµAi(x-1) = µAi(x), for all x≠ 0 in F and νAi(−x) = νAi(x), for all x in F and νAi(x-1) = 
νAi(x), for all x≠ 0 in F and µAi(x) ≤µAi(0), for all x in F and µAi(x) ≤µAi(1), for all x≠ 0 in F and 
νAi(x) ≥νAi(0), for all x in F and νAi(x) ≥νAi(1), for all x≠ 0 in F, for all i, where 0 and 1 are identity 
elements in F.  
Proof:  For x in F and 0, 1 are identity elements in F. 
Now, µAi(x) = µAi(− (−x))≥µAi(− x) ≥µAi( x ). Therefore,  µAi(−x )  = µAi(x), for all x in F and for 
all i. Now, µAi(x) = µAi( (x-1 )-1 )≥µAi( x-1) ≥µAi( x ). Therefore, µAi(x-1)  =µAi(x), for all x≠ 0 in 
F and for all I, and, νAi( x ) = νAi(− (−x)) ≤νAi(−x) ≤νA( x). 
Therefore, νAi(− x) = νAi(x), for all x in F and for all I, and, νAi( x ) = νAi( (x-1)-1 )≤νAi( x-1) 
≤νAi( x). Therefore, νAi( x-1) = νAi(x), for all x≠ 0 in F and for all i. 
Now, µAi(0) = µAi(x−x)≥min{µAi(x), µAi(−x) } = µAi( x). Therefore, µAi(0) ≥µAi(x), for all x in F 
and for all i. Now, µAi(1) = µAi( xx-1)≥min{ µAi(x), µAi(x-1) } = µAi( x). Therefore, µAi(1) 
≥µAi(x), for all x≠ 0 in F and for all I, and, νAi(0) = νAi(x−x)≤max{ νAi(x), νAi(−x)} = νAi(x). 
Therefore, νAi(0) ≤νAi(x), for all x in F and for all I, and, νAi(1) = νAi( xx-1)≤max{ νAi(x), νAi(x-1) 
} = νAi(x). Therefore, νAi(1) ≤νAi(x), for all x≠ 0 in F and for all i. 
 
Theorem 3.2:  

If A is an intuitionistic multi fuzzy subfield of a field ( F, +, ∙ ), then for all i,  
(i) µAi(x−y) = µAi(0) gives µAi(x) = µAi(y), for all x and y in F,  
(ii) µAi(xy-1) = µAi(1) gives µAi(x) = µAi(y), for all x and y≠ 0 in F,  
(iii) νAi(x−y) = νAi(0) gives νAi(x) = νAi(y), for all x and y in F and  
(iv) νAi(xy-1) = νAi(1) gives νAi(x) = νAi(y), for all x and y≠ 0 in F, where 0 and 1 are 
identity elements in F. 

 
Proof:  Let x and y in F and 0, 1 are identity elements in F.           
(i) Now, µAi(x) = µAi(x−y+y )≥min{µAi(x−y), µAi(y)} = min{µAi(0),µAi(y) } = µAi(y) 
=µAi(x−(x−y))≥min{ (µAi(x−y), µAi(x)}= min{µAi(0), µAi(x) }= µAi(x). Therefore,   µAi(x) = 
µAi(y), for all x, y in F and for all i. 
(ii) Now. µAi(x) = µAi( xy-1y )≥T(µAi(xy-1), µAi(y) ) = T( µAi(1), µAi(y) ) = µAi(y) 
=µAi( (xy-1)-1x )≥T(µAi(xy-1), µAi(x) ) = T( µAi(1), µAi(x) ) = µAi(x). Therefore, µAi(x) = µAi(y), 
for all x, y ≠ 0 in F and for all i. 
(iii) Now, νAi(x) = νAi( x−y+y ) ≤S(νAi( x−y), νAi(y) ) = S(νAi(0), νAi(y) ) = νAi(y)     
                     = νAi( x−(x−y) ) ≤S(νAi(x−y), νAi(x) ) = S(νAi(0), νAi(x) ) = νAi(x). 
Therefore, νAi(x) = νAi(y), for all x, y in F and for all i. 
(iv) Now, νAi(x) = νAi ( xy-1y )≤S(νAi (xy-1), νAi (y) ) = S(νAi (1), νAi (y) ) = νAi(y)                          
= νAi( (xy-1)-1x )≤S(νAi(xy-1), νAi(x) ) = S(νAi(1), νAi(x) ) = νAi(x). 
Therefore, νAi(x) = νAi(y), for all x≠ 0, y≠ 0 in F and for all i. 
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Theorem 3.3:  
Let A be anintuitionistic multi fuzzy subset of a field (F, +, ∙). If for all i, µAi(e) = µAi(e׀) = 

1 and νAi(e) =νAi(e׀) = 0 and µAi(x−y) ≥min{(µAi(x), µAi(y) } for all x and y in F andµAi(xy-1 ) 
≥min{µAi(x), µAi(y) } for all x and y≠ e in F and νAi(x−y) ≤max{νAi(x), νAi(y)} for all x and y in F 
and νAi(xy-1) ≤max{νAi(x), νAi(y)}for all x and y≠ e in F, then A is an intuitionistic multi fuzzy 
subfield of F, where e and e׀ are identity elements of F. 

 
Proof: It is trivial. 
 
Theorem 3.4:  

If A is an intuitionistic multi fuzzy subfield of a field ( F, +, ∙ ), then  H = { x / x∈F: µAi(x) 
= 1, νAi(x) = 0 for all i } is either empty or a subfield of F. 
 
Proof:  If no element satisfies this condition, then H is empty.  If x, y in H, thenµAi(x−y) ≥T( µAi(x), 
µAi(−y) ) ≥T( µAi(x),µAi(y) ) =T(1, 1) = 1. Therefore, µAi( x−y) = 1, for all x, y in H and for all I, 
and µAi(xy-1) ≥T( µAi(x), µAi( y-1) ) ≥T(µAi(x),µAi(y) ) = T(1, 1) = 1. Therefore, µAi( xy-1) = 1, 
for all x, y≠ e in H and for all i. And νAi(x−y) ≤S(νAi(x), νAi(−y) ) ≤ S(νAi(x),νAi(y) ) = S(0, 0) = 0.                  
Therefore νAi(x−y) = 0, for all x, y in H and for all I, and νAi(xy-1) ≤ S(νAi(x),νAi(y-1)) ≤ 
S(νAi(x),νAi(y) ) = S(0, 0) = 0. Therefore νAi(xy-1) = 0, for all x, y≠ e in H and for all i.                 
We get  x−y, xy-1 in H. Therefore H is a subfield of F. Hence H is either empty or a subfield of F. 
 
 Theorem 3.5: 

Let A be a (T, S)-intuitionistic multi fuzzy subfield of a field (F, +, ∙ ). Then for all i,  
(i) if µAi(x−y) = 1, then µAi(x) = µAi(y), for all x and y in F and if µAi(xy-1) = 1, then  

µAi(x) = µAi(y), for all x and y≠ e in F,  
(ii) if νAi(x−y) = 0, then νAi(x) = νAi(y), for all x and y in F and if νAi(xy-1 ) = 0, then  

νAi(x) =νAi(y), for all x and y≠ e in F, where e and e׀ are identity elements of F.  
 
Proof:  Let x and y in F. 
(i)  Now, µAi(x) = µAi( x−y+y)≥T( µAi( x−y), µAi(y) ) = T(1, µAi(y) ) = µAi(y)= µAi(−y) 
= µAi(−x+x−y)≥T(µAi(−x), µAi(x−y) ) = T(µAi(−x), 1 ) = µAi(−x) = µAi(x). Therefore µAi(x) = 
µAi(y), for all x, y in F and for all I, and µAi(x) = µAi( xy-1y )≥T(µAi(xy-1), µAi(y) ) = T(1, µAi(y) ) 
= µAi(y)= µAi(y-1 ) = µAi(x-1xy-1 )≥T(µAi(x-1), µAi(xy-1) ) = T(µAi(x-1), 1) = µAi(x-1)= µAi(x). 
Therefore µAi(x) = µAi(y), for all x≠ e, y≠ e in F and for all i. 
(ii) Now, νAi(x) = νAi(x−y+y )≤S(νAi(x−y), νAi(y) ) = S(0, νAi(y) ) = νAi(y)= νAi(−y) 
 = νAi(−x+x−y)≤S(νAi(−x), νAi(x−y) ) = S(νAi(−x), 0 ) = νAi(−x) = νAi(x). Therefore νAi(x) = 
νAi(y), for all x, y in F and for all I, and νAi(x) = νAi( xy-1y )≤S(νAi(xy-1), νAi(y) ) = S(0, νAi(y) ) 
= νAi(y)= νAi(y-1) = νAi(x-1xy-1)≤S(νAi(x-1), νAi(xy-1) ) = S(νAi(x-1 ), 0 ) = νAi( x-1) = νAi(x). 
Therefore, νAi(x) = νAi(y), for all x≠ e, y≠ e in F and for all i. 
 
Theorem 3.6: 

If A be a (T, S)-intuitionistic multi fuzzy subfield of a field( F, +, ∙ ) , then for all i,  
       (i) if µAi(x−y) = 0, then either µAi(x) = 0 or µAi(y) = 0, for all x and y in F and if µAi(xy-1) = 0,  
then either µAi(x)= 0 or µAi(y)= 0, for all x and y≠ e in F,  
       (ii) if νAi(x−y) =1, then either νAi(x) = 1or νAi(y) = 1, for all x and y in F and if νAi(xy-1) =1, 
then either νAi(x) = 1or νAi(y) = 1, for all x and y≠ e in F, where e and e׀ are identity elements of F. 
 
Proof:  Let x and y in F. 
(i)    By the definition µAi(x−y) ≥T(µAi(x), µAi(y) ), which implies that 0 ≥T(µAi(x), µAi(y) ). 
Therefore, either µAi(x) = 0 or µAi(y) = 0, for all x, y in F and for all I, and,by thedefinition µAi(xy-1 
) ≥T(µAi(x), µ Ai(y) ), which implies that 0 ≥T(µAi(x), µ Ai(y) ). 
Therefore, either µAi(x) = 0 or µAi(y) = 0, for all x, y≠ e in F and for all i. 
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 (ii)  By the definition νAi(x−y) ≤S(νAi(x), νAi(y) ), which  implies that  1≤S(νAi(x), νAi(y) ). 
Therefore, either νAi(x) = 1or νAi(y) = 1, for all x, y in F and for all I, and by the definition νAi(xy-1) 
≤S(νAi(x), νA(iy) ),  which  implies that  1≤S(νAi(x), νAi(y) ). 
Therefore, either νAi(x) = 1or νAi(y) = 1, for all x, y≠ e in F and for all i. 
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