

INTUITIONISTIC MULTI FUZZY SUBFIELDS OF A FIELD

M. VASU

Department of Mathematics, Government Arts College For Women, Sivagangai

Abstract. In this paper, some properties of intuitionistic multi fuzzy subfield of a fieldare defined and studied. Also, some definitions, results and theorems are given.

Keywords. Fuzzy set, multi fuzzy subset, intuitionistic multi fuzzy subset, multi fuzzy subfield, intuitionistic multi fuzzy subfield.

2010 AMS subject classification: 03F55, 08A72, 20N25.

1. Introduction

After the introduction of fuzzy sets by L.A.Zadeh [13], several researchers explored on the generalization of the notion of fuzzy set. The concept of intuitionistic Multi fuzzy subset was introduced by K.T.Atanassov [1], as a generalization of the notion of fuzzy set. AzrielRosenfeld[2] defined a fuzzy groups. Vasu.M, Sivakumar.D&Arjunan.K[12] defined an anti-Multi fuzzy subfield of a field. We introduce the concept of intuitionistic Multi fuzzy subfield of a fieldand established some results.

2. Preliminaries

Definition 2.1.

Let X be a non-empty set. A fuzzy subset A of X is a function $A : X \rightarrow [0, 1]$.

Definition 2.2. [7].

A multi fuzzy subset A of a set X is defined as an object of the form $A = \{ \langle x, A1(x), A2(x), A3(x), ..., An(x) \rangle / x \in X \}$, where Ai : X \rightarrow [0, 1] for all i. Here A is called multi fuzzy subset of X with dimension n. It is denoted as $A = \langle A1, A2, A3, ..., An \rangle$.

Example 2.3 Let X = { a, b, c } be a set. Then A = { $\langle a, 0.4, 0.3, 0.7 \rangle$, $\langle b, 0.2, 0.7, 0.8 \rangle$, $\langle c, 0.4, 0.1, 0.1 \rangle$

 $0.5\rangle$ } is a multi fuzzy subset of X with the dimension three.

Definition 2.4

An intuitionistic fuzzy set (IFS) A in X is defined as an object having the form $A = \{(x, \mu A(x), \gamma A(x)) | x \in X\}$, where $\mu A: X \rightarrow [0,1]$ and $\gamma A: X \rightarrow [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and every x in X satisfying $0 \le \mu A(x) + \gamma A(x) \le 1$.

Example 2.5. An intuitionistic subset A={(a, 0.3, 0.6),(b, 0.3, 0.5),(c, 0.2, 0.5)}of a set X={ a,b,c}.

Definition 2.6.

An intuitionisticmulti fuzzy subset A of a set X is defined as an object of the form $A = \{ (x, \mu A1(x), \mu A2(x), ..., \mu An(x), \gamma A1(x), \gamma A2(x), ..., \gamma An(x)) / x \in X \}$, where $\mu Ai : X \rightarrow [0, 1]$ and $\gamma Ai : X \rightarrow [0, 1]$ for all i, define the degrees of membership and the degrees of non-membership of the element $x \in X$ respectively and every x in X satisfying $0 \le \mu Ai(x) + \gamma Ai(x) \le 1$ for all i. It is denoted as $A = (\mu A, \gamma A)$ where $\mu A = (\mu A1, \mu A2, ..., \mu An)$ and $\gamma A = (\gamma A1, \gamma A2, ..., \gamma An)$.

Example 2.7. Let $X = \{a, b, c\}$ be a set. Then $A = \{(a, (0.4, 0.3, 0.2), (0.2, 0.4, 0.4)), (b, (0.2, 0.4, 0.3), (0.3, 0.5, 0.7)), (c, (0.4, 0.1, 0.5), (0.5, 0.6, 0.4))\}$ is a intuitionistic multi fuzzy subset of X with

the dimension three.

Definition 2.8.

Let A and B be any two intuitionistic multi fuzzy subset of X. We define the following relations and operations:

(i) $A \subseteq B$ if and only if $\mu Ai(x) \le \mu Bi(x)$ and $\gamma Ai(x) \ge \gamma Bi(x)$ for all $x \in X$ and for all i. (ii) A = B if and only if $\mu Ai(x) = \mu Bi(x)$ and $\gamma Ai(x) = \gamma Bi(x)$ for all $x \in X$ and for all i. (iii) $A \cap B$ if and only if $(A \cap B)(x) = \{\min\{\mu Ai(x), \mu Bi(x)\}, \max\{\gamma Ai(x), \gamma Bi(x)\}\}$ for all $x \in X$ and for all i. (iv) $A \cup B$ if and only if $(A \cup B)(x) = \{\max\{\mu Ai(x), \mu Bi(x)\}, \min\{\gamma Ai(x), \gamma Bi(x)\}\}$ for all $x \in X$ and for all i.

Definition 2.9

Let $(F, +, \cdot)$ be a field. A multi fuzzy subset A of F is said to be a multi fuzzy subfield(MFSF) of F if the following conditions are satisfied:

(i)Ai(x-y) \geq min { Ai(x), Ai(y) }, for all x, y \in F, for all i,

(ii)Ai(xy-1) \geq min { Ai(x), Ai(y) }, for all x, $y \neq 0 \in$ F, for all i, where 0 is the additive identity element of F.

Definition 2.10

Let (F, +, .) be a field. Anintuitionistic multi fuzzy subset A of F is said to be anintuitionistic multi fuzzy subfield (ILFSF) of F if it satisfies the following axioms:

- (i) $\mu Ai(x-y) \ge \min \{\mu Ai(x), \mu Ai(y)\}, \text{ for all } x, y \in F, \text{ for all } i,$
- (ii) $\mu Ai(xy-1) \ge \min \{\mu Ai(x), \mu Ai(y)\}$ for all x, $y \ne 0$ in F, for all i
- (iii) $vAi(x-y) \le min \{vAi(x), vA(y)\}$ for all x, y in F, for all i
- (iv) $vAi(xy-1) \le \min\{vAi(x), vA(y)\}$ for all x, $y \ne 0$ in F, for all iwhere 0 is the additive identity element of F.

3. Some properties

Theorem 3.1:

If A is an intuitionistic multi fuzzy subfield of a field (F, +, ·), then $\mu Ai(-x) = \mu Ai(x)$, for all x in F and $\mu Ai(x-1) = \mu Ai(x)$, for all $x \neq 0$ in F and $\nu Ai(-x) = \nu Ai(x)$, for all x in F and $\nu Ai(x-1) = \nu Ai(x)$, for all $x \neq 0$ in F and $\mu Ai(x) \leq \mu Ai(0)$, for all x in F and $\mu Ai(x) \leq \mu Ai(0)$, for all x in F and $\mu Ai(x) \geq \nu Ai(0)$, for all x in F and $\nu Ai(x) \geq \nu Ai(0)$, for all x in F and $\nu Ai(x) \geq \nu Ai(1)$, for all $x \neq 0$ in F, for all i, where 0 and 1 are identity elements in F.

Proof: For x in F and 0, 1 are identity elements in F.

Now, $\mu Ai(x) = \mu Ai(-(-x)) \ge \mu Ai(-x) \ge \mu Ai(x)$. Therefore, $\mu Ai(-x) = \mu Ai(x)$, for all x in F and for all i. Now, $\mu Ai(x) = \mu Ai((x-1)-1) \ge \mu Ai((x-1)) \ge \mu Ai((x))$. Therefore, $\mu Ai(x-1) = \mu Ai(x)$, for all $x \ne 0$ in F and for all I, and, $\nu Ai(x) = \nu Ai(-(-x)) \le \nu Ai(-x) \le \nu Ai(x)$.

Therefore, vAi(-x) = vAi(x), for all x in F and for all I, and, $vAi(x) = vAi((x-1)-1) \le vAi((x-1)) \le vAi(x)$. Therefore, vAi(x-1) = vAi(x), for all $x \ne 0$ in F and for all i.

Now, $\mu Ai(0) = \mu Ai(x-x) \ge \min\{\mu Ai(x), \mu Ai(-x)\} = \mu Ai(x)$. Therefore, $\mu Ai(0) \ge \mu Ai(x)$, for all x in F and for all i. Now, $\mu Ai(1) = \mu Ai(x-1) \ge \min\{\mu Ai(x), \mu Ai(x-1)\} = \mu Ai(x)$. Therefore, $\mu Ai(1) \ge \mu Ai(x)$, for all $x \ne 0$ in F and for all I, and, $\nu Ai(0) = \nu Ai(x-x) \le \max\{\nu Ai(x), \nu Ai(-x)\} = \nu Ai(x)$.

Therefore, $vAi(0) \le vAi(x)$, for all x in F and for all I, and, $vAi(1) = vAi(xx-1) \le max\{vAi(x), vAi(x-1)\} = vAi(x)$. Therefore, $vAi(1) \le vAi(x)$, for all $x \ne 0$ in F and for all i.

Theorem 3.2:

If A is an intuitionistic multi fuzzy subfield of a field (F, +, \cdot), then for all i,

(i) $\mu Ai(x-y) = \mu Ai(0)$ gives $\mu Ai(x) = \mu Ai(y)$, for all x and y in F,

(ii) $\mu Ai(xy-1) = \mu Ai(1)$ gives $\mu Ai(x) = \mu Ai(y)$, for all x and $y \neq 0$ in F,

(iii) vAi(x-y) = vAi(0) gives vAi(x) = vAi(y), for all x and y in F and

(iv) vAi(xy-1) = vAi(1) gives vAi(x) = vAi(y), for all x and $y \neq 0$ in F, where 0 and 1 are identity elements in F.

Proof: Let x and y in F and 0, 1 are identity elements in F.

(i) Now, $\mu Ai(x) = \mu Ai(x-y+y) \ge \min\{\mu Ai(x-y), \mu Ai(y)\} = \min\{\mu Ai(0), \mu Ai(y)\} = \mu Ai(y) = \mu Ai(x-(x-y)) \ge \min\{(\mu Ai(x-y), \mu Ai(x)\} = \min\{\mu Ai(0), \mu Ai(x)\} = \mu Ai(x)$. Therefore, $\mu Ai(x) = \mu Ai(y)$, for all x, y in F and for all i.

(ii) Now. $\mu Ai(x) = \mu Ai(xy-1y) \ge T(\mu Ai(xy-1), \mu Ai(y)) = T(\mu Ai(1), \mu Ai(y)) = \mu Ai(y)$ = $\mu Ai((xy-1)-1x) \ge T(\mu Ai(xy-1), \mu Ai(x)) = T(\mu Ai(1), \mu Ai(x)) = \mu Ai(x)$. Therefore, $\mu Ai(x) = \mu Ai(y)$, for all x, y $\neq 0$ in F and for all i. (iii) Now, $\nu Ai(x) = \nu Ai(x-y+y) \le S(\nu Ai(x-y), \nu Ai(y)) = S(\nu Ai(0), \nu Ai(y)) = \nu Ai(y)$ = $\nu Ai(x-(x-y)) \le S(\nu Ai(x-y), \nu Ai(x)) = S(\nu Ai(0), \nu Ai(x)) = \nu Ai(x)$. Therefore, $\nu Ai(x) = \nu Ai(y)$, for all x, y in F and for all i.

(iv) Now,
$$vAi(x) = vAi(xy-1y) \le S(vAi(xy-1), vAi(y)) = S(vAi(1), vAi(y)) = vAi(y)$$

 $= vAi((xy-1)-1x) \le S(vAi(xy-1), vAi(x)) = S(vAi(1), vAi(x)) = vAi(x).$

Therefore, vAi(x) = vAi(y), for all $x \neq 0$, $y \neq 0$ in F and for all i.

Theorem 3.3:

Let A be an intuitionistic multi fuzzy subset of a field (F, +, ·). If for all i, $\mu Ai(e) = \mu Ai(eI) = 1$ and $\nu Ai(e) = \nu Ai(eI) = 0$ and $\mu Ai(x-y) \ge \min\{(\mu Ai(x), \mu Ai(y))\}$ for all x and y in F and $\mu Ai(xy-1) \ge \min\{\mu Ai(x), \mu Ai(y)\}$ for all x and $y \ne e$ in F and $\nu Ai(x-y) \le \max\{\nu Ai(x), \nu Ai(y)\}$ for all x and y in F and $\nu Ai(xy-1) \le \max\{\nu Ai(x), \nu Ai(y)\}$ for all x and y in F and $\nu Ai(xy-1) \le \max\{\nu Ai(x), \nu Ai(y)\}$ for all x and $y \ne e$ in F, then A is an intuitionistic multi fuzzy subfield of F, where e and eI are identity elements of F.

Proof: It is trivial.

Theorem 3.4:

If A is an intuitionistic multi fuzzy subfield of a field (F, +, \cdot), then H = { x / x \in F: μ Ai(x) = 1, vAi(x) = 0 for all i } is either empty or a subfield of F.

Proof: If no element satisfies this condition, then H is empty. If x, y in H, thenµAi(x–y) \geq T(µAi(x), µAi(–y)) \geq T(µAi(x),µAi(y)) =T(1, 1) = 1. Therefore, µAi(x–y) = 1, for all x, y in H and for all I, and µAi(xy-1) \geq T(µAi(x), µAi(y-1)) \geq T(µAi(x),µAi(y)) = T(1, 1) = 1. Therefore, µAi(xy-1) = 1, for all x, y≠ e in H and for all i. And vAi(x–y) \leq S(vAi(x), vAi(–y)) \leq S(vAi(x),vAi(y)) = S(0, 0) = 0. Therefore vAi(x–y) = 0, for all x, y in H and for all I, and vAi(xy-1) \leq S(vAi(x),vAi(y-1)) \leq S(vAi(x),vAi(y)) = S(0, 0) = 0. Therefore vAi(xy-1) = 0, for all x, y≠ e in H and for all i. We get x–y, xy-1 in H. Therefore H is a subfield of F. Hence H is either empty or a subfield of F.

Theorem 3.5:

Let A be a (T, S)-intuitionistic multi fuzzy subfield of a field (F, +, \cdot). Then for all i, (i) if $\mu Ai(x-y) = 1$, then $\mu Ai(x) = \mu Ai(y)$, for all x and y in F and if $\mu Ai(xy-1) = 1$, then $\mu Ai(x) = \mu Ai(y)$, for all x and $y \neq e$ in F,

(ii) if vAi(x-y) = 0, then vAi(x) = vAi(y), for all x and y in F and if vAi(xy-1) = 0, then vAi(x) = vAi(y), for all x and $y \neq e$ in F, where e and el are identity elements of F.

Proof: Let x and y in F.

(i) Now, $\mu Ai(x) = \mu Ai(x-y+y) \ge T(\mu Ai(x-y), \mu Ai(y)) = T(1, \mu Ai(y)) = \mu Ai(y) = \mu Ai(-y)$ = $\mu Ai(-x+x-y) \ge T(\mu Ai(-x), \mu Ai(x-y)) = T(\mu Ai(-x), 1) = \mu Ai(-x) = \mu Ai(x)$. Therefore $\mu Ai(x) = \mu Ai(y)$, for all x, y in F and for all I, and $\mu Ai(x) = \mu Ai(xy-1y) \ge T(\mu Ai(xy-1), \mu Ai(y)) = T(1, \mu Ai(y))$ = $\mu Ai(y) = \mu Ai(y-1) = \mu Ai(x-1xy-1) \ge T(\mu Ai(x-1), \mu Ai(xy-1)) = T(\mu Ai(x-1), 1) = \mu Ai(x-1) = \mu Ai(x)$. Therefore $\mu Ai(x) = \mu Ai(y)$, for all $x \ne e$, $y \ne e$ in F and for all i.

(ii) Now, $vAi(x) = vAi(x-y+y) \le S(vAi(x-y), vAi(y)) = S(0, vAi(y)) = vAi(y) = vAi(-y)$ = $vAi(-x+x-y) \le S(vAi(-x), vAi(x-y)) = S(vAi(-x), 0) = vAi(-x) = vAi(x)$. Therefore vAi(x) = vAi(y), for all x, y in F and for all I, and $vAi(x) = vAi(xy-1y) \le S(vAi(xy-1), vAi(y)) = S(0, vAi(y))$ = $vAi(y) = vAi(y-1) = vAi(x-1xy-1) \le S(vAi(x-1), vAi(xy-1)) = S(vAi(x-1), 0) = vAi(x-1) = vAi(x)$. Therefore, vAi(x) = vAi(y), for all $x \neq e$, $y \neq e$ in F and for all i.

Theorem 3.6:

If A be a (T, S)-intuitionistic multi fuzzy subfield of a field $(F, +, \cdot)$, then for all i,

(i) if $\mu Ai(x-y) = 0$, then either $\mu Ai(x) = 0$ or $\mu Ai(y) = 0$, for all x and y in F and if $\mu Ai(xy-1) = 0$, then either $\mu Ai(x) = 0$ or $\mu Ai(y) = 0$, for all x and $y \neq e$ in F,

(ii) if vAi(x-y) = 1, then either vAi(x) = 1 or vAi(y) = 1, for all x and y in F and if vAi(xy-1) = 1, then either vAi(x) = 1 or vAi(y) = 1, for all x and $y \neq e$ in F, where e and e are identity elements of F.

Proof: Let x and y in F.

(i) By the definition $\mu Ai(x-y) \ge T(\mu Ai(x), \mu Ai(y))$, which implies that $0 \ge T(\mu Ai(x), \mu Ai(y))$. Therefore, either $\mu Ai(x) = 0$ or $\mu Ai(y) = 0$, for all x, y in F and for all I, and,by the definition $\mu Ai(xy-1) \ge T(\mu Ai(x), \mu Ai(y))$, which implies that $0 \ge T(\mu Ai(x), \mu Ai(y))$.

Therefore, either $\mu Ai(x) = 0$ or $\mu Ai(y) = 0$, for all x, $y \neq e$ in F and for all i.

(ii) By the definition $vAi(x-y) \le S(vAi(x), vAi(y))$, which implies that $1\le S(vAi(x), vAi(y))$. Therefore, either vAi(x) = 1 or vAi(y) = 1, for all x, y in F and for all I, and by the definition $vAi(xy-1) \le S(vAi(x), vA(iy))$, which implies that $1\le S(vAi(x), vAi(y))$.

Therefore, either vAi(x) = 1 or vAi(y) = 1, for all x, $y \neq e$ in F and for all i.

Reference

- [1] Atanassov.K.T., Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, April 1999, Bulgaria.
- [2] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
- [3] Biswas.R, Fuzzy fields and fuzzy linear spaces redefined, Fuzzy sets and systems, (1989) North Holland.
- [4] Muthusamy. M, Palaniappan. N and Arjunan. K, Notes on intuitionistic fuzzy subfields, International J. of Math.Sci. & Engg. Appls., Vol. 4, number V, 345-354, (December, 2010).
- [5] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations, Journal of Mathematical Analysis and Applications, 128, 241-252 (1987).
- [6] Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.
- [7] Rajesh Kumar, Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42, 369-379 (1991).
- [8] Salah Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, fuzzy sets and systems, 235-241 (1991).
- [9] Sidky.F.I and AtifMishref.M ,Fuzzy cosets and cyclic and Abelian fuzzy subgroups , fuzzy sets and systems , 43,243-250, (1991).
- [10] Sivaramakrishnadas.P, Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84, 264-269 (1981).
- [11] Vasanthakandasamy .W.B ,Smarandache fuzzy algebra, American research press , Rehoboth 2003.
- [12] Vasu.M, Sivakumar.D&Arjunan.K, A study on anti-Multi fuzzy subfield of a field, Indian journal of research, 2012, Vo. 1, Issue 1, 78-79, ISSN: 2250 - 1991.
- [13] Zadeh.L.A., Fuzzy sets, Information and control, Vol.8, 338-353 (1965).