

PERFECT DOMINATING SETS AND PERFECT DOMINATION POLYNOMIAL OF A CYCLE

¹ A.M. Anto, ² P. Paul Hawkins and T. Shyla Isac Mary

¹ Assistant Professor, Department of Mathematics, Malankara Catholic College, Mariagiri, Tamil Nadu, India.

antoalexam@gmail.com

²Research Scholar, Reg. no 18223112091013,

Research Department of Mathematics, Nesamony Memorial Christian College,

Marthandam, Tamil Nadu, India. hawkinspaul007@gmail.com

³A Assistant Professor, Research Department of Mathematics,

Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India. Affiliated to Manonmaniam

Sundaranar University, Abishekapatti, Tirunelveli -

627012, Tamilnadu, India. shylaiasscmary@yahoo.in

Abstract Let G = (V, E) be a simple graph. A set $S \subseteq V$ is a perfect dominating set of G, if every vertex u in V - S is adjacent to exactly one vertex in S. Let $C_{pf}(n, i)$ be the family of all perfect dominating sets of a Cycle C_n with cardinality i, and let $d_{pf}(C_n, i) = |C_{pf}(n, i)|$. In this paper, we construct $C_{pf}(n, i)$ for a Cycle C_n with nvertices and obtain a recursive formula of $d_{pf}(C_n, i)$. Using this recursive formula, we consider the polynomial $D_{pf}(C_n, x) = \sum_{i=\gamma_{pf}(C_n)}^n d_{pf}(C_n, i) x^i$, which we call perfect domination polynomial of Cycle and obtain some properties of this polynomial.

1. Introduction

Let G = (V, E) be a simple graph of order |V| = n. For any vertex $u \in V$, the open neighborhood of u is the set $N(u) = \{v \in V | uv \in E\}$. A set $S \subseteq V$ is a dominating set of G, if every vertex $u \in V$ is a element of S or is adjacent to an element of S[8]. The dominating set S is a perfect dominating set if $|N(u) \cap S| = 1$ for each $u \in V - S[8]$, or equivalently, if every vertex u in V - S is adjacent to exactly one vertex in S. The perfect domination number γ_{pf} is the minimum cardinality of a perfect dominating set in G. A closed trail whose origin and internal vertices are distinct is called cycle [3]. Let C_n be a cycle with n vertices. Let $C_{pf}(n, i)$ be the family of perfect dominating sets of a Cycle C_n with cardinality *i* and let $d_{pf}(C_n, i) = |C_{pf}(n, i)|$. We call the polynomial $D_{pf}(C_n, x) = \sum_{i=\gamma_{pf}(C_n)}^n d_{pf}(C_n, i) x^i$, the perfect domination polynomial of the cycle C_n . We use [n], for the smallest integer greater than or equal to *n*. In this article we denote the set $\{1, 2, ..., n\}$ simply by [n].

2. Perfect Dominating sets of a Cycle

Let $C_{pf}(n, i)$ be the family of perfect dominating sets of the cycle C_n with cardinality *i*. We are going to investigate perfect dominating sets of cycle C_n .

We required the following lemmas to prove our main results in this article.

Lemma 2.1

$$\begin{split} & \text{i) } \gamma_{pf}(C_{3n}) = n \text{ for } n \in N \\ & \text{ii) } \gamma_{pf}(C_{3n+1}) = \left\lceil \frac{3n+1}{3} \right\rceil \text{ for } n \in N \\ & \text{iii) } \gamma_{pf}(C_{3n+2}) = n+2 \text{ for } n \in N \end{split}$$

By Lemma 2.1 and the definition of perfect domination number, we have the following lemma.

Lemma 2.2

For $n \ge 3$, $C_{pf}(n, i) = \emptyset$, if and only if i > n **Proof:** Let C_n be a cycle with *n* vertices and any member of $C_{pf}(n, i)$ contains atmost *n* vertices. Therefore $C_{pf}(n, i) = \emptyset$ for i > n. Conversely, if i > n then by definition of perfect dominating set of cycle C_n we have $C_{pf}(n, i) = \emptyset$.

Lemma 2.3

If G be a Cycle of length 3k - 1, then every perfect dominating set of G must contains at least k + 1 vertices of G.

Lemma 2.4 For $n \geq 3$,

i) $C_{pf}(n, n - 1) = \emptyset$ ii) $C_{pf}(n, n) = \{[n]\}$

iii)
$$C_{pf}(n, n-2) = \{\{2,3,4, ..., n-1\}, \{[n] - \{i, i+1\} | i = 1,2,3, ..., n-1\}\}$$

Proof: i) Let $G = (V, E)$ be a cycle of *n* vertices.

Suppose to the contrary we assume that $C_{pf}(n, n-1) \neq \emptyset$ then let *T* is a Perfect dominating set of *G* with cardinality n-1. Let $v \in G - T$, then the neighborhood of *v* is adjacent to two vertices of *T*.

Which implies $|N(v) \cap T| \neq 1$. Which contradicts to the definition of Perfect dominating set. Hence, $C_{pf}(n, n-1) = \emptyset$

ii) We know that for any G = (V, E), V(G) is always a perfect dominating set of G. Hence, $C_{pf}(n, n) = \{[n]\}$

iii) Here, $C_{pf}(n, n-2)$ is the family of perfect dominating sets with cardinality n-1 in a cycle of n vertices. Clearly, {2,3,4, ..., n-1} and { $[n] - \{i, i+1\}|i = 1,2,3, ..., n-1$ } are the possible perfect dominating sets with cardinality n-2.

Lemma 2.5

For
$$n \in N$$
, $C_{pf}(3n, n) = \{\{1, 4, 7, \dots, 3n - 2\} \cup \{2, 5, 8, \dots, 3n - 1\} \cup \{3, 6, 9, \dots, 3n\}\}$

Lemma 2.6

If $C_{pf}(n, i)$ be a family of perfect dominating sets with cardinality *i* then, $|C_{nf}(n, i)| = |C_{nf}(n - 1, i - 1)| + |C_{nf}(n - 3, i - 1)|$

3. Perfect Domination Polynomial of a Cycle

Definition 3.1

Let C_n be a Cycle with *n* vertices. Let $C_{pf}(n, i)$ be the family of perfect dominating sets of a Cycle C_n with cardinality *i* and $d_{pf}(C_n, i) = |C_{pf}(n, i)|$. Then the Perfect dominating polynomial of a cycle C_n is given by $D_{pf}(C_n, x) = \sum_{i=\gamma_{pf}(C_n)}^n d_{pf}(C_n, i) x^i$.

Example 3.2 Consider a cycle C_5 in Fig 1.

Theorem 3.3

If $C_{pf}(n, i)$ be a family of perfect dominating sets with cardinality *i* then, For every $n \ge 6$, $D_{pf}(C_n, x) = x[D_{pf}(C_{n-1}, x) + D_{pf}(C_{n-3}, x)]$ with initial values $D_{pf}(C_3, x) = 3x + x^3$, $D_{pf}(C_4, x) = 4x^2 + x^4$, $D_{pf}(C_5, x) = 5x^3 + x^5$. **Proof :** It follows from the definition of perfect domination polynomial and Lemma 2.6 Using the above theorem we obtain $d_{pf}(C_n, i)$ for $3 \le n \le 15$ as shown in the following table

table															
į	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$n \setminus$															
3	3	0	1												
4	0	4	0	1											
5	0	0	5	0	1										
6	0	3	0	6	0	1									
7	0	0	7	0	7	0	1								
8	0	0	0	12	0	8	0	1							

9	0	0	3	0	18	0	9	0	1						
10	0	0	0	10	0	25	0	10	0	1					
11	0	0	0	0	22	0	33	0	11	0	1				
12	0	0	0	3	0	40	0	42	0	12	0	1			
13	0	0	0	0	13	0	65	0	52	0	13	0	1		
14	0	0	0	0	0	35	0	98	0	63	0	14	0	1	
15	0	0	0	0	3	0	75	0	140	0	75	0	15	0	1

Table 1

Example 3.4. Consider a cycle C_6 with 6 vertices. We construct a perfect dominating polynomial $D_{pf}(C_6, x)$ using Theorem 3.2 and Table 1. Then the Perfect dominating polynomial of a cycle C_6 is given by $D_{pf}(C_6, x) = \sum_{i=\gamma_{pf}(C_6)}^6 d_{pf}(C_6, i) x^i$ From the Table 1 we have $d_{pf}(C_6, 2) = 1$, $d_{pf}(C_6, 3) = 4$, $d_{pf}(C_6, 4) = 4$, $d_{pf}(C_6, 5) = 2$, $d_{pf}(C_6, 6) = 1$. Hence, $D_{pf}(C_6, x) = x^2 + 4x^3 + 4x^4 + 2x^5 + x^6$.

Theorem 3.5

The coefficients of $D_{pf}(C_n, x)$ have the following properties i) $d_{pf}(C_{3n}, n) = 3$ for every $n \in N$ ii) $d_{pf}(C_n, n) = 1$ for every $n \ge 3$ iii) $d_{pf}(C_n, n-1) = 0$ for every $n \ge 3$ iv) $d_{pf}(C_n, n-2) = n$ for every $n \ge 3$ v) $d_{pf}(C_n, n-3) = 0$ for every $n \ge 4$ vi) $d_{pf}(C_n, n-4) = \frac{n(n-5)}{2}$ for every $n \ge 5$ vii) $d_{pf}(C_n, n-5) = 0$ for every $n \ge 6$ viii) $d_{pf}(C_n, n-6) = \frac{n(n-7)(n-8)}{6}$ for every $n \ge 7$ ix) $d_{pf}(C_n, n-7) = 0$ for every $n \ge 8$ x) $d_{pf}(C_n, n-8) = \frac{n(n-9)(n-10)(n-11)}{24}$ for every $n \ge 9$ xi) $d_{pf}(C_n, n-9) = 0$ for every $n \ge 10$ xii) $d_{pf}(C_n, n-10) = \frac{n(n-11)(n-12)(n-13)(n-14)}{120}$ for every $n \ge 11$ **Proof:** i) By lemma 2.5 we have $d_{pf}(C_{3n}, n) = |C_{pf}(3n, n)| = 3$ for every $n \in N$

Proof: *i*) By lemma 2.5 we have $d_{pf}(C_{3n}, n) = |C_{pf}(3n, n)| = 3$ for every $n \in N$ *ii*) We have by Lemma 2.4 (*ii*) $d_{pf}(C_n, n) = |C_{pf}(n, n)| = 1$. Hence the result. *iii*) It follows from the definition of perfect dominating set. *iv*) We prove this result by induction on *n*. The result is true for n = 3. Because, $C_{pf}(3,1) = \{\{1\}, \{2\}, \{3\}\}$. So, $d_{pf}(C_3, 1) = |C_{pf}(3,1)| = 3$. Now, assume that the result is true for all natural numbers less than *n*. For *n*, we have by lemma 2.6 $d_{pf}(C_n, n-2) = d_{pf}(C_{n-1}, n-3) + d_{pf}(C_{n-3}, n-3)$. Then, by induction hypothesis $d_{pf}(C_{n-1}, n-3) = n-1$. Also by part (*ii*) we have $d_{pf}(C_{n-3}, n-7) = 1$, Therefore, $d_{pf}(C_n, n-6) = n-1+1$ = n

v) It follows from the definition of perfect dominating set.

vi) We prove this result by induction on *n*. The result is true for n = 5. Because, $C_{pf}(5,1) =$ $\{\emptyset\}$. So, $d_{pf}(C_5, 1) = |C_{pf}(5, 1)| = 0$.

Now, assume that the result is true for all natural numbers less than *n*. For *n*, we have by lemma 2.6 $d_{pf}(C_n, n-4) = d_{pf}(C_{n-1}, n-5) + d_{pf}(C_{n-3}, n-5)$. Then, by induction hypothesis $d_{pf}(C_{n-1}, n-5) = \frac{(n-1)(n-6)}{2}$. Also, by part (*iv*) we have $d_{pf}(C_{n-3}, n-5) = n-3$. Therefore, $d_{pf}(C_n, n-6) = \frac{(n-1)(n-6)}{2} + n - 3$ = $\frac{(n-1)(n-6)+2(n-3)}{2}$ = $\frac{n(n-5)}{2}$

Hence, by the principle of induction, the result is true for all $n \ge 5$ *vii*) It follows from the definition of perfect dominating set. *viii*) We prove this result by induction on *n*. The result is true for n = 7. Because, $C_{pf}(7,1) = \{\emptyset\}.$ So, $d_{pf}(C_7,1) = |C_{pf}(7,1)| = 0.$ Now, assume that the result is true for all natural numbers less than n. For n, we have by lemma 2.6 $d_{pf}(C_n, n-6) = d_{pf}(C_{n-1}, n-7) + d_{pf}(C_{n-3}, n-7).$ Then, by induction hypothesis $d_{pf}(C_{n-1}, n-7) = \frac{(n-1)(n-8)(n-9)}{6}$. Also by part (vi) we have $d_{pf}(C_{n-3}, n-7) = \frac{(n-3)(n-8)}{2}$. Therefore, $d_{pf}(C_n, n-6) = \frac{(n-1)(n-8)(n-9)}{6} + \frac{(n-3)(n-8)}{2}$ $= \frac{(n-1)(n-8)(n-9)+3(n-3)(n-8)}{6}$ Hence, by the prime is the first set of the formula of the first set of the first s

Hence, by the principle of induction, the result is true for all $n \ge 7$.

ix) It follows from the definition of perfect dominating set.

x) We prove this result by induction on n. The result is true for n = 9. Because, $C_{pf}(9,1) =$ $\{\emptyset\}$. So, $d_{pf}(C_9, 1) = |C_{pf}(9, 1)| = 0$.

Now, assume that the result is true for all natural numbers less than n. For n, we have by lemma 2.6 $d_{pf}(C_n, n-8) = d_{pf}(C_{n-1}, n-9) + d_{pf}(C_{n-3}, n-9).$ Then, by induction hypothesis $d_{pf}(C_{n-1}, n-9) = \frac{(n-1)(n-10)(n-11)(n-12)}{2}$ Also by part (*viii*) we have $d_{pf}(C_{n-3}, n-9) = \frac{(n-3)(n-10)(n-11)}{6}$. Therefore, $d_{pf}(C_n, n-8) = \frac{(n-1)(n-10)(n-11)(n-12)}{24} + \frac{(n-3)(n-10)(n-11)}{6}$. $= \frac{(n-1)(n-10)(n-11)(n-12)+4(n-3)(n-10)(n-11)}{24}$ $= \frac{n(n-9)(n-10)(n-11)}{24}$

Hence, by the principle of induction, the result is true for all $n \ge 9$ xi) It follows from the definition of perfect dominating set.

xii) We prove this result by induction on n. The result is true for n = 11. Because, $C_{pf}(11,1) = \{\emptyset\}.$ So, $d_{pf}(C_{11},1) = |C_{pf}(11,1)| = 0.$ Now, assume that the result is true for all natural numbers less than n. For n, we have by lemma 2.6 $d_{pf}(C_n, n-10) = d_{pf}(C_{n-1}, n-11) + d_{pf}(C_{n-3}, n-11).$ Then, by induction hypothesis $d_{pf}(C_{n-1}, n-11) = \frac{(n-1)(n-12)(n-13)(n-14)(n-15)}{120}$. A

also by part (x) we have
$$d_{pf}(C_{n-3}, n-11) = \frac{(n-3)(n-12)(n-13)(n$$

Therefore,
$$d_{pf}(C_n, n-8) = \frac{(n-1)(n-12)(n-13)(n-14)(n-15)}{120} + \frac{(n-3)(n-12)(n-13)(n-14)}{24}$$

$$= \frac{(n-1)(n-12)(n-13)(n-14)(n-15)+5(n-3)(n-12)(n-13)(n-14)}{120}$$
$$= \frac{n(n-11)(n-12)(n-13)(n-14)}{120}$$

Hence, by the principle of induction, the result is true for all $n \ge 11$

Theorem 3.5

For every $n \in N$ and $\gamma_{pf}(C_n) \leq i \leq n$. $|C_{pf}(n,i)|$ is the coefficient of $u^n v^i$ in the expansion of the function: $f(u,v) = \frac{u^3 v(1+3u^2v+u^3v^3+uv+3uv+uv^3)}{(1-uv-u^3v)}$

Proof: First we set $f(u, v) = \sum_{n=3}^{\infty} \sum_{i=1}^{\infty} |C_{pf}(n, i)| u^n v^i$. By using the recursive formula for $|C_{pf}(n, i)|$ we can write f(u, v) as follows:

References

- A. Vijayan and T. Nagarajan. Vertex-Edge Dominating sets and Vertex-Edge Domination Polynomials of cycles. International Journal of Mathematics and Computer Research volume 2, issue 8 August 2014, 547-564
- [2] A. Vijayan and T. Nagarajan. Vertex-Edge Dominating sets and Vertex-Edge Domination Polynomials of paths. International Journal of Mathematics Trends and Technology volume 4, Dec (2013), 266-279
- [3] Bondy J.A, Murthy. U.S.R., Graph theory with applications, Elsevier Science Publishing Co, sixth printing, 1984
- [4] Gray Chartand, Ping Zhang, 2005, Introduction to graph theory, Mc Graw Hill, Higher Education
- [5] S. Alikhani and Y.H. Peng, Domination sets and Domination polynomials of cycles, Global Journal of pure and Applied Mathematics vol.4 No.2 (2008)
- [6] S.Alikhani and Y.H.Peng, Domination sets and Domination polynomial of Paths, International Journal of Mathematics and Mathematical Sciences Vol.2009
- S. Alikhani and Y.H. Peng, Introduction to Domination polynomial of a graph, arXiv: 0905.225
 [v] [math.co] 14 may (2009)
- [8] T.W.Haynes, S.T.Hedetniemi, and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Newyork(1998)