

FUZZY QUASI- IDEALS IN NEAR- SUBTRACTION SEMIGROUPS

R.Sumitha¹, P.Annamalai Selvi², S. Jayalakshmi³

 ¹Research Scholar¹,SriParasakthi College for Women,Courtallam.
²Research Scholar²,SriParasakthi College for Women,Courtallam.
³Associate Professor³,SriParasakthi College for Women,Courtallam.
Affiliated To ManomaniamSundranar University, Abishekapatti,Tirunelveli Email:tneb1977@gmail.com ,ananya2015.as@gmail.com

jayarajkutti@gmail.com

Abstract: Dheena discussed and derived some properties of near subtraction semigroups. The concept of fuzzy set was first initiated by Zadeh. In this paper, we introduced the notation of fuzzy quasi- ideals in near- subtraction semigroups.

Keywords:Fuzzy sub-near subtraction semigroups, fuzzy two sided X-Subalgebra, fuzzy twosided ideal, fuzzy bi-ideal and fuzzy quasi- ideal..

1. Introduction

B.M.Schein [12] considered systems of the form (X; o;/), where X is a set of functions closed under the composition "o" of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction "/" (and hence (X;/) is a subtraction algebra in the sense of [3]).Y.B.Jun et al [5] introduced the notation of ideals in subtraction algebras and discussed the characterization of ideals. In [5], Y.B.Jun and H.S.Kim established the ideal generated by a set, and discussed related results. The concept of fuzzy set was first initiated by Zadeh [14]. Narayanan et al.[10] defined the concept of generalized fuzzy ideals of near-rings. Mahalakshmi et al. [5] studied the notation of bi-ideals in nearsubtraction semigroups. Manikandan [7] studied fuzzy fuzzy bi-ideals in near-rings. Recently, Narayanan and Manikandan [11] studied Interval-valued fuzzy idealsgenerated by an interval-valued fuzzy subset in semi-groups and investigated some of itsproperties. Thillaigovindan and Chinnadurai [13] studied on interval-valued fuzzy Quasi-ideals in a semigroups and investigated some of its properties. [10] studied interval-valuedfuzzy Quasi-ideals in a semigroups and investigated some of its properties. Murugadas etal. [8] studied interval-valued Q-fuzzy ideals generated by an interval-valued Q-fuzzysubset in ordered semi-groups and investigated some of its properties.

2.Preliminaries

Definition 2.1

A nonempty set X together with two binary operation - and .is called **near subtraction** algebra if it satisfying the following:

- (i) x (y x) = x
- (ii) x-(x-y) = y-(y-x)
- (iii) (x-y)-z = (x-z)-y

Definition 2.2

A nonempty set X together with two binary operation - and . is said to be **subtraction** semigroup if it satisfying the following:

- (i) (x,-) is a subtraction algebra.
- (ii) (x,.) is a semigroup.
- (iii) x(y-z) = xy-xz and $(x-y)z = xz-yz \forall x, y, z \in X$

Definition 2.3

A near- subtraction semigroup X is called **zero-symmetric**, if x0 = 0, for all x in X.

Definition 2.4

A non empty subset S of a subtraction algebra X is said to be a **subalgebra** of X, if x-y \in S. For all x,y \in S.

Note: Let X be a near- subtraction semigroup. Given two subsets A and B of X,

 $A \circ B = \{ab/a \in A, b \in B\}$. Also we define another operation "*"

 $A*B = \{ab-a(a'-b) / a', a, \in A, b \in B\}.$

Definition 2.5

A function A from a non-empty set X to the unit interval.[0,1] is called a **fuzzy subset of X**.

Definition 2.6

A subalgebra B of X is called **bi-ideal** if $BXB \cap BX * B \subseteq B$. In case of zero symmetric, $BXB \subseteq B$.

Notation: Let A and B be two fuzzy subsets of a semigroup X. We define the relation \subseteq between A and B, the union, intersection and product of A and B, respectively as follows:

1. A \subseteq B if A(x) \leq B (x), for all x \in X, 2. (A \cup B) (x) = max{A(x), B(x)}, for all x \in X, 3. (A \cap B) (x) = min{A(x), B (x)}, for all x \in X. 4. (A \circ B) (x) = $\begin{cases} \sup_{x=yz} \min{A(y), B(z)}, \text{ if } x=yz \text{ for all } x, y \in X \\ 0, \text{ Otherwise} \end{cases}$ 5. (A*B) (x) = $\begin{cases} \inf_{x=yz} \max{A(y), B(z)}, \text{ if } x=yz \text{ for all } x, y \in X \\ 0, \text{ Otherwise} \end{cases}$

Definition 2.7

A Fuzzy subalgebraA of X is called **fuzzy bi-ideal** of X,if (AXA) \cap (AX* A) \subseteq A.In case of zero symmetric if AX A \subseteq A.

Definition 2.8

Let (X,-,.) be a near subtraction semigroup. A non-empt subset I of X is called (i). A **Left ideal** if I is a subalgebra of (X,-) and $xi \cdot x(y - i) \in I$ for every $x, y \in X$, $i \in I$

(ii). A **right ideal** if I is a subalgebra of (X,-) and IX<u></u>.

(iii). An **Ideal** of X if I is both a left and right.

Definition 2.9

A Fuzzy subset Aof X is called **fuzzy ideal** if it satisfying the following conditions: (i) $A(x-y) \ge \min\{A(x), A(y)\}$. (ii) $A(xi-x(y-i) \ge A(i)$. (iii) $A(xy) \ge A(x)$, for every x, y \in X. where with (i) and (ii) is called a fuzzy left ideal of X. Whereas a fuzzy subset with (i) of X.

A fuzzy subset with (i) and (ii) is called a fuzzy left ideal of X, Whereas a fuzzy subset with (i) and (iii) is called a fuzzy right ideal of X.

Definition 2.10

A Fuzzy subset A of X is called **fuzzy X subalgebra** if it satisfying the following conditions:

(i) A is a fuzzy subalgebra of (X,-).

(ii)A(xy) \geq A(x).

(iii)A(xy) \geq A(y), for every x, y \in X.

A fuzzy subset with (i) and (ii) is called a fuzzy right X-subalgebra of X, Whereas a fuzzy subset with (i) and (iii) is called a fuzzy left X-subalgebra of X.

3. Fuzzy quasi- ideals in near subtraction semigroups

Defnition 3.1

A fuzzy subalgebra Aof X is called a **fuzzy quasi-ideal** of X if $(A \circ X) \cap (X \circ A) \cap (A * X) \subseteq A$. In case of zero symmetric of X if $(A \circ X) \cap (X \circ A) \subseteq A$.

Example 3.2 Let $X = \{0,a,b,c\}$ be a near-subtraction semigroup with two binary operations '-' and '•' is defined as follows.

-	0	а	b	с	0	0	А	b	с
0	0	0	0	0	0	0	0	0	0
А	a	0	а	0	a	a	А	b	а
В	b	b	0	0	b	0	0	b	b
С	с	b	a	0	с	a	Α	с	с

Define a fuzzy subset A:X \rightarrow (0,1) defined by A(0) = 0.2, A(a)= A(b) =0.7, and A(c)=0.3 Then (A°X) \cap (X°A) \cap (A*X)(0)=0.2, (A°X) \cap (X°A) \cap (A*X) (a)=0.7, (A°X) \cap (X°A) \cap (A*X) (b)=0.7, (A°X) \cap (X°A) \cap (A*X)(c)=0.3.

Theorem 3.3

Let X be a zero symmetric near subtraction semigroup and if fuzzy subalgebra A of X is a fuzzy quasi -ideal of X then $(A \circ X \cap (X \circ A) \subseteq A)$.

Proof: Assume that A is a fuzzy quasi- ideal of X Then $(A \circ X \cap X \circ A) \cap (X \circ A) \cap (A^*X) \subseteq A$. Since A is a fuzzy subalgebra of X.A(0) $\ge A(x)$ for all x $\in X$. we have:

 $(A \circ X)(0) \ge (A \circ X)(x)$ for all $x \in X$

Since X is zero symmetric, $(A \circ X \cap X \circ A) \subseteq (A^*X) \subseteq A$. Therefore, $A \circ X \cap X \circ A \subseteq A$.

Theorem 3.4

Every fuzzy quasi – ideal of A is a fuzzy bi-ideal of X. **Proof:** Let A be a fuzzy quasi -ideal of X. Now, $A(ab) \ge (A \circ X)(ab) \cap (X \circ A)(ab)$ $= {}_{ab=xy}^{sup} \min\{A(x); X(y)\} \cap {}_{ab=xy}^{sup} \min\{X(x), A(y)\} \ge \{A(a) \cap A(b)\}.$ Therefore, A(ab) \ge min \{A(a), A(b)\} A(axb) \ge (A \circ X)(axb) \cap (X \circ A)(axb) $= {}_{axb=yz}^{sup} \min\{A(y); X(z)\} \cap {}_{axb=yz}^{sup} \min\{X(y), A(z)\} \ge \min\{A(a), X(ab)\} \cap \min\{X(ax), A(b)\}$ $= A(a) \cap A(b).$ Therefore A(axb) \ge min \{A(a), A(b)\}.

Note: Every fuzzy quasi - ideal is a fuzzy bi- ideal .but Converse is not true.

Example 3.5

-	0	a	b	с	0	0	а	В	с
0	0	0	0	0	0	0	0	0	0
а	a	0	а	0	а	0	b	В	С
b	b	b	0	0	b	0	b	0	b
с	с	с	а	0	с	0	с	В	a

Let $X=\{0,a,b,c\}$ be a near-subtraction semigroup with two binary operations '-'and '•' is defined as follows.

Define a fuzzy subset A:X \rightarrow (0,1) defined by A(0) = 0.2, A(a)= A(b) =0.7, and A(c)=0.3 Then (A°X)(0) \cap (X°A)(0) \leq A(0) \Rightarrow 0.7 \leq 0.2

Theorem 3.6

Let X be a left permutable near subtraction semigroup then every fuzzy quasi- ideal A of X is a fuzzy strong bi-ideal of X.

Proof: Let A be a fuzzy quasi -ideal X. Then by the above theorem A is a fuzzy bi-ideal of X $A(axb) \ge (A \circ X) (axb) \cap (X \circ A) (axb)$

> $= (A \circ X) (xab) \cap (X \circ A) (axb) (Since X is left permutable)$ $= \sup_{xab=yz} \min\{A(y); X(z)\} \cap \sup_{axb=xy} \min\{X(x), A(y)\}$

 $\geq \min\{A(x), X(ab)\} \cap \min\{X(ax), A(b)\} = A(x) \cap A(b) = \min\{A(x), A(b)\}$

Theorem 3.7

Let X be regular near subtraction semigroup A be any fuzzy quasi-ideal of X Then A= $(A \circ X) \cap (X \circ A)$.

Proof: Let X be regular near subtraction semigroup. Since X is regular, $x \in X$ there exists a $\in X$ Such that x = xax

 $\begin{aligned} &(A \circ X)(x) = \underset{x=xax = pq}{\overset{sup}{\min}} \{A(p); X(q)\} \ge \min \{A(x), X(ax)\} = A(x) \\ &(X \circ A)(x) = \underset{x=xax = pq}{\overset{sup}{\min}} \{X(p); A(q)\} \ge \min \{X(ax), A(x)\} = A(x) \\ &(A \circ X)(x) \frown (X \circ A)(x) \ge A(x) \cap A(x) = A(x) \end{aligned}$

 $(A \circ X) \cap (X \circ A) \supseteq A$ and also *A* is a fuzzy quasi -ideal of *X*. Then $(A \circ X) \cap (X \circ A) \subseteq A$. Therefore, $A = A \circ X \cap X \circ A$.

Theorem 3.8

Let A be a fuzzy near subtraction semigroup of X Then A is a fuzzy quasi-ideal of X if and only if upper level cut U(A;t) of X is a fuzzy quasi-ideal of X, for each $t \in [0,1]$.

Proof: Assume that A is a fuzzy quasi-ideal of X and U(A;t) is a non empty upper level subset of X. Let $x,y \in U(A;t)$;Then $A(x) \ge t$ and $A(y) \ge t$. Now $A(x-y) \ge min \{A(x), A(y)\} \ge t$. This implies that: $x-y \in U(A;t)$.Hence U(A;t) is a subalgebra of X.

To prove U(A;t) is a fuzzy quasi-ideal of X. Let $a \in U(A;t) \circ X \cap X \circ U(A;t)$,

 $\Rightarrow a \in U(A;t) \otimes X$ and $a \in X \otimes U(A;t)$ then a=xy and a=wz, where $x,z \in X$ and $y,w \in U(A;t)$ This implies that $A(y) \ge t$ and $A(w) \ge t$,

 $A(a) \ge (A \circ X)(a) \cap (X \circ A)(a) = \min \{ \sup_{a=pq=wz} \min\{A(p); X(q)\}, \sup_{a=p_1q_1=xy} \min\{X(p_1); A(q_1)\} \}$ $\geq \min \{A(w), A(y)\} \geq t.$

Thus $a \in U(A;t)$. Hence $U(A;t) \circ X \cap X \circ U(A;t) \subseteq U(A;t)$. Thus U(A;t) is a fuzzy quasi-ideal of X. Conversely, U(A;t) is a fuzzy quasi-ideal of X. Let $a \in X$ such that, suppose $A(a) \not\supseteq (A \circ X)(a) \cap (X \circ A)(a)$ and that $A(a) \le t_1 \le (A \circ X)(a) \cap (X \circ A)(a)$ for some $t_1 \in (0,1)$. $(A \circ X)(a) \ge t_1$

and $(X \circ A)(a) \ge t_1$ but $A(a) < t_1$, $\Rightarrow a \notin U(A;t_1)$ which is contradiction. Therefore,

$$A(a) \supseteq (A \circ X)(a) \cap (X \circ A)(a)$$

Hence A is a fuzzy quasi-ideal of X.

Theorem 3.9

Х.

Suppose A is a fuzzy quasi- ideal of X then the set $A_0 = \{a \in A/A(a) > 0\}$ is a quasi- ideal of

Proof: To show that A_0 is a quasi- ideal of X. We need only to show that $X^{\circ} A_0 \cap A_0^{\circ} X \subseteq A_0$

Let $a \in X^{\circ} A_0 \cap A_0^{\circ} X$ implies that $a \in X A_0$ and $a \in A_0 X$. So a = rx and a = ys for r, seX and x, y \in A_0 then A(x)>0 and A(y)>0. Now, $A(a)\geq (A\circ X)(a)\cap (X\circ A)(a)$. Since:

 $(A \circ X)(a) = \sup_{a=pq}^{sup} \min\{A(p), X(q)\} \ge A(y) \quad \text{because } a = ys$ $(X \circ A)(a) = \sup_{a=pq}^{sup} \min\{X(p), A(q)\} \ge A(x) \quad \text{because } a = rx.$

Hence, $(A \circ X)(a) \ge A(y)$ and $(X \circ A)(a) \ge A(x)$.

 $A(a) \ge (A \circ X)(a) \cap (X \circ A)(a) \ge A(y) \cap A(x) > 0$ because A(x) > 0 and A(y) > 0. Therefore, $A_0 \circ X \cap X \circ A_0 \subseteq A_0$, thus a $\in A_0$. Hence A_0 is a quasi-ideal of X.

Theorem 3.10

Suppose A is a non empty subset of X, then A is a quasi-ideal of X if and only if K_A the characteristic function of A is a fuzzy quasi-ideal of X.

Proof: Suppose A is a quasi-ideal of X and K_A is the characteristic function of A. Let $a \in X$, if $a \notin A$. Then $a \notin XA$ or $a \notin AX$. Thus $(X \circ K_A)(a) = 0$, $(K_A \circ X)(a) = 0$, and so $(K_A \circ X)(a) \cap (X \circ K_A)(a) = 0 = K_A$. If $a \in K_A$, then $(K_A)(a) = 1 \ge (K_A \circ X)(a) \cap (X \circ K_A)(a)$. Hence K_A is a fuzzy quasi-ideal of X.

Conversely, assume that K_A is a fuzzy quasi-ideal of X, Let $a \in A \circ X \cap X \circ A$. Then there exists $y, z \in X$ and $b,c\in A$ such that a=by and a=zc. Thus:

 $(K_{A^{\circ}}X)(a) = \sup_{a=pq}^{sup} \min\{K_{A}(p), X(q)\} = \min\{K_{A}(a), X(a)\} = \min\{K_{A}(by), X(by)\}$ $\geq K_A(b) \cap X(y) = 1 \cap 1 = 1$

So $(K_A \circ X)(a) = 1$. Similarly $(X \circ K_A)(a) = 1$. Since $K_A(a) \ge (K_A \circ X)(a) \cap (X \circ K_A)(a)$, thus $K_A(a) = 1$. 1, which is implies that $a \in A$. Hence $A \circ X \cap X \circ A \subseteq A$. Therefore A is a quasi-ideal of X.

Theorem 3.10

Let A and B be any two fuzzy quasi-ideal of X then $A \cap B$ is also a fuzzy quasi-ideal of X. **Proof:** $(A \cap B)(x-y) = \min \{A(x-y), B(x-y)\} \ge \min \{\min\{A(x), A(y)\}, \min\{B(x), B(y)\}\}$ $=\min \{(A \cap B)(x), (A \cap B)(y)\}.$

Let xEXand choose a,b,c,y,zEX and such that x=ab=zy-z(c-y) then: $(A \circ X)(x) \cap (X \circ A)(x) \cap (A^*X)(x) = \min \{ \sup_{x=ab} \min\{A(a); X(b)\} \cap \sup_{x=ab} \min\{X(a), A(b)\} \cap \sup_{x=ab} \min\{X(a), A(b)\} \cap \bigcup_{x=ab} \max\{X(a), A(b)\} \cap \bigcup_$

$$\sup_{x=zy-z(c-y)} \min\{A(c); X(z)\} \le A(x)$$

Thus min $\begin{cases} \sup_{x=ab} A(a), \sup_{x=ab} A(b), \sup_{x=zy-z(c-y)} A(c) \end{cases} \le A(x).$ Similarly, min $\begin{cases} \sup_{x=ab} B(a), \sup_{x=ab} B(b), \sup_{x=zy-z(c-y)} B(c) \end{cases} \le B(x)$ $(((A \cap B) \circ X) \cap (X \circ (A \cap B)) \cap (A \cap B) * X))(x) = \min\{((A \cap B) \circ X)(x), (X \circ (A \cap B))(x), (X \cap A) \in A \cap B) \in A \cap B \}$ $(A \cap B)^{*}X))(x) = \min\{\sup_{x=ab}(A \cap B)(a), \sup_{x=ab}(A \cap B)(b), \sup_{x=zy-z(c-y)}(A \cap B)(c)\} \\ = \min\{\sup_{x=ab}\min\{A(a), B(a)\}, \sup_{x=ab}\min\{A(b), B(b)\}, \sup_{x=zy-z(c-y)}\min\{A(c), B(c)\}\}$ $\leq \min\{\min\{\sup_{x=ab}^{sup} A(a), \sup_{x=ab}^{sup} A(b), \sup_{x=zy-z(c-y)}^{sup} A(c)\}, \\ \min\{\sup_{x=ab}^{sup} B(a), \sup_{x=ab}^{sup} B(b), \sup_{x=zy-z(c-y)}^{sup} B(c)\}\} \\ \leq \min\{A(x), B(x)\} = (A \cap B)(x).$

So $(A \cap B)$ is a fuzzy quasi-ideal of X.

References

- [1] J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
- [2] V. Chinnadurai and S. Kadalarasi, *Fuzzy Bi-ideals in near-Subtraction Semigroup*Annals of Fuzzy Mathematics and Information, 12(6)(2016).20.
- [3] P.Deena and Sateeshkumar.G, On Strong Regular subtractionSemigroupscommun.Korean Math.soc.22(2007,)pp.323-330.
- [4] Gunter Pilz Near rings, 1983. The theory and its applications, North HollandPublishing Company, Amsterda.
- [5] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn.65(2007), no.1, 129-134.
- [6] V. Mahalakshmi, S.Maharasi and S.Jayalakshmi, *Bi-ideals of near SubtractionSemigroup*, Indian Advances in Algebra 6(1)(2013)35-48.
- [7] T. Manikandan, Fuzzy bi-ideals of near-rings, J. Fuzzy Math. 17(3)(2009) 659-671.
- [8] P.Murugadas, A.Arikrishnan and M.R.Thirumagal, Interval-valued q-fuzzy idealsgenerated by an interval-valued q-fuzzy subset in ordered semi-groups, *Annals ofPure and Applied Mathematics*, 13(2) (2017) 211-222.
- [9] S. Nagaiah, Anti Fuzzy Bi-ideals in Semigroups, International Journal of Algebra, 5, (28)(2011) 1387-1394.
- [10] AL. Narayanan and T. Manikandan, $(\in, \in Vq)$ -fuzzy sub near-rings and $(\in, \in Vq)$ fuzzy ideals of near-rings, J. Appl. Math. and computing 18 (2005)419-430.
- [11] A.L.Narayanan and T.Manikandan, Interval-valued fuzzy ideals generated by anintervalvalued fuzzy subset in semi-groups, *J.App. Maths and Computing*, 20 (2006)455-465.
- [12] B. M. Schein, Difference Semigroups, Comm. Algebra, 20 (1992), no. 8, 2153-2169.21
- [13] N.Thillaigovindan and V.Chinnadurai, On interval-valued fuzzy quasi-ideals ofsemi-groups, *East Asian Mathematical Journal*, 25(4) (2009) 441-453.
- [14] L. A. Zadeh, *Fuzzy sets*, Information and Control 8 (1965) 338-353.
- [15] B. Zelinka, Subtraction Semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.