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Abstract: Intuitionistic fuzzy set is a generalization of the ordinary fuzzy set that involves 
membership, non membership and hesitation function and it is very useful in decision making 
problems such as medical diagnosis, pattern recognition, clustering etc. The decisions are 
made by using the two important measures: Similarity measure, Distance measure. Distance 
measure is a tool used to find the difference between intuitionistic fuzzy sets. In this paper, we 
propose an effective distance measure for intuitionistic fuzzy multisets in which membership, 
non membership, hesitation function occurs more than once and also we apply this measure in 
the appointment process and in pattern recognition. 
Keywords: Intuitionistic fuzzy sets(IFS), Intuitionistic Fuzzy Multisets(IFMS), Distance 
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1. Introduction 

In 1965, L.A.Zadeh [29]  introduced the notion of a  fuzzy subset of a set as a method for representing 
uncertainty in real physical world.  In fuzzy set theory, the membership of an element to a fuzzy set is 
a single value between 0 and 1. As a generalization of this, intuitionistic fuzzy subset was defined by 
K.T.Atanassov in 1986 [1,2]. These sets are suited to deal with vagueness or the representation of 
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imperfect knowledge in decision making. In reality, it may not true that the degree of non-membership 
of an element in an intuitionistic fuzzy set is equal to 1 minus the degree of membership, but there 
may be some hesitation degree. At first the study of distance measures for IFS was carried out by 
E.Szmidt and J.Kacprzyk [22,23,24]. Hung and Yang [6] presented a similarity measure based on 
Hausdroff distance. Various distance measures were given by the authors like Li and Cheng, Liang 
and Shi, Mitchell [3,4,7,8,9,25,27,28] which was applied in decision making problem and  pattern 
recognition.  
Recently, T.K.Shinoj and J.J. Sunil [20,21] introduced intuitionistic fuzzy multisets from the 
combination of intuitionistic fuzzy sets and fuzzy multisets which was proposed by Yager [26]. In 
intuitionistic fuzzy multisets, the membership function and non-membership function are allowed to 
occur more than once. Some of the distance and similarity measures for IFS were extended to IFMS 
[5,10,11,12,13,14,15,16,17,18].In this paper, we define a new distance measure for intuitionistic fuzzy 
multisets and prove its efficiency by comparing the measure with the existing distance measures for 
IFMS. Also we apply this measure in appointment process and in pattern recognition.  
 
 
2.Preliminaries 
Definition 2.1 [1] 

Let X be a non-empty set. An intuitionistic fuzzy sets A in X is an object having the form  
 A = {〈 x, 𝜇𝜇A(x), 𝜈𝜈A(x) 〉 / x ∈ X } where the functions 𝜇𝜇A : X  → [0,1] and 𝜈𝜈A : X → [0,1] define the 
degree of membership and non membership of the element x ∈ X. 
For each IFS A in X, if πA = 1 – 𝜇𝜇A(x) – 𝜈𝜈A(x), x ∈ X, then πA(x) is called intuitionistic index of the 
element x in A. It is a hesitancy degree of x in A. 
Definition 2.2[25] 

Let X be a nonempty set. A Fuzzy Multiset(FMS) A drawn from X is characterized by a 
function, ‘count membership’ of A denoted by CMA such that CMA : X → Q where Q is the set of all 
crisp multisets drawn from the unit interval [0,1]. Then for any x ∈ X, the value CMA(x) is a crisp 
multiset drawn from [0,1]. For each x in X, the membership sequence is defined as the decreasingly 
ordered sequence of elements in CMA(x). It is denoted by (μA

1 (x), μA
2 (x), … μA

P(x))where (μA
1 (x) ≥

μA
2 (x) ≥ ⋯ ≥ μA

P(x)). 
Definition 2.3[20] 

Let X be a non-empty set. An Intuitionistic  Fuzzy Multiset A denoted by IFMS drawn from X 
is a characterized by two functions: count membership of A(CMA) and ‘count non membership’ of 
A(CNA) given respectively by CMA : X → Q and CNA : X → Q where Q is the set of all crisp 
multisets drawn from the unit interval [0,1] such that for each x ∈ X, the membership sequence is 
defined as a decreasingly ordered sequence of elements in CMA (x) which is denoted by  
(μA

1 (x), μA
2 (x), … μA

P(x)) where (μA
1 (x) ≥ μA

2 (x) ≥ ⋯ ≥ μA
P(x)) and the corresponding non 

membership sequence will be denoted by  (ϑA1 (x), ϑA2 (x), …ϑAP(x)) such that 0 ≤  μA
i (x) +  ϑAi (x) ≤ 1 

for every x ∈ X and i = 1,2,…p. 
An IFMS A is denoted by A = { 〈 x: (μA

1 (x), μA
2 (x), … μA

P(x)), (ϑA1 (x),ϑA2 (x), …ϑAP(x)) 〉 ∶ x ∈ X }. 
Definition 2.4[21] 

The length of an element x in an IFMS A is defined as the cardinality of CMA(x) or CNA(x) 
for which  0 ≤ μA

j (x) +  ϑA
j (x) ≤ 1 and it is denoted by L(x : A). That is  

L(x : A)  = ⎸CMA(x)⎸ = ⎸ CNA(x)⎸ 
Definition 2.5[21] 

If A and B are IFMS drawn from X then L(x : A,B) = Max{L(x : A), L(x : B)}. Alternatively 
we use L(x) for L(x : A, B). 
Definition 2.6[25] 

A function d : IFSs(X) x IFSs(X) → [0,1] is called distance measure of IFSs if d satisfies the 
following properties: for any A, B, C ∈ IFSs(X),  

(DP1) 0 ≤ d(A,B) ≤ 1; 
(DP2) d(A,B) = 0 if and only if A = B; 
(DP3) d(A,B) = d(B,A); 
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(DP4) If A ⊆ B ⊆ C, then d(A,C) ≥ d(A,B) and d(A,C) ≥d(B,C). 

Definition 2.7 [14]: 
Let A and B be two IFMSs. Then the Normalized Hamming distance between A and B is 

ND
∗ (A, B) =  

1
η
��

1
2n

�( �μA
j (xi) − μB

j (xi)�+ �ϑA
j (xi)− ϑB

j (xi)�)
n

i=1

�
η

j=1

 

and with all three degrees, it is 

ND
∗ (A, B) =  

1
η
��

1
2n

�( �μA
j (xi) − μB

j (xi)� + �ϑA
j (xi)− ϑB

j (xi)� + �πA
j (xi)− πB

j (xi)�)
n

i=1

�
η

j=1

 

Definition 2.8 [11]: 
In Hamming metrics, the Hausdroff distance of  IFMS is defined as  

dh(A, B) =  
1
η
��

1
n
�max [��μA

j (xi)− μB
j (xi)� + �ϑA

j (xi)− ϑB
j (xi)��]

n

i=1

�
η

j=1

 

and with all three degrees, it is 

dh(A, B) =  
1
η
��

1
n
�max [��μA

j (xi) − μB
j (xi)�+ �ϑA

j (xi)− ϑB
j (xi)� + �πA

j (xi) − πB
j (xi)��]

n

i=1

�
η

j=1

 

Definition 2.9 [14]: 
The Geometric distance of the intuitionistic fuzzy multi set is defined as 

Dg(A, B) =  
1
η
��

1
n
��(μA

j (xi) − μB
j (xi))2 + (ϑA

j (xi) − ϑB
j (xi))2

n

i=1

�
η

j=1

 

and with all the three degrees, it is  

Dg(A, B) =  
1
η
��

1
n
��(μA

j (xi)− μB
j (xi))2 + (ϑA

j (xi) − ϑB
j (xi))2 + (πA

j (xi) − πB
j (xi))2

n

i=1

�
η

j=1

 

Normalized Geometric distance is DG(A,B) = 1
√2

 Dg(A,B). 
 
 
3. New Distance Measure Between Intuitionistic Fuzzy Multisets 
 In this section, a new distance measure between intuitionistic fuzzy multisets is defined and 
its efficiency is proved by comparing with existing distance measures. 
Definition 3.1: 

Let A and B be two intuitionistic fuzzy multisets in X. Then the new distance measure 
between A and B is defined as: 
𝐷𝐷(𝐴𝐴,𝐵𝐵) =  1

𝜂𝜂
∑ � 1

4(𝑛𝑛+1)
∑ [ �𝜇𝜇𝐴𝐴

𝑗𝑗 (𝑥𝑥𝑖𝑖) − 𝜇𝜇𝐵𝐵
𝑗𝑗 (𝑥𝑥𝑖𝑖)� + �𝐹𝐹𝐴𝐴

𝑗𝑗(𝑥𝑥𝑖𝑖) − 𝐹𝐹𝐵𝐵
𝑗𝑗(𝑥𝑥𝑖𝑖)�𝑛𝑛

𝑖𝑖=1 + �𝐺𝐺𝐴𝐴
𝑗𝑗(𝑥𝑥𝑖𝑖) − 𝐺𝐺𝐵𝐵

𝑗𝑗(𝑥𝑥𝑖𝑖)� +𝜂𝜂
𝑗𝑗=1

                                          2 max�∑ [ �𝜇𝜇𝐴𝐴
𝑗𝑗 (𝑥𝑥𝑖𝑖) − 𝜇𝜇𝐵𝐵

𝑗𝑗 (𝑥𝑥𝑖𝑖)�, �𝐹𝐹𝐴𝐴
𝑗𝑗(𝑥𝑥𝑖𝑖) − 𝐹𝐹𝐵𝐵

𝑗𝑗(𝑥𝑥𝑖𝑖)�𝑛𝑛
𝑖𝑖=1 , �𝐺𝐺𝐴𝐴

𝑗𝑗(𝑥𝑥𝑖𝑖) − 𝐺𝐺𝐵𝐵
𝑗𝑗(𝑥𝑥𝑖𝑖)��� ,              

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴
𝑗𝑗(𝑥𝑥𝑖𝑖) = �𝜇𝜇𝐴𝐴

𝑗𝑗 (𝑥𝑥𝑖𝑖) − 𝜗𝜗𝐴𝐴
𝑗𝑗(𝑥𝑥𝑖𝑖)� ,𝐹𝐹𝐵𝐵

𝑗𝑗(𝑥𝑥𝑖𝑖) = �𝜇𝜇𝐵𝐵
𝑗𝑗 (𝑥𝑥𝑖𝑖) − 𝜗𝜗𝐵𝐵

𝑗𝑗(𝑥𝑥𝑖𝑖)� ,𝐺𝐺𝐴𝐴
𝑗𝑗(𝑥𝑥𝑖𝑖) = �𝜇𝜇𝐴𝐴

𝑗𝑗 (𝑥𝑥𝑖𝑖) −

𝜋𝜋𝐴𝐴
𝑗𝑗(𝑥𝑥𝑖𝑖)� ,𝐺𝐺𝐵𝐵

𝑗𝑗(𝑥𝑥𝑖𝑖) = �𝜇𝜇𝐵𝐵
𝑗𝑗 (𝑥𝑥𝑖𝑖) − 𝜋𝜋𝐵𝐵

𝑗𝑗 (𝑥𝑥𝑖𝑖)�. 
 
Preposition 3.2: 
The proposed new distance measure between IFMSs A and B satisfies the following properties: 

i) 0 ≤ D(A,B) ≤ 1 
ii) D(A,B) = 0 if and only if A = B 
iii) D(A,B) = D(B,A) 
iv) If A ⊆ B ⊆ C, then D(A,C) ≥ D(A,B) and D(A,C) ≥ D(B,C). 
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Significance of proposed distance measure 
Example 3.3:Let X = {A1,A2,A3,A4,A5,A6,A7,A8,A9}  with the IFMSs A = {A1,A2,A3} , B = 
{A4,A5,A6}, C = {A1,A2,A6}and Y = {A7,A8,A9} be defined as  
A = {〈A1:(0.7,0.1,0.2)〉, 〈A2: (0.4,0.5,0.1)〉, 〈A3: (0.3,0.3,0.4)〉},  
B = {〈A4:(0.7,0.1,0.2)〉, 〈A5: (0.5,0.4,0.1)〉 , 〈A6:(0.4,0.3,0.3)〉}, 
C = { 〈A1:(0.7,0.1,0.2)〉, 〈A2: (0.4,0.5,0.1)〉,A6:(0.4,0.3,0.3)〉} and 
 Y = {〈A7:(1,0,0)〉, 〈A8: (0.1,0.1,0.8)〉, 〈A9: (0,1,0)〉} 
Here the cardinality 𝜂𝜂 = 3 as⃓CMA⃓ = ⃓CNA⃓ = 3 ,⃓ CMB⃓ = ⃓CNB⃓ = 3, ⃓CMc)⃓ = 
⃓CNc⃓ = 3. 
 

Distance measures d(A,Y) d(B,Y) d(C,Y) 
Hamming distance for IFMS  0.566 0.566 0.566 
Normalized hamming distance for IFMS 0.283 0.283 0.283 
Hausdroff distance for IFMS 0.566 0.566 0.566 
Geometric distance for IFMS 0.424 0.424 0.424 
Normalized Geometric distance for IFMS 0.3 0.3 0.3 
Our proposed distance for IFMS 0.375 0.4083 0.3916 

 
From the table, we infer that by using some existing distance measures like hamming distance, 
normalized hamming distance, Hausdroff distance, geometric distance, normalized geometric distance 
for IFMS, the sample Y cannot be classified with the sets A,B,C. But the distance measures between 
the sets (A,Y), (B,Y), (C,Y) can be differentiated by our new distance measure for IFMS. Hence we 
get the acceptable result that the IFMS Y is closer to the IFMS A since the distance between them is 
minimum and therefore the sample Y belongs to IFMS A. 
 
 
4. Appointment Process 

An organization has to decide to fill the vacancies of certain posts in various sections in it. So 
an interview panel of 3 members are formed to select the candidates based on various skills. After the 
completion of interview, the scores given by panel members are denoted by membership function and 
each candidate has multi-membership values. In this case, intuitionistic fuzzy multisets is used to 
make the correct decision.  

Let C = {C1,C2,C3,C4,C5} be the candidates to be appointed, let P = {Sales, Purchase, System, 
Accounts, Factory}be the departments in which the vacancies to be filled and S = {Communication 
skill, Experience, Leadership, System skills, Analytical skills} be the parameters for appointing the 
candidates to the suitable post. Table 1 gives the relation between the sections and  the parameters. 
Table 2 gives the multi membership values of each candidate. Using the proposed distance measure, 
the distance between the candidates and the sections are found in Table 3. Based on shortest distance, 
the candidates are appointed in the corresponding sections.  

 
 

Table 1: Posts and parameters 
 

 Communication 
skill 

Experience Leadership System skill Analytical skill 

Sales  (0.9,0,0.1) (0.7,0.2,0.1) (0.6,0.1,0.3) (0.5,0.3,0.2) (0.2,0.6,0.2) 
Purchase (0.7,0.1,0.2) (0.6,0.1,0.3) (0.6,0.2,0.2) (0.4,0.3,0.3) (0.3,0.5,0.2) 
System  (0.6,0.3,0.1) (0.5,0.4,0.1) (0.4,0.3,0.3) (0.9,0.1,0) (0.3,0.5,0.2) 
Accounts  (0.5,0.2,0.3) (0.6,0.2,0.2) (0.3,0.4,0.3) (0.8,0.1,0.1) (0.9,0,0.1) 
Factory  (0.3,0.6,0.1) (0.8,0.2,0) (0.8,0.1,0.1) (0.3,0.6,0.1) (0.3,0.5,0.2) 
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Table 2: Candidates and parameters 
 

 Communication 
skill 

Experience Leadership System skill Analytical skill 

C1 (0.4,0.3,0.3) 
(0.3,0.5,0.2) 
(0.3,0.4,0.3) 

(0.9,0.1,0) 
(0.8,0.1,0.1) 
(0.7,0.2,0.1) 

(0.7,0.3,0) 
(0.7,0.1,0.2) 
(0.6,0.1,0.3) 

(0.4,0.6,0) 
(0.3,0.6,0.1) 
(0.3,0.5,0.2) 

(0.5,0.2,0.3) 
(0.4,0.4,0.2) 
(0.4,0.3,0.3) 

C2 (0.8,0.1,0.1) 
(0.8,0.2,0) 
(0.7,0.2,0.1) 

(0.6,0.2,0.2) 
(0.7,0.1,0.2) 
(0.5,0.2,0.3) 

(0.5,0.3,0.2) 
(0.6,0.1,0.3) 
(0.5,0.2,0.3) 

(0.5,0.1,0.4) 
(0.5,0.2,0.3) 
(0.4,0.4,0.2) 

(0.4,0.3,0.3) 
(0.5,0.3,0.2) 
(0.5,0.1,0.4) 

C3 (0.6,0.3,0.1) 
(0.5,0.3,0.2) 
(0.6,0.1,0.3) 

(0.8,0.2,0) 
(0.6,0.1,0.3) 
(0.7,0.1,0.2) 

(0.4,0.3,0.3) 
(0.5,0.2,0.3) 
(0.3,0.6,0.1) 

(0.8,0.1,0.1) 
(0.8,0.2,0) 
(0.7,0.3,0) 

(0.9,0,0.1) 
(0.8,0,0.2) 
(0.9,0.1,0) 

C4 (0.5,0.2,0.3) 
(0.6,0.1,0.3) 
(0.7,0.2,0.1) 

(0.5,0.3,0.2) 
(0.6,0.2,0.2) 
(0.5,0.3,0.2) 

(0.6,0.3,0.1) 
(0.4,0.3,0.3) 
(0.5,0.3,0.2) 

(0.6,0.2,0.2) 
(0.4,0.2,0.4) 
(0.4,0.3,0.3) 

(0.4,0.2,0.4) 
(0.5,0.2,0.3) 
(0.4,0.3,0.3) 

C5 (0.7,0.2,0.1) 
(0.7,0.1,0.2) 
(0.6,0.3,0.1) 

(0.6,0.2,0.2) 
(0.5,0.1,0.4) 
(0.5,0.2,0.3) 

(0.5,0.3,0.2) 
(0.4,0.2,0.4) 
(0.3,0.4,0.3) 

(0.8,0,0.2) 
(0.7,0.3,0) 
(0.8,0,0.2) 

(0.4,0.2,0.4) 
(0.5,0.3,0.2) 
(0.2,0.3,0.5) 

 
 

Table 3: Distance between the candidates and the sections 
 
 
 
 
 
 
 
From the table, the following decisions are made based on shortest distance between the candidates 
and the sections. The candidate C1 is appointed in Factory section, candidate C2 and C4 are appointed 
in Purchase section, candidate C3 is appointed in Accounts section, candidate C5 is appointed in 
System section of the organization. 
 
 
 
5. Pattern Recognition by using the proposed distance measure 

In this section, some testing patterns can be classified by employing the proposed distance 
measure for IFMS. 
Example 5.1 
Let Pattern I, Pattern II be the two IFMS’s defined as  
Pattern I ={〈A1: (0.8,0.2,0.2), (0.7,0.1,0.2)〉, 〈A2: (0.6,0.2,0.2), (0.5,0.5,0) 〉,  〈A3:(0.5,0.3,0.2), 
(0.4,0.4,0.2) 〉, 〈A4 : (0.3,0.1,0.6), (0.4,0.2,0.4)〉, 〈A5: (0.3,0.2,0.5), (0.2,0.2,0.6) 〉},  
Pattern II = {〈A2: (0.6,0.2,0.2), (0.5,0.5,0) 〉 , 〈 A5: (0.3,0.2,0.5), (0.2,0.2,0.6) 〉, 〈 A7: (0.5,0.3,0.2), 
(0.6,0.2,0.2) 〉, 〈 A8 : (0.7,0.1,0.2), (0.4,0.3,0.3) 〉, 〈 A9: (0.6,0.2,0.2), (0.5,0.2,0.3) 〉} 
The testing Pattern III is the IFMS defined as  
Pattern III = {〈A6: (0.6,0.2,0.2), (0.3,0.4,0.3)〉, 〈A7: (0.5,0.3,0.2), (0.6,0.2,0.2)〉, 〈A8: (0.7,0.1,0.2), 
(0.4,0.3,0.3) 〉, 〈A9 : (0.6,0.2,0.2), (0.5,0.2,0.3) 〉, 〈 A10: (0.1,0.8,0.1), (0.2,0.7,0.1) 〉} 
Here the cardinality 𝜂𝜂 =5 as ⃓CM(Pattern I)⃓ = ⃓CN(Pattern I)⃓ = 5, ⃓ CM(Pattern II)⃓ = 
⃓CN(Pattern II)⃓ = 5,⃓CM(Pattern III)⃓ = ⃓ CN(Pattern III)⃓ = 5 
 The proposed distance measure between Pattern I and Pattern III is 0.2733. 
The proposed distance measure between Pattern II and Pattern III is 0.3133. 
Hence the testing Pattern III belongs to Pattern I. 
 

 Sales Purchase System Accounts Factory 
C1 0.3306 0.2861 0.4833 0.5236 0.1792 
C2 0.2361 0.1806 0.3472 0.4222 0.4444 
C3 0.5055 0.4444 0.3528 0.15 0.5653 
C4 0.3139 0.1889 0.25 0.3569 0.4291 
C5 0.3667 0.2889 0.2056 0.3 0.5708 
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Example  5.2 
Let X = { A1,A2,……An} be a non empty set. Let the patterns  P={A1,A2}, Q ={A4,A5}, R = {A1,A8}, 
S = {A3,A6}, T = {A1,A5} be the IFMSs defined as 
P = { 〈 A1: (0.1,0.2) 〉, 〈 A2: (0.1,0.3) 〉 } 
Q = { 〈 A4: (0.3,0.3) 〉, 〈 A5: (0.2,0.3) 〉 }  
R = { 〈 A1: (0.1,0.2) 〉, 〈 A8: (0,0.2) 〉 }    
S = { 〈 A3: (0.3,0.2) 〉, 〈 A6: (0.1,0.1) 〉 } 
T = { 〈 A1: (0.1,0.2) 〉, 〈 A5: (0.2,0.3) 〉 }    
And the testing pattern Y = {〈 A6: (0.1,0.1) 〉, 〈 A8: (0,0.2) 〉 }        
Here the cardinality 𝜂𝜂 =2 . 
By the proposed distance measure, D(P,Y) = 0.0875, D(Q,Y) = 0.2375, D(R,Y) = 0.025, D(S,Y) = 
0.1625, D(T,Y) = 0.1375.  
Hence the testing Pattern Y belongs to Pattern R. 
 
Example 5.3 
Let X = { A1,A2,……An} be a non empty set. Let the patterns  A={A1,A2}, B={A3,A4}, C = {A5,A6} 
be the IFMS’s defined as 
 Pattern I = { 〈 A1: (0.6,0.3,0.1), (0.5,0.3,0.2) 〉, 〈 A2: (0.5,0.3,0.2), (0.4,0.2,0.4) 〉 } 
Pattern II = { 〈 A3: (0.7,0.1,0.2), (0.6,0.3,0.1) 〉, 〈 A4: (0.5,0.2,0.3), (0.4,0.3,0.3) 〉 } 
Pattern III = { 〈 A5: (0.3,0.6,0.1), (0.2,0.4,0.4) 〉, 〈 A6: (0.7,0.2,0.1), (0.5,0.4,0.1) 〉 } 
The testing pattern IV is 〈 A1: (0.6,0.3,0.1), (0.5,0.3,0.2) 〉, 〈 A6: (0.7,0.2,0.1), (0.5,0.4,0.1) 〉 } 
Here the cardinality 𝜂𝜂 = 2 and number of elements n = 2. 
The proposed distance measure between Pattern I and Pattern IV is 0.1167. 
The proposed distance measure between Pattern II and Pattern IV is 0.1833. 
The proposed distance measure between Pattern III and Pattern IV is 0.1917. 
Hence the testing Pattern IV belongs to Pattern I. 
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