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Abstract. A study of heat and mass transfer effects on a steady MHD flow has been carried 
out. The non-linear differential equations governing the study are solved analytically using 
modified Homotopy analysis method.  The effects of various parameters on velocity profile, 
temperature profile and concentration profile are discussed. The accuracy of the analytical 
solution while comparing with the previous results shows good agreement.  
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1.  Introduction 

The effects of heat and mass transfer on a steady MHD flow are inevitable in a wide range of 
industrial processes. Many investigationshave been carried out to analyze the hydromagnetic fluid 
flow on a continuous stretching sheet in the presence of uniform magnetic field .[2 ] was the first to 
study the boundary layer behavior of the flow in various dimensions.[3] and [4] observed the effects 
when the temperature difference between the surface and the fluid is proportional to a power of the 
distance from a fixed point.[5] Demonstrated the steady boundary layers on an exponentially 
stretching continuous surface with an exponential temperature distribution. [6] two[8] extended the 
study of fluid flow in the presence of uniform magnetic field. [9], [10] monitored the heat transfer 
effect of the MHD fluid in their work. Many other works addressing the thermal radiation on hydro-
magnetic flow due to an exponential stretching heart were made [11] to [15].  The effects of viscous 
dissipation in natural convection are explained by [16 ] to [21 ]. 
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With the knowledge of previous works done by [2] to [21], [1] studied the heat generation and 
radiation of a MHD fluid flow over an exponentially stretching surface. By means of similarity 
transformation [1] reduced the partial differential equations to non-linear differential equations and 
solved numerically. In this work, the system of non-linear differential equations obtained by [1] is 
solved analytically using modified HAM. The obtained results are compared with the numerical 
results and their effects on varying the governing parameters are discussed graphically. 
 

2.  Mathematical formulation of the problem 
 

Consider the two-dimensional magnetohydrodynamic flow over a stretching sheet. The x-axis is 
taken along the stretching surface in the direction of motion and y-axis is perpendicular to it. The 
temperature and concentration are far away from the fluid and are assumed to be T ∞ and C∞

respectively as shown in Fig:1. 
 

 
The equations governing the momentum, heat and mass transfers are given as: 
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where u and v are velocity components in the x, y directions respectively, V is the kinematic 

viscosity, ρ is the density, σ is the electrical conductivity of the fluid, T is the temperature, C is the 
concentration, k is the thermal conductivity, Cp is the specific heat at constant pressure, qr is the 
radiative heat flux, Q0 is the heat generation coefficient, D is the species diffusivity. 

The boundary conditions for the velocity, temperature and concentration profiles are : 
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Introducing dimensionless quantities as follows: 
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  (6) 
Where 𝜂𝜂 is the similarity variable, f(𝜂𝜂) is the dimensionless stream function, 𝜃𝜃(𝜂𝜂) is the 

dimensionless temperature, 𝜙𝜙(𝜂𝜂) is the dimensionless concentration. 
The differential equations become: 

02 2 =′−′′+′−′′′ fMffff       (7) 
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0=′−′+′′ φφφ fScScf       (9) 

With boundary conditions,  
0)(,1)0(,0)0( →∞′=′= fff      (10) 

0)(,1)0( →∞= θθ       (11) 
0)(,1)0( →∞= φφ       (12) 

 
 

 

3.  Solution of the nonlinear problem using the Modified Homotopy analysis method ([22] - [31]) 
Consider a differential equation 0)]([ =ηfN     (13) 
WhereN is a non-linear operator, 𝜂𝜂 denotes independent variable and )(ηf is an approximate 
analytical solution of (11) which is an unknown function. Let )(0 ηf denote an initial approximation of 

)(ηf , )(ηH is known as auxiliary  function and L denotes an auxiliary linear operator, h is a non-zero 
embedding parameter lies between -1 and 1. Then the homotopy is given by: 

))](,,;([)()]()(,,;([)1( 0 ηηηηηη HhpfNphHfHhpfLp −−−   (14) 
where ]1,0[∈p  is an embedding parameter.  
By means of analyzing the boundary conditions of the non-linear differential problem, we can know 
an appropriate base functions to represent the solution, even without solving the given non-linear 
problem. 
 In view of the boundary conditions (10), (11) and (12), 
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And the linear operators φθ LLLf ,,  are defined as: 

ffL f ′′+′′′= 2      (16) 
θθθ ′+′′= 2L      (17) 
φφφ ′+′′= 2L      (18)                               

Applying modified Homotopy analysis method, 
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The Velocity profile is given as: 
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4.  Results & Discussion 

The effects of the velocity profile and temperature on increasing the magnetic parameter M is 
observed in Fig:2 and Fig:3. It is evident that  the velocity decreases with increase in M whereas the 
temperature increases. The influence of Pr on temperature is inspected in Fig:4.There is a reduction  in 
temperature with increasing prandtl number Pr. From Fig:5, it is noticed that the temperature increases 
with increase in R.In Fig:6 and Fig:7 it is realized that the temperature is directly proportional to 
Eckert number Ec and heat generation parameter Q. The influence of M and Sc on concentration 
profile is depicted in Fig:8 and Fig:9. It is prominent that Concentration increases with M whereas, it 
decreases with increase in Sc.     

 

Fig:.2: Dimensionless coordinate 𝜂𝜂 versus Velocity profile )(ηf ′ . The curve is plotted using (22) for 
fixed Pr ,R, Q, Sc and Ec and varying M=0,1,2,3. 

 

Fig.3: Dimensionless coordinate 𝜂𝜂 versus temperature profile )(ηθ . The curve is plotted using (20) 
for fixed Pr ,R, Q, Sc and Ec and varying M=0,1,2,3. 
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Fig.4: Dimensionless coordinate 𝜂𝜂 versus temperature profile )(ηθ . The curve is plotted using (20) 
for fixed M ,R, Q, Sc and Ec and varying Pr=0.71, 1.0, 1.5, 2. 

 

Fig.5. Dimensionless coordinate 𝜂𝜂 versus temperature profile )(ηθ . The curve is plotted using (20) 
for fixed Pr ,M, Q, Sc and Ec and varying R=0.0, 0.5, 1.0,2.0. 

 

Fig.6: Dimensionless coordinate 𝜂𝜂 versus temperature  profile )(ηθ . The curve is plotted using (20) 
for fixed Pr ,M, Q, Sc and R and varying Ec=0.0, 0.5, 1.0, 2.0. 
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Fig.7: Dimensionless coordinate 𝜂𝜂 versus temperature profile )(ηθ . The curve is plotted using (20)  
for fixed Pr ,M, Ec, Sc and R and varying Q=0.0, 0.1, 0.5, 1.0. 

 

Fig.8: Dimensionless coordinate 𝜂𝜂 versus concentration profile )(ηφ . The curve is plotted using (21) 
for fixed Pr ,R, Q, Sc and Ec and varying M=0,1,2,3. 

 

Fig.9: Dimensionless coordinate 𝜂𝜂 versus concentration profile )(ηφ . The curve is plotted using (21) 
for fixed Pr ,R, Q,M and Ec and varying Sc=0.6, 0.78, 1.0,1.5. 
 

5.  Conclusion 

      The mathematical analysis of the non-linear boundary value problem The dimensionless velocity 
profile )(ηf ′  , the dimensionless temperature profile )(ηθ  and the dimensionless concentration 
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profile )(ηφ  are obtained analytically and their effects on varying the governing parameters are 
discussed graphically. The results are successfully compared with the previous work. 
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Appendix:A  
 
Solution of the differential equation using modified HAM: 
The non-linear differential equations are: 

02 2 =′−′′+′−′′′ fMffff (A1) 
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(A2) 
0=′−′+′′ φφφ fScScf (A3) 

with boundary conditions,  
0)(,1)0(,0)0( →∞′=′= fff (A4) 

0)(,1)0( →∞= θθ  (A5) 
0)(,1)0( →∞= φφ (A6) 

Construct Homotopy as : 
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[ ] 0]2)[1( =′−′+′′+′+′′− φφφφφ fScScfrr (A9) 

The analytical solution of (A1) , (A2) and (A3) with boundary conditions (A4), (A5) and (A6) are: 
...........2

2
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(A10) 
...............2

2
10 +++= θθθθ qq (A11) 
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...............2
2

10 +++= φφφφ rr  (A12) 
Substituting (A10), (A11) and (A12) in the equations (A7), (A8) ,(A9) and comparing the coefficients 
of the powers of p, q and r we get  

02: 00
0 =′′+′′′ ffp (A13) 
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(A16) 02: 00
0 =′+′′ φφr (A17) 

022: 0000011
1 =′−′+′−′+′′ φφφφφ fScScfr (A18) 

Solving the equations   
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According to HAM,  for -1 ≤ h ≤ 1, As 11,1 →→→ randqp , 

10 fhff −= (A25)  

10 θθθ h−= (A26)     

10 φφφ h−= (A27) 
Substituting (A19) to (A24)  in (A25), (A26) and (A27) we obtain the result in the text (19), (20) and 
(21). 

 
 

 


