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1. Introduction

It is well known that matrices play major role in various areas such as Mathematics, Physics, Statistics,
Engineering, Social sciences and many others. However, we cannot successfully use classical matrices
because of various types of uncertainties present in real world situations. Now a days probability, Fuzzy
sets, Intuitionistic fuzzy sets, Vague sets are used as Mathematical tools for dealing uncertainties. A
fuzzy matrix is a matrix over the fuzzy algebra F =[0,1] under the fuzzy operations formulated by Zadeh
in 1965 [21]. Several authors presented a number of results on fuzzy matrices. In 1977, Thomoson [18]
studied the behaviour of powers of fuzzy matrices using max-min composition. The theory of fuzzy
matrices was systematically developed by Kim and Roush in [7] analogous to that of Boolean matrices.
Ragab and Emam [11] studied some properties of the min-max compositions of fuzzy matrices; it can
be regarded as the dual of max-min composition of fuzzy matrices. Among the well known operations
which can be performed on fuzzy matrices are the operations Vv, A and complementation. In addition to
these operations, the operations @ and (are introduced by Shyamal and Pal [14]. Also several
properties on @ and ©, some results on existing operators along with these operations are studied. The
concept of Atanassov’s intuitionistic fuzzy set [1] was introduced to generalize the concept of Zadeh’s
fuzzy set. Atanassov [2] defined some basic operations and relations of intuitionistic fuzzy sets and
proved an equality between them. Im et al.[5] defined the notation of intuitionistic fuzzy matrix(IFM)
as a generalization of fuzzy matrix. Pal[8] introduced the intuitionistic fuzzy determinant, studied some

634



properties on it. Shyamal and pal[13] defined distances between two intuitionistic fuzzy matrices and
proposed some relations among distances between intuitionistic fuzzy matrices.

Sriram and Boobalan [15] proved the set of all intuitionistic fuzzy matrices form a commutative monoid
under arithmetic sum of intuitionistic fuzzy matrices as well as arithmetic product of intuitionistic
product. Recently Emem and Fndh [3] defined some kinds of intuitionistic fuzzy matrices, the max-min
and min-max compositions of intuitionistic fuzzy matrices. Also they derived several important results
by these compositions and construct an idempotent intuitionistic fuzzy matrix from any given one
through the min-max composition. Wang and Liu[19] introduced some Einstein operations of
intuitionistic fuzzy sets and analyse some desirable properties of the proposed operations. Yager [20]
introduced Pythagorean fuzzy set(PFS) characterized by a membership degree and a no membership
degree satisfying the condition that the square sum of its membership and no membership degree is
equal to or less than 1, has much stronger ability than intuitionistic fuzzy set to model such uncertain
information in multi criteria decision making (MCDM) problems. Einstein operational laws have been
proposed for Pythagorean fuzzy numbers by Garg [4]. Silambarasan and Sriram [15] introduced
Pythagorean fuzzy matrix (PFM) and the operations algebraic sum and algebraic product of PFMs. Also
they investigated its algebraic properties. Further, they defined some new operations for PFMs and
discuss their algebraic properties with some existing operations.

In [12] Selvarajan et.al studied Einstein Operations of Intuitionistic fuzzy matrices and proved several
properties of them. In this paper, we extend the Einstein operations to Pythagorean fuzzy matrix (PFM)
and proved several properties of them.

Definition 1.1
A Pythagorean fuzzy matrix (PFM) is a pair A = ((aij, a{j)) of non negative real numbers

ay;,ajj € [0,1] satisfying 0 < a? + ajj” < 1, forall i j.

Definition 1.2
Let A = ((ayj,aj;)) and B = ((by;, bj;)) be Pythagorean fuzzy matrices of same size,
operations for PFMSs can be defined as follows:
(i)AVB= ((max(ai]-, bi]-), min(a{j, bi’j)))
(ii))AAB = ((min(aij, bij), max(a;]—, bi']-)))
(ii) A = ((ajj, a;;))

(iV) A<B & ajj < bl] and a{]- = b;]

2. Einstein operations of Pythagorean fuzzy matrices
In this section, we shall introduce the Einstein operations on Pythagorean fuzzy matrices (PFMs) and
analyse some desirable properties of these operations.

Definition 2.1
Let A = ((ay;,aj;)) and B = ((by;, bj;)) be Pythagorean fuzzy matrices of same size. Then
) a%+b? . . .
() A®B = ( [ zb’z , is called the Einstein sum of A and B.
AR [ (i) 107
22
.. ai]-bi]- ai]' +bi]' . . .
(i) AQ:B={ ( ’Zb’2> is called the Einstein product of A and B.

1+(1—a12]-)(1—bizj)’ 1+ay; by
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These operations are constructed in such a way that they produce PFMs. Since it easy to prove that
2 2

2 2 I/
aij +b1] ai]'bi]'

+
1+afb] \/1+(1—a{j2)(1—b{]-2)

are obtained for any integern = 1,2, ... ...

< 1. Using these Einstein operations the following equations

i [Jaray-a-ay g
A= ADAD,...... DA = \( TR ReRy J(z_a — /
AP = A®, A®, ... / V2aj (1+af) - ) \

\ (Z_al]) +(1]) (1+a”) +(1—

Einstein operations have the following algebraic properties:

Theorem 2.1
Let A= ((ay;,aj;)) , B = ((by;, bj;)) and C = ({cy;, ¢f;)) be Pythagorean fuzzy matrices of
same size. Then:
(1) A@gB = B@sA
(ii)) AQ:B = BQ A
(iii) (A®:B)®.C = A®.(BD:C)
(iv)(A®:B)®.C = AQ:(B®:C)
Proof:
et = ((ay,aj;)) , B = ({by, bj;)) and C = ({cy;, ¢f;)) be Pythagorean fuzzy matrices of same size.

1 eb = 2 2 , '
1 b
= J1+(1—a )(1 by’)
bf + af )
2 2 4
1+bija \/1+(1—b’2)(1
= B@A.
(ii) It can be proved analogously.

(i) A®B = | (

, ) | = (i)
] J1+(1—a )(1—b;;) o

.2. =+ Cg ij .'.
B®:L={ (|7 + b7c 2, = ((ey €1))
J1 +(1-b)(1-

-2-+C-2-

(A®:B)®.C = ((dij:d;j»@s(((:ijici’j)) = 1 +d2 2.

J1+(1—d’2)(1—c )/

.2.+e.2.
1+a2e ’

i \/1+(1—a”)(1—e )/

Then we can compute the final results of (A®:B)®.C and A®.(BD.C) as:

A®D(BO:C) = ((aij,aij))@s«eij:e{j)) =
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d-2- " Cg _ ai2j+ 12] n C-2- _ aizj+bizj+cizj+aizjbizjci2]-
D! U 1+afbf 1 1+afbd '
2 2 212 2.2 2.2
22 , &ij T b _ ajbjj + bijcj + ajjc;
1+d1]C1]=1+C1]1+ 2b2= 14 2b2
ajjDjj ajj0jj
2 2 2 2 2 21,2 .2
dij + Cij _ aij + bl] + Cij + ai]-bijcij
2.2 212 2.2 2.2
v
dl ro_ a4 Djj Cj
ijCj = /2 2y
1+(1-aj)(1-bjy)

B oy 4—2af — 2bf — 2cff +ajbj; + bjjcf] +ajjcf]
1+(1—d1])(1—cl])— 2 2
1+ (1—-aj)(1-bj)

ij

ror AN

JUHQ=d = e) 4 2a) - 2bf - 2c + alb] + by + ajcy

a2 b2 2 a2 b2 2 "bl.c!
21,2 2.2 2.2

ij _ 2 2 12 121,12 12 12 12 12

(A®:B)®.C = (\]

Similarly, we have

2 2 2 2h2 -2 AN
AD.(BD.C) = | ( ajj + bj; + cfj + ajjbjjcj; ajjbj; i )
€ € - ]
a12]b12] + b12]C12] + aizjcizj 12 12 12 12y 12 12 2 12 g2

Hence, (A®:B)®.C = AD.(BD:C).
(iv) It can be proved analogously.

Theorem 2. 3
Let A = ((ay;,aj;)) be a PFM, then A" is also PFM, for a positive integer n > 0.
Proof: As n > 0 be any positive integer and A be a PFM, then 0 < a;; < 1,0 < a{j <1 and

2 2 2 n 2\
afj+ajj <1,1— af >aj,1—-aj >af,(1—- afj) = (a{j) and then we have,

ij = 9ij»
V2aj} V2aj)
<
JE=a+ @) )+ (@)
e ](Haif)“-(l-aif)” By J(m{f)“-(aﬁ-)"

() +(1-a))" ™ (1aif) +(a5)"
2 2
Vaa) (1+af) -~ (1-af)"
14 n ! n
Je—sy ) \Jara) 05

Thus A™ is PFM for any positive integer n > 0.

Theorem 2.4
LetA = ((ai,-,a{j)) be a PFM, then nA is also PFM, for a positive integer n > 0.
Proof: As n > 0 be any positive integer and A be a PFM, then 0 < a; < 1,0 <aj; <1 and

2 2 2 n 2\
af +ajj <1,1- af 2aj,1—aj; 2af,(1- af) = (a{j) and then we have,
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(1 + al]) - (1 1]) (1 + al]) - ( )n

(1+ a”) +(1- a”) (1+ au) + (a )

ﬁ'“

Je-a " o

(\/Ei: ) < ‘/—all ) <1

Thus nA is also PFM for a posmve mteger n > 0.

and

Theorem 2.5
Let A = ((ayj,aj;)), B = ((bj;, bi;)) be PFMs, then for positive integer n > 0,
(i) n(A®,B) = nA®:nB
(i) (A®,B)" = A"®_B"
afi+b allb{]
Lajbj’ J1+ 1-af])(1-bj)

. @mmwﬂ<uwmm i
is equivalent to A@,B = | ( ) L )
q € (\/(1+a )(1+b2) ( 12)(1—b12]) \/(z_ai,jz)(z_bi,];)+a{jzbi,jz
Take r = (1+a})(1+b3), s = (1—a3)(1—b3), t= ajbi, u=(2-af)(2-bf)

T—s 2t
A@£B=<< r+s ’m>>

o < [o[(E 08 G )
\ (1+2) +(1-5) \/(Z—ﬁ)n+(ﬁ)“/
rh—gn  4/2tn
=<( rn_{_sn’m))

Proof: A®.B = ((

(1+3)"(1+b3)" — (1-a3)" (1= b3)" V2ai bl
(1+a2)"(1+b2)" + (1 -a2)"(1 - b2)" J(z a)"(2-b)" + (@) (o))"

2\"_({_,2\" /m
On the other hand, nA = (1+a”)n (1 a”) ﬁnu
(- )+ (at)”

)

-5
( ry +s, w/u1 + t1>>

and

(1+8)" - (1 -0} V2,
(1+b2)"+(1- bu) \/(2 b?)" + (b)"

— S ty
( ry + s, Uy + t2>>
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Wherer; = (1 + aizj)n,sl = (1 - aizj)n,tl = (ai]- )n, u; = (2 - a{jz)n, I, = (1 + bizj n,sz =
n n
(1-b2)"t; = (bfy) up = (2-bf})

rir,—s;s 24t
So, nA@,nB = (( [zt | 2t
rirp+s41S; t1t2+t1t2

/ (1+a2)"(1+b2)" - (1-a2)"(1-b3)" V2ajbj; )\
(1+a)"(1+b3)" + (1 -a)"(1-b3)" J(Z —a bl + (@) o) /

j j

Hence, n(A®:B) = nA®.nB
(ii) It can be proved analogously.

Theorem 2.6

LetA = ((aij,a{j)), be PFM, then for positive integers m > 0,n > 0,
(i) mA®:nA = (m + n)A
(ll)Am®£An — Am+n

Proof: Similar to Theorem 2.5.
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