

PROPERTIES OF $\delta \omega$ -CLOSED SETS IN TOPOLOGICAL SPACES

¹Dr.S.Brindha and Dr.A.Thamilisai²

¹Assistant Professor, Department of Mathematics, Kamaral College of Engineering, Virdhunagar,

tamilnadu, India. <u>ragudev06@gmail.com</u>

²Assistant Professor, Department of Mathematics, Kamaral College of Engineering, Virdhunagar,

tamilnadu, India. thamilisaisaravana@gmail.com

Abstract In this paper, we introduce a new class of sets called $\delta\omega$ -closed sets in topological spaces. This class lies between the class of δ -closed sets and the class of δg -closed sets.

Keywords: $\delta \omega$ -closed, δg -closed, δ -closed, ω -closed.

1. Introduction

In 1963 Levine [14] introduced the notion of semi-open sets. Velicko [17] introduced the notion of $\boldsymbol{\delta}$ -closed sets and it is well known that the collection of all $\boldsymbol{\delta}$ -closed sets of a topological space forms a topology and is denoted by $\tau \boldsymbol{\delta}$. Levine [13] also introduced the notion of g-closed sets and investigated its fundamental properties. This notion was shown to be productive and very useful.

After the advent of g-closed sets, Arya and Nour [3], Sheik John [15] and Dontchev [12] introduced gs-closed sets, $\boldsymbol{\omega}$ -closed sets and gsp-closed sets respectively.

In this paper, we introduce a new class of sets called $\delta \omega$ -closed sets in topological spaces. This class lies between the class of δ -closed sets and the class of δg -closed sets.

2. Preliminaries

Definition 2.1

A subset A of a space (X, τ) is called:

- (i) semi-open set [8] if $A \subseteq cl(int(A))$;
- (ii) preopen set [2] if $A \subseteq int(cl(A))$;
- (iii) α -open set [1] if A \subseteq int(cl(int(A)));
- (iv) β -open set [1] (= semi-preopen) if $A \subseteq cl(int(cl(A)))$;

The complements of the above mentioned open sets are called their respective closed sets.

The preclosure [2] (resp. semi-closure [11], α -closure [1], semi-pre-closure [8]) of a subset A of X, denoted by pcl(A) (resp. scl(A), α cl(A), spcl(A)), is defined to be the intersection of all preclosed (resp. semi-closed, α -closed, semi-preclosed) sets of (X, τ) containing A. It is known that pcl(A) (resp. scl(A), α cl(A), spcl(A)) is a preclosed (resp. semi-closed, α -closed, semi-preclosed) set.

Definition 2.2 [7]

A point x of a space X is called a θ -adherent point of a subset A of X if $cl(U) \cap A \neq \phi$, for every open set U containing x. The set of all θ -adherent points of A is called the θ -closure of A and is denoted by $cl_{\theta}(A)$. A subset A of a space X is called θ -closed if and only if $A = cl_{\theta}(A)$. The complement of a θ -closed set is called θ -open.

Similarly, the θ -interior of a set A in X, written int_{θ} (A), consists of those points x of A such that for some open set U containing x, $cl(U) \subseteq A$. A set A is θ -open if and only if $A = int_{\theta}$ (A), or equivalently, X \ A is θ -closed.

A point x of a space X is called a δ -adherent point of a subset A of X if $int(cl(U)) \cap A \neq \phi$, for every open set U containing x. The set of all δ -adherent points of A is called the δ -closure of A and is denoted by cl_{δ} (A). A subset A of a space X is called δ -closed if and only if $A = cl_{\delta}$ (A). The complement of a δ -closed set is called δ -open. Similarly, the δ -interior of a set A in X, written int_{δ} (A), consists of those points x of A such that for some regularly open set U containing x, U \subseteq A. A set A is δ -open if and only if $A = int_{\delta}$ (A), or equivalently, X \ A is δ closed.

The family of all θ -open (resp. δ -open) subsets of (X, τ) forms a topology on X and is denoted by τ_{θ} (resp. τ_{δ}). From the definitions it follows immediately that $\tau_{\theta} \subseteq \tau_{\delta} \subseteq \tau$. [9].

Definition 2.3

A point $x \in X$ is called a semi θ -cluster [9] point of A if $A \cap scl(U) \neq \phi$ for each semi-open set U containing x.

The set of all semi θ -cluster points of A is called the semi- θ -cluster of A and is denoted by scl θ (A). Hence, a subset A is called semi- θ -closed if scl θ (A) = A. The complement of a semi- θ -closed set is called semi- θ -open set.

Recall that a subset A of a space (X, τ) is said to be δ -semi-open [20] if A \subseteq cl(int δ (A)).

Definition 2.4

A subset A of a space (X, τ) is called:

- (i) a generalized closed (briefly, g-closed) set [13] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) a generalized semi-closed (briefly, gs-closed) set [12] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) an α -generalized closed (briefly, α g-closed) set [5] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (iv) a generalized semi-preclosed (briefly, gsp-closed) set [10] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (v) a generalized preclosed (briefly, gp-closed) set [12] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (vi) a regular generalized closed (briefly, rg-closed) set [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- (vii) a δ -generalized closed (briefly, δg -closed) set [9] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(viii) a \hat{g} -closed set [23] (= ω -closed set [16]) if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).

The complement of \hat{g} -closed set is called \hat{g} -open set. The collection of all \hat{g} -open sets is denoted by $\hat{GO}(X)$.

Remark: The collection of all δg -closed (resp. ω -closed, g-closed, δ -closed, α -closed, semi-closed) sets of X is denoted by $\delta GC(X)$ (resp. $\omega C(X)$, GC(X), $\delta C(X)$, $\alpha C(X)$, SC(X)). We denote the power set of X by P(X).

Definition 2.5 [9]

A space (X, τ) is said to be sub weakly T_2 if $cl_{\delta}(\{x\}) = cl(\{x\})$ for each $x \in X$.

Remark: We have the following diagram in which the converses of the implications need not be true.

Theorem 2.8 [9]

Let (X, τ) be a space. The following hold.

(i) Every δ -closed set is δg -closed.

(ii) Every δg -closed set is g-closed and hence αg -closed, gs-closed, gsp-closed and rg-closed.

Remark: [9,16] δg -closed sets and ω -closed sets are independent.

Definition 2.9 [9]

A space (X, τ) is called semi-regular if $\tau_{\delta} = \tau$.

Definition 2.10 [16]

A space X is called $\tau \omega$ if ω -closed set in X is closed in X.

Proposition 2.11 [9] Let (X, τ) be a space. If $A \subseteq X$ is preopen then $cl(A) = \alpha cl(A) = cl_{\delta}(A)$.

Lemma 2.12 [9]

In any space, a singleton is δ -open if and only if it is regular open.

3. $\delta \omega$ -closed sets

We introduce the following definition.

Definition 3.1

A subset A of X is called a $\delta\omega$ -closed set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in (X, τ) . The complement of $\delta\omega$ -closed set is called $\delta\omega$ -open set. The collection of all $\delta\omega$ -closed sets of X is denoted by $\delta\omega C(X)$.

Proposition 3.2 Every δ -closed set is $\delta \omega$ -closed.

Proof: Let A be a δ -closed set and G be any semi-open set containing A. Since A is δ -closed, cl_{δ} (A) = A for every subset A of X. Therefore cl_{δ} (A) \subseteq G and hence A is $\delta\omega$ -closed set. The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\delta\omega C(X) = \{\phi, \{b, c\}, X\}$ and $\delta C(X) = \{\phi, X\}$. We have $A = \{b, c\}$ is $\delta\omega$ -closed but not δ -closed set in (X, τ) .

Proposition 3.4 Every $\delta \omega$ -closed set is g-closed.

Proof: Let A be a $\delta\omega$ -closed set and G be any open set containing A. Since every open set is semiopen and A is $\delta\omega$ -closed, $cl_{\delta}(A) \subseteq G$. Since $cl(A) \subseteq cl_{\delta}(A) \subseteq G$, $cl(A) \subseteq G$ and hence A is gclosed.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example 3.5 Let X and τ be as in the Example 3.3. Then $\delta\omega C(X) = \{\phi, \{b, c\}, X\}$ and $GC(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. We have $A = \{a, b\}$ is g-closed but not $\delta\omega$ -closed set in (X, τ) .

Proposition 3.6 Every $\delta \omega$ -closed set is ω -closed.Proof: Let A be a $\delta \omega$ -closed and G be any semi-open set containing A.Since $cl(A) \subseteq cl_{\delta}(A) \subseteq G$ and hence A is ω -closed.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\delta\omega C(X) = \{\phi, \{b, c\}, X\}$ and $\omega C(X) = \{\phi, \{c\}, \{b, c\}, X\}$. We have $A = \{c\}$ is ω -closed but not $\delta\omega$ -closed set in (X, τ) .

Proposition 3.8 Every $\delta \omega$ -closed set is δg -closed.

Proof: Let A be a $\delta\omega$ -closed set and G be any open set containing A. Since every open set is semiopen and A is $\delta\omega$ -closed, $cl_{\delta}(A) \subseteq G$. Therefore $cl_{\delta}(A) \subseteq G$ and G is open. Hence A is δg -closed. The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9 Let X and τ be as in the Example 3.3. Then $\delta\omega C(X) = \{\phi, \{b, c\}, X\}$ and $\delta GC(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. We have $A = \{a, c\}$ is δg -closed but not $\delta \omega$ -closed set in (X, τ) .

Remark: The following examples show that $\delta \omega$ -closedness is independent of closedness, semiclosedness and α -closedness.

Example 3.10 Let X and τ be as in the Example 3.3. Then $\delta\omega C(X) = \{\phi, \{b, c\}, X\}$ and $\alpha C(X) = SC(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. We have $A = \{b\}$ is α -closed as well as semi-closed in (X, τ) but it is not $\delta\omega$ -closed set in (X, τ) .

Example 3.11 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then $\delta\omega C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\alpha C(X) = SC(X) = \{\phi, \{c\}, X\}$. We have $A = \{a, c\}$ is $\delta\omega$ -closed but it is neither α -closed set nor semi-closed set in (X, τ) .

Example 3.12 In Example 3.7, {c} is closed but not $\delta\omega$ -closed set. In Example 3.12, {b, c} is $\delta\omega$ -closed but not closed set.

Remark: From the above discussions and known results in [9, 10, 21, 24], we obtain the following diagram, where $A \rightarrow B$ (resp. A $\blacksquare B$) represents A implies B but not conversely (resp. A and B are independent of each other).

References

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mappings, Bull. Fac. Sci. Assist. Univ., 12 (1983), 77-90.
- [2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] Arya, S. P. and Nour, T. M.: Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717-719.
- [4] Baker, C. W.: On contra-almost β -continuous functions, Kochi J. Math., 1 (2006), 1-8.
- [5] Bhattacharyya, P. and Lahari, B. K.: Semi -generalized closed sets in topology, Indian J. Math., 29 (1987), 375-382.
- [6] Bourbaki, N.: General topology, Part-1. Reading, MA: Addison Wesley, 1996.
- [7] Caldas, M., Jafari, S. and Navalagi, G. B.: Weak forms of open and closed functions via semi-θopen sets, Carpathian J. Math., 22 (1-2) (2006), 21-31.
- [8] Caldas, M.: Semi-generalized continuous maps in topological spaces, Port. Math., 52(4) (1995), 399 -407.
- [9] Cao, J., Ganster, M., Reilly, I. and Steiner, M.: δ -closure, θ -closure and generalized closed sets, Applied General Topology, Universidad Politecnica de Valencia, 6(1) (2005), 79-86.
- [10] Crossley, S. G. and Hildebrand, S. K.: Semi-topological properties, Fund. Math., 74 (1972), 233-254.
- [11] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- [12] Dontchev, J. and Maki, H.: On sg-closed sets and semi-λ-closed sets, Question and Answer Gen. Topology., 15 (1997), 253-266.
- [13] Levine, N.: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- [14] Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [15] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- [16] Veera Kumar, M. K. R. S.: ^g -closed sets in Topological spaces, Bull. Allahabad Math. Soc., 18 (2003), 99-112.
- [17] Velicko, N. V.: H-closed topological spaces, Am. Math. Soc. Trans., 78 (1968), 103-118.