

PROPERTIES OF CONTRA g[#]-CONTINUOUS MAPS AND SEPARATION AXIOMS

K. Dasu Naidu¹, K. Prabhavathi², A. Manickam³ & T. Gunasekar⁴

¹Assistant Professor (Sr.G), Department of Mathematics, GMR Institute of

Technology, GMR Nagar, Rajam – 532127. Srikakulam District., Andhra Pradesh,

India.Email id:dasunaidu.k@gmrit.edu.in

²Assitant professor, Bannari Amman Institute of Technology, Sathyamangalam,

tamilnadu,India, prabhavathik@bitsathy.ac.in

^{3 4}Associate Professor of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R&D

Institute of Science and Technology, (Deemed to be University), No.42.Avadi-Veltech

road, Avadi, Chennai-600 062. Tamilnadu, India.

Type the corresponding author's e-mail dasunaidu.k@gmrit.edu.in

Abstract. In this paper, we introduce contra $g^{\#}$ -continuous maps, study some of its properties and discuss its relationships with some topological maps and separation axioms.

Keywords: g-closed set, $g^{\#}$ -closed set, contra α -continuous map, contra $g^{\#}$ -continuous map, $g^{\#}$ -irresolute map.

AMS Subject Classification: 54A05, 54D10.

1. Introduction

In the literature there are many types of continuities introduced by various authors. Quite recently, Jafari and Noiri introduced and investigated the notions of contra-precontinuity, contra- α -continuity, contra-g-continuity and contra-super-continuity as a continuation of research done by Dontchev [5], and Dontchev and Noiri [6] on the interesting notions of contra-continuity and contra-semi-continuity.

This paper devotes to introduce and investigate a new class of maps called contra $g^{\#}$ -continuous maps which are weaker than contra-continuity and stronger than contra g-continuity, contra sg-continuity and contra gs- continuity. The main results of the paper are that several properties concerning contra $g^{\#}$ -continuous maps. Furthermore, the relationships between the contra $g^{\#}$ -continuity and some topological maps as well as separation axioms are also investigated.

Throughout this paper, (X,τ) , (Y,σ) and (Z,ρ) (briefly X, Y and Z) represent non-empty topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a

subset A of a space X, cl(A), int(A) and C(A) denotes the closure of A, the interior of A and the complement of A respectively.

2. Preliminaries

We recall the following definitions which are useful in the sequel.

Definition 2.1

A subset A of a space X is called

(i) a semi-open [10] if $A \subseteq cl$ (int A);

- (ii) an α -open [14] if $A \subseteq$ int (cl (int A)) and
- (iii) a semi-closed [10] (an α -closed [14]) if C(A) is a semi-open (an α -open).

The semi-closure (α -closure) of a subset A of X is denoted by scl(A) (α cl(A)) and is the intersection of all semi-closed (α -closed) sets containing A.

Definition 2.2

A subset A of a space X is called:

- (i) g-closed [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;
- (ii) sg-closed [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X;
- (iii) gs-closed [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;
- (iv) α g-closed [12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in X;
- (v) $g^{\#}$ -closed [15] if cl(A) \subseteq U whenever A \subseteq U and U is αg -open in X and
- (vi) An g-open [11] (an sg-open [2], an gs-open [1], an α g-open [12] and an g[#]-open [15]) if C(A) is g-closed (sg-closed, gs-closed, α g-closed and g[#]-closed).

Definition 2.3

A map f: $X \rightarrow Y$ is said to be

- (i) contra-continuous [5] if $f^{-1}(V)$ is closed in X for every open set V of Y;
- (ii) contra semi-continuous [6] if $f^{1}(V)$ is semi-closed in X for every open set V of Y;
- (iii) contra α -continuous [8] if $f^{-1}(V)$ is α -closed in X for every open set V of Y;
- (iv) contra g-continuous [9] if $f^{-1}(V)$ is g-closed in X for every open set V of Y;
- (v) contra sg-continuous [6] if $f^{-1}(V)$ is sg-closed in X for every open set V of Y;
- (vi) contra gs-continuous [6] if $f^{-1}(V)$ is gs-closed in X for every open set V of Y;
- (vii) $g^{#}$ -irresolute [15] if $f^{-1}(V)$ is $g^{#}$ -closed in X for every $g^{#}$ -closed set V of Y;
- (viii) gc-irresolute [3] if $f^{1}(V)$ is g-closed in X for every g-closed set V of Y;
- (ix) sg-irresolute [4] if $f^{-1}(V)$ is sg-closed in X for every sg-closed set V of Y;
- (x) pre $g^{\#}$ -closed [15] if f(V) is $g^{\#}$ -closed in Y for every $g^{\#}$ -closed set V of X;
- (xi) $g^{\#}$ -continuous [15] if $f^{-1}(V)$ is $g^{\#}$ -closed in X for every closed set V of Y and
- (xii) preclosed [7] if f(V) is preclosed in Y for every closed set V of X.

Theorem 2.4 [15]

In a topological space X,

- (i) Every closed set is $g^{\#}$ -closed.
- (ii) Every $g^{\#}$ -closed set is g-closed and hence sg-closed and gs-closed. The converses of the above statements are not true in general.

Definition 2.5 [15]

A space X is called

- (i) an $\alpha T^{1/2}$ [#] space if every g[#]-closed set in it is α -closed;
- (ii) an sTb[#] space if every semi-closed set in it is $g^{#}$ -closed;
- (iii) an $\alpha Tc^{\#}$ space if every α -closed set in it is $g^{\#}$ -closed and
- (iv) a Tb space if every gs-closed set in it is closed.

Definition 2.6 [13]

A space X is called a locally indiscrete [13] if every open set in it is closed..

3. Properties of contra g[#]-continuous maps

Definition 3.1

A map $f: X \to Y$ is called contra $g^{\#}$ -continuous if $f^{-1}(V)$ is $g^{\#}$ -closed set of X for every open set V of Y.

Theorem 3.2

- (i) Every contra-continuous map is contra $g^{\#}$ -continuous.
- (ii) Every contra g[#]-continuous map is contra g-continuous and hence contra sg-continuous and contra gs-continuous.

Proof: It is obvious.

The converses of the above statements are not true as we see the following examples.

Example 3.3 Let $X = Y = \{a, b, c\}$. Let $\tau = \{\phi, X, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a, c\}\}$. Let $f: X \rightarrow Y$ be the identity map. Then f is contra $g^{\#}$ -continuous map but it is not contra-continuous.

Example 3.4 Let $X = Y = \{a, b, c\}$. Let $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{b\}\}$. Let f: $X \to Y$ be the identity map. Then f is contra g-continuous map and hence contra sg-continuous map and contra gs-continuous map but it is not contra $g^{\#}$ -continuous.

Theorem 3.5

The composition of two contra g[#]-continuous maps need not be contra g[#]-continuous map.

The following example supports the above theorem.

Example 3.6 Let $X = Y = Z = \{a, b, c\}$. Let $\tau = \{\phi, X, \{a, b\}\}, \sigma = \{\phi, Y, \{a, c\}\}$ and $\rho = \{\phi, Z, Z\}\}$. Let f: X \rightarrow Y be the identity map and g: Y \rightarrow Z be the identity map. Then f is contra g[#]-continuous map and g is contra g[#]-continuous map. But their composition g o f: X \rightarrow Z is not contra g[#]-continuous.

Theorem 3.7

Let $f: X \to Y$ be a map. Then the following statements are equivalent.

- (i) f is contra $g^{\#}$ -continuous.
- (ii) The inverse image of each open set in Y is $g^{\#}$ -closed in X.
- (iii) The inverse image of each closed set in Y is $g^{\#}$ -open in X.

Proof: (i) = \blacktriangleright (ii): Let G be any open set in Y. By the assumption of (i), f¹(G) is g[#]-closed in X. (ii)= \blacktriangleright (iii): Let G be any closed set in Y. Then Y–G is open set in Y. By the assumption of (ii), f¹(Y–G) = X–f¹(G) is g[#]-closed in X.

Therefore $f^{1}(G)$ is $g^{\#}$ -open in X.

(iii) = \blacktriangleright (i): Let G be any open set in Y. Then Y–G is closed in Y. By the assumption of (iii), $f^{-1}(Y-G) = X - f^{-1}(G)$ is $g^{\#}$ -open in X.

Therefore, $f^{1}(G)$ is $g^{\#}$ -closed in X. Thus f is contra $g^{\#}$ -continuous map.

Theorem 3.8

Let $f: X \to Y$ be surjective, $g^{\#}$ -irresolute and pre $g^{\#}$ -closed, and $g: Y \to Z$ be any map. Then g o f: X $\to Z$ is contra $g^{\#}$ -continuous if and only if g is contra $g^{\#}$ -continuous.

Proof: Let g o f: $X \rightarrow Z$ be contra g[#]-continuous map. Let F be an open subset of Z. Then

 $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is a g[#]-closed subset of X. Since f is pre g[#]-closed, $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is g[#]-closed in Y. Thus g is contra g[#]-continuous map.

Conversely, let g: $Y \rightarrow Z$ be contra g[#]-continuous map. Let G be an open subset of Z. Since g is contra g[#]-continuous, g⁻¹(G) is g[#]-closed in Y. Since f is g[#]-irresolute, f⁻¹(g⁻¹(G)) = (g o f)⁻¹(G) is g[#]-closed in X. Hence g o f is contra g[#]-continuous map.

4. Relation with other maps

Theorem 4.1

If f: X \rightarrow Y is g[#]-irresolute map and g: Y \rightarrow Z is contra-continuous map, then the composition gof: X \rightarrow Z is contra g[#]-continuous map.

Proof: Let G be an open set in Z. Since g is contra-continuous, $g^{-1}(G)$ is closed in Y. It implies that $g^{-1}(G)$ is $g^{\#}$ -closed in Y. Since f is $g^{\#}$ -irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is $g^{\#}$ -closed in X. Therefore, g o f is contra $g^{\#}$ -continuous map.

Corollary 4.2

If f: X \rightarrow Y is g[#]-irresolute map and g: Y \rightarrow Z is contra g[#]-continuous map, then g o f: X \rightarrow Z is contra g[#]-continuous map.

Theorem 4.3

If f: X \rightarrow Y is gc-irresolute map and g: Y \rightarrow Z is contra g[#]-continuous map, then g o f: X \rightarrow Z is contra g-continuous map.

Proof: Let G be an open set in Z. Since g is contra $g^{\#}$ -continuous map, $g^{-1}(G)$ is $g^{\#}$ -closed in Y. It implies that g-closed in Y. Since f is gc-irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is g-closed in X. Thus g o f is contra g-continuous map.

Corollary 4.4

If f: X \rightarrow Y is sg-irresolute map and g: Y \rightarrow Z is contra g[#]-continuous map, then g o f: X \rightarrow Z is contra sg-continuous map.

Theorem 4.5

Let $\{X\lambda / \lambda \in \Omega\}$ be any family of topological spaces. If $f: X \to \Pi X\lambda$ is a contra $g^{\#}$ continuous map, then $Pr\lambda$ o $f: X \to X\lambda$ is contra $g^{\#}$ -continuous for each $\lambda \in \Omega$, where $Pr\lambda$ is the
projection of $\Pi X\lambda$ onto $X\lambda$.

Proof : We shall consider a fixed $\lambda \in \Omega$. Suppose U λ is an arbitrary open set in X λ . Then $Pr\lambda^{-1}(U\lambda)$ is open in Π X λ . Since f is contra g[#]-continuous, we have by definition $f^{-1}(Pr\lambda^{-1}(U\lambda)) = (Pr\lambda \text{ o } f)^{-1}(U\lambda)$ is g[#]-closed in X. Therefore, Pr λ o f is contra g[#]-continuous.

Theorem 4.6

Let f: X \rightarrow Y be a map and g: X \rightarrow X X Y the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra g[#]-continuous, then f is contra g[#]-continuous. **Proof:** Let U be an open set in Y. Then X X U is an open set in X X Y. It follows from Theorem 2.7 that $f^{-1}(U) = g^{-1}(X X U)$ is g[#]-closed in X. Thus, f is contra g[#]-continuous.

5. Relation with Separation Axioms

Theorem 5.1

Let f: X \rightarrow Y be a contra g[#]-continuous map. If X is an $\alpha T \frac{1}{2}^{\#}$ space, then f is contra α -continuous map.

Proof: Let V be an open set of Y. Since f is contra $g^{\#}$ -continuous, $f^{1}(V)$ is a $g^{\#}$ -closed set of X. Since X is an $\alpha T^{1/2^{\#}}$ space, $f^{1}(V)$ is an α -closed set of X. Therefore f is a contra α -continuous map.

Theorem 5.2

Let $f: X \to Y$ be a contra semi-continuous map. If X is an $sTb^{\#}$ space, then f is contra $g^{\#}$ -continuous map.

Proof: Let V be an open set of Y. Since f is contra semi-continuous, $f^{-1}(V)$ is a semi-closed set of X. Since X is an sTb[#] space, $f^{-1}(V)$ is a $g^{#}$ -closed set of X. Therefore, f is a contra $g^{#}$ -continuous map.

Theorem 5.3

Let $f: X \to Y$ be a contra α -continuous map. If X is an $\alpha Tc^{\#}$ space, then f is contra $g^{\#}$ -continuous map.

Proof: Let V be an open set of Y. Since f is contra α -continuous, f¹(V) is a α -closed set of X. Since X is an α Tc[#] space, f¹(V) is a g[#]-closed set of X. Therefore, f is contra g[#]-continuous map.

Theorem 5.4

Let f: $X \rightarrow Y$ be a contra gs-continuous map. If X is a Tb space, then f is contra $g^{\#}$ -continuous map.

Proof: Let V be an open set of Y. Since f is contra gs-continuous, $f^{1}(V)$ is gs-closed set of X. Since X is a Tb space, it is a closed set of X. It implies that $f^{1}(V)$ is $g^{\#}$ -closed set of X. Therefore, f is a contra $g^{\#}$ -continuous map.

Theorem 5.5

Let $f: X \to Y$ be a surjective, preclosed, contra $g^{\#}$ -continuous map and X be aTb space, then Y is locally indiscrete.

Proof: Suppose V is open set in Y. By hypothesis, f is contra $g^{\#}$ -continuous map, $f^{-1}(V)$ is $g^{\#}$ -closed and hence gs-closed in X. Since X is a Tb space, $f^{-1}(V)$ is closed in X. Since f is preclosed, V is preclosed in Y. Now we have $cl(V) = cl(int(V)) \subseteq V$. This means that V is closed in Y. Thus Y is locally indiscrete.

Theorem 5.6

Let X and Z be any topological spaces and Y be a Tb space. If $f: X \to Y$ is $g^{\#}$ -continuous map and $g: Y \to Z$ is contra gs-continuous map, then g o $f: X \to Z$ is contra $g^{\#}$ -continuous map. **Proof:** Let G be an open set in Z. Since g is contra gs-continuous, $g^{-1}(G)$ is gs-closed in Y. But Y is a Tb space, $g^{-1}(G)$ is closed in Y. Since f is $g^{\#}$ -continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is $g^{\#}$ -closed in X. Therefore, gof is contra $g^{\#}$ -continuous map.

Corollary 5.7

Let X and Z be any topological spaces and Y be a Tb space. If f: $X \to Y$ is g[#]-irresolute map and g: $Y \to Z$ is contra gs-continuous map, then g o f: $X \to Z$ is contra g[#]-continuous map.

Theorem 5.8

Let X and Z be any topological spaces and Y be a sTb[#] space. If f: $X \to Y$ is g[#]-irresolute map and g: $Y \to Z$ is contra-continuous map, then g o f: $X \to Z$ is contra g[#]-continuous map. **Proof**: Let G be an open set in Z. Since g is contra-continuous, g⁻¹(G) is closed and hence semi-closed in Y. But Y is a sTb[#] space, g⁻¹(G) is g[#]-closed in Y. Since f is g[#]-irresolute, f⁻¹(g⁻¹(G)) = (g o f)⁻¹(G) is g[#]-closed in X. Therefore, g o f is contra g[#]-continuous map.

Corollary 5.9

Let X and Z be any topological spaces and Y be an $\alpha Tc^{\#}$ space. If f: X \rightarrow Y is g[#]-irresolute map and g: Y \rightarrow Z is contra-continuous map, then g o f: X \rightarrow Z is contra g[#]-continuous map.

Definition 5.10

A space X is called $g^{\#}$ -connected provided that X is not the union of two disjoint non-empty $g^{\#}$ -open sets.

Theorem 5.11

If f: X \rightarrow Y is contra g[#]-continuous surjection and X is g[#]-connected, then Y is connected. **Proof** : Suppose that Y is not connected space. There exist non-empty disjoint open sets V1 and V2 such that Y = V1 \cup V2. Therefore \, V1 and V2 are clopen in Y. Since f is contra g[#]-continuous, f¹(V1) and f¹(V2) are g[#]-open in X.

Moreover, $f^{-1}(V1)$ and $f^{-1}(V2)$ are non-empty disjoint and $X = f^{-1}(V1) \cup f^{-1}(V2)$. This shows that X is not $g^{\#}$ -connected. This contradicts that Y is not connected assumed. Hence Y is connected.

Definition 5.12

A space X is said to be

- (i) g[#]-compact (strongly S-closed [5]) if every g[#]-open (respectively closed) cover of X has a finite subcover;
- (ii) countably g[#]-compact (strongly countably S-closed) if every countable cover of X by g[#]-open (respectively closed) sets has a finite subcover;

(iii) g[#]-Lindelöf (strongly S- Lindelöf) if every g[#]-open (respectively closed) cover of X has a countable subcover.

Theorem 5.13

The contra $g^{\#}$ -continuous images of $g^{\#}$ -compact ($g^{\#}$ -Lindelöf, countably $g^{\#}$ -compact) spaces are strongly S-closed (respectively strongly S- Lindelöf, strongly countably S-closed). **Proof :** Suppose that f: X \rightarrow Y is a contra $g^{\#}$ -continuous surjection. Let {V $\alpha : \alpha \in I$ } be any closed cover of Y. Since f is contra $g^{\#}$ -continuous, then {f¹(V α) : $\alpha \in I$ } is an $g^{\#}$ -open cover of X and hence there exists a finite subset I0 of I such that $X = \bigcup {f^{-1}(V\alpha) : \alpha \in I0}$. Therefore, we have $Y = \bigcup {V\alpha : \alpha \in I0}$ and Y is strongly S-closed. The other proofs can be obtained similarly.

Definition 5.14

A space X is said to be :

- (i) $g^{\#}$ -closed-compact if every $g^{\#}$ -closed cover of X has a finite subcover;
- (ii) countably $g^{\#}$ -closed-compact if every countable cover of X by $g^{\#}$ -

closed sets has a finite subcover;

(iii) g[#]-closed-Lindelöf if every g[#]-closed cover of X has a countable subcover.

Theorem 5.15

The contra $g^{\#}$ -continuous images of $g^{\#}$ -closed-compact ($g^{\#}$ -closed-Lindelöf, countably $g^{\#}$ -closed-compact) spaces are compact (respectively Lindelöf, countably compact).

Proof : Suppose that $f: X \to Y$ is a contra $g^{\#}$ -continuous surjection. Let $\{V\alpha : \alpha \in I\}$ be any open cover of Y. Since f is contra $g^{\#}$ -continuous, then $\{f^{1}(V\alpha) : \alpha \in I\}$ is a $g^{\#}$ -closed cover of X. Since X is $g^{\#}$ -closed-compact, there exists a finite subset I0 of I such that $X = \bigcup \{f^{1}(V\alpha) : \alpha \in I0\}$. Therefore, we have $Y = \bigcup \{V\alpha : \alpha \in I0\}$ and Y is compact.

The other proofs can be obtained similarly.

References

- [1] S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. 21(8) (1990), 717-719.
- P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (3) (1987), 375-382.
- [3] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological

spaces, Mem. Fac. Sci. Kochi. Univ. (Math.) 12 (1991), 5-13.

- [4] M. Caldas cueva, Semi-generalized continuous maps in topological spaces, Portugaliae mathematica, 52 (4) (1995), 399-407.
- [5] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19 (2) (1996), 303-310.
- [6] J. Dontchev and T. Noiri, Contra semi-continuous functions, Math. Pannon. 10 (2) (1999), 159-168.
- [7] S.N. El-Deep, I.A. Hasanein, A.S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie 27(1983), 311-315.
- [8] S. Jafari and T. Noiri, Contra α-continuous functions between topological spaces, Iranian Int. J. Sci. 2 (2) (2001), 153-167.
- [9] S. Jafari, M. Caldas, T. Noiri and M. Simoes, A new generalization of contra continuity via Levine's g-closed sets, Chaos, Solitons and Fractals. 32 (2007), 1597-1603.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [11] N. Levine, Generalised closed sets in topology, Rend. Cir. Mat. Palermo. 19 (2) (1970), 89-96.
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15 (1994), 57-63.
- [13] T. Nieminen, On Ultra pseudocompact and related topics, Ann. Acad. Sci. Fenn. Ser. A.I Math. 3 (1977), 185-205.
- [14] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [15] M.K.R.S. Veera kumar, g[#]-closed sets in topological spaces, Mem. Fac. Sci. Kochi. Univ. (Math.) 24 (2003), 1-13..