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Abstract. In this study, we discuss the existence results for damped second order neutral integral 
equation with impulses and infinite delay in Banach spaces (BS). We use fixed point(fp) theorem of 
Sadovskii’s combined with the theories of cosine function(fn). 

 

 

1.  Introduction 

Differential equations from both theoretical and practical angles are a very significant mathematical 
topic. The practical significance is provided by the fact that differential equations describe the most 
significant time-dependent science, social and economic issues. The existence results for damped 
second order neutral integral equation with impulses and infinite delay have appeared over the 
previous several years as a popular explanation of identified evolution events of certain actual life 
issues. Some of the basic ideas from [3, 4, 12, 15, 19] will be used, and for more data on this paper 
we refer to [1, 2, 5, 9, 10, 13, 16, 17, 20, 21, 24]. 

Throughout this document, (X,k.k) is a BS and A´ is the infinitesimal generator of a strongly 
continuous(cts) cosine family (C´(ι))ι∈R of bounded linear operator(BLO) on X. We define sine fn 
(S´(ι))ι∈R by S´ . Assume kC´(ι)k ≤ M´ , kS´(ι)k ≤ N´, ∀ι ∈J = 
[0,P] where M´ >0, N´ >0 and B is the phase space, for more information on the reference document 
[6, 7, 8, 20, 21, 22, 23, 24] .A mild solution(ms) is derived from the fixed-point theorem of the 
sadovskii [18]. 
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2.  Existence of solutions 
2.1. Damped impulsive system 
The damped integrodifferential equation of second order with impulses and infinite delay of the 
form 

 
ω0 = ϕ∈ B, ω′(0) = ξ ∈ X, (2.1.2) 

´ 
∆ω(ιr´) = I´r´(ωιr´), r´ = 1,2,...,n, 

(2.1.3) 

∆ω′(ιr´) = J´r´(ωιr´), r´ = 1,2,...,n, (2.1.4) 
D is a BLO on X along D(D) ⊂ D(A´). For ι ∈ J, ωι denotes the fn ωι : (−∞,0] → X defined by 
ωι(θ) = ω(ι+θ), −∞ < θ ≤ 0 that belonging to B, l2 : J×B×X → X and b : J×J×B → X are suitable 
fns. The moments of momentum {ιr´} are given s.t. 0 = ι0 < ι1 <··· < ιn < ιn+1 = P, 

´´r´ : B → X, J´r  ́: B → X, ∆ξ(ι) indicates the jump of a fn ξ at ι , that is explained by 
I 
∆ξ(ι) = ξ(ι+) − ξ(ι−), where ξ(ι−) and ξ(ι+) the left and the right limits of ξ at ι. The ms of 

(2.1.1)-(2.1.4). 
 
Definition 2.1   

A fn ω : (−∞,P] → X is called a ms of (2.1.1)-(2.1.4), if ω0 = ϕ∈ B, 

´´r´(ωιr´),∆ω′(ιr´) = 
J
´r´(ωιr´),r´ = 1,2,...,n, ω|J ∈ PC, the impulsive conditions (condn) ∆ω(ιr´) = 

I 
are 

fulfilled and 

(2.1.5) 

Remark: We can write the ω(ι) as 

 

Now we use the integration by parts method to understand that ω(·) is a ms of (2.1.1)-(2.1.4). 

. 
Also consider the assumptions stated below: 
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(H1) The fn l2 : J × B × X → X fulfilled: 

(i) Let ω : (−∞,P] → X be s.t. ω0 = ϕ∈ B and ω|J ∈ PC. For each ι ∈ J, 

 is highly measurable. 
(ii) The fn l2 : [0,P] × B × X → X is completely(comp) cts. 

(iii) ∃ a non-decreasing cts fn Ω : [0,∞) → (0,∞) and an integrable fn m : J → (0,∞) 
s.t. 

, 

where ι ∈ J, (v,w) ∈ B × X. 
(iv)  ∃ a αr ∈ L1(J) s.t.  

sup kl2(ι,v,w)k ≤ αr(ι) for every r >0.  
(H2) The impulsive fns satisfy: 

´´r´, J´r´ : B → X, ´r = 1,2,...,n are comp cts and ∃ cts non-decreasing fns 
(i) The maps I 

λr´,µr  ́: [0,∞) → (0,∞), ´r = 1,2,...,n, s.t. 

´´r´(ψ´)k ≤ λr´(kψ´kB), kJ´r´(ψ´)k ≤ µr´(kψ´kB),
 ψ´ ∈ B. kI 

(ii) ∃ a constants K1 >0, K2 >0 s.t. 

kI´´r´(ψ´1) − I
´
´r´(ψ´2)k ≤ K1kψ´1 −ψ´2kB, kJ´r´(ψ´1) − J´r´(ψ´2)k ≤ 

K2kψ´1 −ψ´2kB, ψ´1,ψ´2 ∈ B, r´ = 1,2,...,n. 

Theorem 2.2 If the inferences (H1) − (H2) are fulfilled, then (2.1.1)-(2.1.4) has a ms on J on a 
particular condn 

h(3N´ + PM´ )kDk + KP . 

Proof. H(P) denotes the space H(P) = {y :] − ∞,P] → X : y|J ∈ PC,y0 = 0} endowed with the uniform 
convergence topology, we define the operator Ψ : H(P) → H(P) defined by 

(Ψy)0 = 0 and 
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has a fp ω(·), which is a ms of (2.1.1)-(2.1.4). From the hypothesis that Ψ is cts and well defined. 
Next we wish to show that ∃ r >0 s.t. Ψ(Br(0,H(P))) ⊆ Br(0,H(P)). Suppose this statement is 

not true, then for each r >0, we can take ωr ∈ Br(0,H(P)), j = {0,...,n} and ιr ∈ [ιj,ιj+1] s.t. kΨyr(ιr)k 
> r. 

Using the notation

, we get that: 

r <kΨyr(ιr)k ≤ N´[kξk + (3N´ + PM´ )kDk(r + kϕkP) 

PM´)  

and hence1 ≤ h(3N´ + PM´ )kDk + KP  

which is a contradiction. 
Let r >0 be s.t. Ψ(Br(0,H(P))) ⊂ Br(0,H(P)). To prove Ψ is a condensing map on 

Br(0,H(P)) into Br(0,H(P)). The decomposition Ψ = Ψ1 + Ψ2 where 

 
From [[14], Lemma 3.1], we understand that Ψ2 is comp cts. That is 

kΨ1v − Ψ1wk = (3N´ + PM´ ) , 

together imply that Ψ is condensing on Br(0,H(P)). 
Finally, from the fp theorem of Sadovskii’s we get a fp y of Ψ. Clearly, ω = y + ν is a ms of the 

problem (2.1.1)-(2.1.4). Hence the proof. 

  

Corollary 2.3 If all condns of Theorem 2.2 true except that (H2) replaced by the following one, 
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(C1) : ∃ constants ar  ́>0, br  ́>0, cr  ́>0, dr  ́>0 and constants θr´, δr  ́∈ (0,1), r´ = 1,2,...,n s.t. 
for each ν ∈ X,  

´ 
k

I
´r´(ν)k ≤ ar´ + br´(kνk)θr´, 

and 

r´ = 1,2,...,n. 

k
J
´r´(ν)k ≤ cr´ + dr´(kνk)δr´, r´ = 1,2,...,n. 

then the system (2.1.1)-(2.1.4) is a ms on J on condn that 

(3N´ + PM´ )kDk + KP

<1. 
i=1 

 
2.2. Damped impulsive neutral system 
The damped neutral integrodifferential equation of second order with impulses and infinite delay 
of the form 

(2.2.2) 

where l1 : J × B × X → X, and a : J × J × B → X the remaining fns defined in previous session. 
The ms of (2.2.1)-(2.2.4). 
 

Definition 2.4   
A fn ω : (−∞,P] → X is called a ms of the abstract Cauchy problem (2.2.1)- 

(2.2.4), if ω0 = ϕ∈ B, ω|J ∈ PC, the impulsive condns  

∆ω(ιr´) = 
I
´´r´(ωιr´), ∆ω′(ιr´) = 

J
´r´(ωιr´),r´ =1,2,...,n, are fulfilled and 

(2.2.5) 

for all ι ∈ [ιj,ιj+1] and every j = 0,...,n. 

Remark: ω(ι) can be written: 

h 
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as  
Now we use integration by parts method to understandd that ω(·) is a ms of (2.2.1)-(2.2.4). 

Also consider the assumptions stated below: 
(H3) ∃ a constant N´1 >0 s.t. 

. 

and L2 = Psup(ι,s)∈J×J ka(ι,s,0)k. 

(H4) ∃ a positive constant Lg s.t. 

kl1(ι,v1,w1) − l1(ι,v2,w2)k ≤ Lg(kv1 −v2kB + kw1 −w2k), 

where 0 < Lg <1, (ι,vi,wi) ∈ J × B × X, i = 1,2 and kg(ι,u,v)k ≤ Lg(kukB + kvk) + L1 and L1 = 
supι∈J kg(ι,0,0)k. 
 

Theorem 2.5 
 If the inferences (H1)−(H4) are true, then the system (2.2.1)-(2.2.4) has a ms on J on the 

condn that 

 PM´ )
 . 

P 

Proof. H(P) denotes the space H(P) = {y :] − ∞,P] → X : y|J ∈ PC,y0 = 0} endowed with the uniform 
convergence topology, we define the operator Ψ : H(P) → H(P) by (Ψy)0 = 0 and 

 

has a fp ω(·). which is a ms of the system (2.2.1)-(2.2.4). From the hypothesis that, Ψ is cts and 
well defined . 
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Next we want to show that ∃ r >0 s.t. Ψ(Br(0,H(P))) ⊆ Br(0,H(P)). Suppose this statement is not 

true, then for each r >0, we can take ωr ∈ Br(0,H(P)), j = {0,...,n} and ιr ∈ [ιj,ιj+1] s.t. kΨyr(ιr)k > 
r.Using the notation kyι + ϕeιkB ≤ KPkyιk + kϕeιkB, we get 

+ (3N´  
≤ N´[kξk + kl1(0,ϕ,0)k] + PM´ KP(Lg(1 + N´1))r + M´ Z (Lg[(1 + N´1)kϕekP + L2] + L1)ds 

0+ (3N´ + PM´ )kDk(r + kϕkP) + N´

 

 
and hence 

PM´ ) 
 

which is a 
contradiction. 

Let r >0 be s.t. 
Ψ(Br(0,H(P))) ⊂ Br(0,H(P)). To prove that Ψ is a 
condensing map on Br(0,H(P)) into Br(0,H(P)). 
We study the decomposition Ψ = Ψ1 + Ψ2 where 

 

, 
From [[14], Lemma 3.1], we infer that Ψ2 is comp cts. This 
fact and the 
estimate 

kΨ1v − Ψ1wk = KPPM´ ), 
together imply that Ψ is condensing on Br(0,H(P)). 

Finally, from Sadovskii’s fp theorem we obtain a fp y of Ψ. Clearly, ω = y + ν is a ms of the 
problem (2.2.1)-(2.2.4). This completes the proof.  
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Corollary 2.6   
If all condns of Theorem 2.5 hold except that (H2) replaced by the following one, 

(C1) : ∃ constants ar  ́>0, br  ́>0, cr  ́>0, dr  ́>0 and constants θr´, δr  ́∈ (0,1), r´ = 1,2,...,n s.t. 
for each ν ∈ X,  

´ 
k
I
´r´(ν)k ≤ ar´ + br´(kνk)θr´, 

and 

r´ = 1,2,...,n. 

k
J
´r´(ν)k ≤ cr´ + dr´(kνk)δr´, r´ = 1,2,...,n. 

then the system (2.2.1)-(2.2.4) is a ms on J provided that PM´ ). 

 

3.  Conclusion 
We used fp theorem of Sadovskii’s with a non compact condn on the cosine family of operators. 
Finally we conclude that the mild solution(ms) exists for impulsive damped second order neutral 
integrodifferential equations with infinite delay in a Bach spaces. 
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