

CARTESIAN PRODUCT OF BIPOLAR L-FUZZY SUB ℓ-HX GROUPS

¹R. Muthuraj & ²G. Santha Meena

¹PG and Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai,Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India.E-mail: rmr1973@yahoo.co.in ²Department of Mathematics,PSNA College of Engineering and Technology, Dindigul, Research Scholar, PG and Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai,Affiliated to Bharathidasan University,Tiruchirappalli, Tamilnadu, India.E-mail:g.santhameena@gmail.com

Abstract: The aim of the paper is to introduce the Cartesian product between bipolar L-fuzzy sub ℓ -HX groups, and we tend to present the Cartesian product of bipolar L-fuzzy sub ℓ -HX groups under homomorphism, and anti-homomorphism.

Keywords: bipolar L-fuzzy sub ℓ -group, bipolar L-fuzzy sub ℓ -HX group, Cartesian Product of bipolar L-fuzzy subsets, homomorphism and anti-homomorphism, image, pre-image of bipolar L-fuzzy subsets.

1. Introduction

The fuzzy set was initiated by L.A.Zadeh [15]. The membership degree of fuzzy set is defined in the interval of [0,1]. In continue, J.A. Goguen [3] introduced L-Fuzzy set. In L-fuzzy set, the valuation set [0,1] replaced through a complete lattice. Complete lattice may be a posset within which all subsets have each a supremum (join) associated an infimum (meet). The membership degree[-1,1] of bipolar-valued fuzzy set contains two parts. That is, positive membership degree(0,1] and negative membership degree[-1,0). The membership degree (0,1] indicates that components somewhat satisfy the property and also the membership degree [-1,0) indicates that components somewhat satisfy the implicit counter-property. Li Hongxing [4] introduced the idea of HX group and also the authors Luo Chengzhong, Mi Honghai, Li Hongxing [5] introduced the idea of the fuzzy HX group. G.S.V. Satya Saibaba [14] introduced the idea of Fuzzy lattice ordered groups. Muthuraj.R, Sridharan.M, [8] introduced the Cartesian product of bipolar fuzzy HX subgroup,

In this paper, we discuss the Cartesian product of bipolar L-Fuzzy sub ℓ - HX group and present some properties using the concept of homomorphism and anti-homomorphism.

2. Preliminaries

In this section, we provide some basic definitions. Throughout this paper $G=(G,*,\leq)$ could be a lattice ordered group or a ℓ -group, e is that the identity of G and mn we tend to mean m*n.

Definition 2.1[16]

A bipolar L-fuzzy subset α of G is said to be bipolar L-fuzzy sub ℓ -group of G if for any

m.n∈G i) $\alpha^{+}(mn)$ $\alpha^{+}(m) \wedge \alpha^{+}(n)$ \geq ii) $\alpha^{-}(mn)$ \leq $\alpha^{-}(m) \lor \alpha^{-}(n)$ iii) $\alpha^+(m^{-1})$ $\alpha^{+}(m)$ = iv) $\alpha^{-}(m^{-1})$ $= \alpha^{-}(m)$ v) $\alpha^+(m \lor n) \ge \alpha^+(m) \land \alpha^+(n)$ vi) $\alpha^{-}(m \lor n) \leq \alpha^{-}(m) \lor \alpha^{-}(n)$ vii) $\alpha^+(m \wedge n) \geq \alpha^+(m) \wedge \alpha^+(n)$ viii) $\alpha^{-}(m \wedge n) \leq \alpha^{-}(m) \vee \alpha^{-}(n)$

Definition 2.2 [16]

Let α be a bipolar L-fuzzy subset defined on G. Let $\Im \subset 2^G - \{\phi\}$ be a ℓ -HX group on G. A bipolar L-fuzzy set ρ^{α} defined on \Im is said to be a bipolar L-fuzzy sub ℓ -HX group on \Im if for all $P,Q \in \Im$.

i) $(\rho^{\alpha})^{+}(PQ)$ \geq $(\rho^{\alpha})^{+}(P) \wedge (\rho^{\alpha})^{+}(Q)$ ii) $(\rho^{\alpha})^{-}(PQ)$ \leq $(\rho^{\alpha})^{-}(P) \lor (\rho^{\alpha})^{-}(Q)$ iii) $(\rho^{\alpha})^{+}(P)$ $(\rho^{\alpha})^{+}(\mathbf{P}^{-1})$ = $(\rho^{\alpha})^{-}(P^{-1})$ iv) $(\rho^{\alpha})^{-}(P)$ = v) $(\rho^{\alpha})^{+}(P \lor Q) \geq$ $(\rho^{\alpha})^{+}(P) \wedge (\rho^{\alpha})^{+}(Q)$ vi) $(\rho^{\alpha})^{-}(P \lor Q) \leq$ $(\rho^{\alpha})^{-}(P) \lor (\rho^{\alpha})^{-}(Q)$ vii) $(\rho^{\alpha})^{+}(P \land Q) \geq (\rho^{\alpha})^{+}(P) \land (\rho^{\alpha})^{+}(Q)$ viii)(ρ^{α})⁻($P \land Q$) \leq $(\rho^{\alpha})^{-}(P) \lor (\rho^{\alpha})^{-}(Q)$ Where $(\rho^{\alpha})^+(P) = \vee \{\alpha^+(m)/\text{ for all } m \in P \subseteq G\}$ and $(\rho^{\alpha})^-(P) = \wedge \{\alpha^-(m)/\text{ for all } m \in P \subseteq G\}$.

Definition2.3[13]

Let G_1 and G_2 be any two ℓ -groups. Let $\vartheta_1 \subset 2^{G_1} - \{\phi\}$ and $\vartheta_2 \subset 2^{G_2} - \{\phi\}$ be any two ℓ - HX groups defined on G_1 and G_2 respectively. Let ρ^{α} be a bipolar L-fuzzy sub ℓ - HX group of a ℓ - HX group in ϑ_1 . Let $\phi: \vartheta_1 \to \vartheta_2$ be a function. Then ρ^{α} is called ϕ -invariant if the following conditions are satisfied.

- i) $((\phi(P))^{+}=((\phi(Q))^{+} \text{ implies that } (\rho^{\alpha})^{+}(P)=(\rho^{\alpha})^{+}(Q)$
- ii) $((\phi(P))^{-} = ((\phi(Q))^{-} \text{ implies that } (\rho^{\alpha})^{-}(P) = (\rho^{\alpha})^{-}(Q).$

3. Properties and example of bipolar L-Fuzzy sub ℓ-HX group using Cartesian product.

In this section, we discuss some of the properties and example of bipolar L-Fuzzy sub ℓ -HX group using Cartesian product.

Definition3.1

Let $\rho^{\alpha} = ((\rho^{\alpha})^+, (\rho^{\alpha})^-)$ and $\omega^{\beta} = ((\omega^{\beta})^+, (\omega^{\beta})^-)$ be bipolar L-fuzzy subsets of ϑ_1 and ϑ_2 respectively. Then a product $\rho^{\alpha} \times \omega^{\beta} = ((\rho^{\alpha} \times \omega^{\beta})^+, (\rho^{\alpha} \times \omega^{\beta})^-)$, Where $(\rho^{\alpha} \times \omega^{\beta})^+ : \vartheta_1 \times \vartheta_2 \to L$ and $(\rho^{\alpha} \times \omega^{\beta})^- : \vartheta_1 \times \vartheta_2 \to L$ are mappings defined by

- i) $(\rho^{\alpha} \times \omega^{\beta})^{+}(P,Q) = (\rho^{\alpha})^{+}(P) \wedge (\omega^{\beta})^{+}(Q)$
- ii) $(\rho^{\alpha} \times \omega^{\beta})^{-}(P,Q) = (\rho^{\alpha})^{-}(P) \lor (\omega^{\beta})^{-}(Q) \text{ for all } P \in \mathfrak{S}_{1}, Q \in \mathfrak{S}_{2}.$

Theorem3.2

Let $\rho^{\alpha} = ((\rho^{\alpha})^{+}, (\rho^{\alpha})^{-})$ and $\omega^{\beta} = ((\omega^{\beta})^{+}, (\omega^{\beta})^{-})$ be bipolar L-fuzzy sub ℓ -HX groups on ℓ -HX groups ϑ_{1} and ϑ_{2} respectively. Then $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar L-fuzzy sub ℓ -HX groups on ℓ -HX groups $\vartheta_{1}x\vartheta_{2}$. **Proof.** Assume $(P,Q), (R,S) \in \vartheta_{1} \times \vartheta_{2}$

i)	$(\rho^{\alpha} \times \omega^{\beta})^{+}((\mathbf{P},\mathbf{Q})(\mathbf{R},\mathbf{S}))$	=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(PR,QS)$
1)	(p / (0) ((1,Q)(1(,S)))	=	$(\rho^{\alpha})^{+}(\mathbf{PR})\wedge(\omega^{\beta})^{+}(\mathbf{QS})$
		2	$((\rho^{\alpha})^{+}(\mathbf{P})\wedge(\rho^{\alpha})^{+}(\mathbf{R}))\wedge((\omega^{\beta})^{+}(\mathbf{Q})\wedge(\omega^{\beta})^{+}(\mathbf{S}))$
		=	$((\rho^{\alpha})^{+}(\mathbf{P})\wedge(\omega^{\beta})^{+}(\mathbf{Q}))\wedge((\rho^{\alpha})^{+}(\mathbf{R})\wedge(\omega^{\beta})^{+}(\mathbf{S}))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{P}, \mathbf{Q}) \wedge ((\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{R}, \mathbf{S})$
	$(\rho^{\alpha} \times \omega^{\beta})^{+}((\mathbf{P},\mathbf{Q})(\mathbf{R},\mathbf{S}))$	_ ≥	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{P}, \mathbf{Q}) \wedge ((\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{R}, \mathbf{S})$
ii)	$(\rho^{\alpha} \times \omega^{\beta})^{-}((\mathbf{P},\mathbf{Q})(\mathbf{R},\mathbf{S}))$	=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(PR,QS)$
11)	(p × w) ((1,Q)(1,S))	=	$(\rho^{\alpha})^{-}(PR) \lor (\omega^{\beta})^{-}(QS)$
		_ ≤	$((\rho^{\alpha})^{-}(\mathbf{P})\vee(\rho^{\alpha})^{-}(\mathbf{R}))\vee((\omega^{\beta})^{-}(\mathbf{Q})\vee(\omega^{\beta})^{-}(\mathbf{S}))$
		 	$((\rho^{\alpha})^{-}(P)^{\vee}(\omega^{\beta})^{-}(Q))^{\vee}((\rho^{\alpha})^{-}(R)^{\vee}(\omega^{\beta})^{-}(S))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{P}, \mathbf{Q}) \lor ((\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{R}, \mathbf{S})$
	$(\alpha^{\alpha})(\beta)^{-}((\mathbf{P} \mathbf{O})(\mathbf{P} \mathbf{S}))$	_ ≤	$(\rho^{\alpha} \times \omega^{\beta})^{-} (P,Q) \vee ((\rho^{\alpha} \times \omega^{\beta})^{-} (R,S)$
:::)	$(\rho^{\alpha} \times \omega^{\beta})^{-}((\mathbf{P},\mathbf{Q})(\mathbf{R},\mathbf{S}))$	<u> </u>	• • • • • • • • • •
iii)	$(\rho^{\alpha} \times \omega^{\beta})^{+} ((P,Q)^{-1})$		$(\rho^{\alpha} \times \omega^{\beta})^{+} (\mathbf{P}^{-1}, \mathbf{Q}^{-1})$
		=	$(\rho^{\alpha})^{+}(\mathbf{P}^{-1})\wedge(\omega^{\beta})^{+}(\mathbf{Q}^{-1})$
	$(-\alpha, \beta) + ((\mathbf{D} \circ \mathbf{O}) - 1)$	=	$(\rho^{\alpha})^{+}(\mathbf{P})\wedge(\omega^{\beta})^{+}(\mathbf{Q})$
:)	$(\rho^{\alpha} \times \omega^{\beta})^{+} ((\mathbf{P}, \mathbf{Q})^{-1})$	=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{P}, \mathbf{Q})$
iv)	$(\rho^{\alpha} \times \omega^{\beta})^{-}((\mathbf{P},\mathbf{Q})^{-1})$	=	$(\rho^{\alpha} \times \omega^{\beta})^{-} (\mathbf{P}^{-1}, \mathbf{Q}^{-1})$
		=	$(\rho^{\alpha})^{-}(\mathbf{P}^{-1})\vee(\omega^{\beta})^{-}(\mathbf{Q}^{-1})$
	$(\beta \beta) = (\langle \mathbf{p}, \mathbf{Q} \rangle)^{-1}$	=	$(\rho^{\alpha})^{-}(P) \lor (\omega^{\beta})^{-}(Q)$
`	$(\rho^{\alpha} \times \omega^{\beta})^{-}((\mathbf{P}, \mathbf{Q})^{-1})$	=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{P}, \mathbf{Q})$
v)	$(\rho^{\alpha} \times \omega^{\beta})^{+}((P,Q) \lor (R,S))$	=	$(\rho^{\alpha} \times \omega^{\beta})^{+} (\mathbb{P} \vee \mathbb{R}, \mathbb{Q} \vee \mathbb{S})$
		=	$(\rho^{\alpha})^{+}(\mathbb{P}\vee\mathbb{R})\wedge(\omega^{\beta})^{+}(\mathbb{Q}\vee\mathbb{S})$
		\geq	$(\rho^{\alpha})^{+}(P)\wedge(\rho^{\alpha})^{+}(R)\wedge(\omega^{\beta})^{+}(Q)\wedge(\omega^{\beta})^{+}(S)$
		=	$((\rho^{\alpha})^{+}(\mathbf{P})\wedge(\omega^{\beta})^{+}(\mathbf{Q}))\wedge((\rho^{\alpha})^{+}(\mathbf{R})\wedge(\omega^{\beta})^{+}(\mathbf{S}))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{P}, \mathbf{Q}) \wedge (\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{R}, \mathbf{S})$
	$(\rho^{\alpha} \times \omega^{\beta})^{+}((\mathbf{P},\mathbf{Q}) \lor (\mathbf{R},\mathbf{S}))$	\geq	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{P}, \mathbf{Q}) \wedge (\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{R}, \mathbf{S})$
vi)	$(\rho^{\alpha} \times \omega^{\beta})^{-}((P,Q) \lor (R,S))$	=	$(\rho^{\alpha} \times \omega^{\beta})^{-} (\mathbb{P} \vee \mathbb{R}, \mathbb{Q} \vee \mathbb{S})$
		=	$(\rho^{\alpha})^{-}(P \lor R) \lor (\omega^{\beta})^{-}(Q \lor S)$
		\leq	$(\rho^{\alpha})^{-}(P) \lor (\rho^{\alpha})^{-}(R) \lor (\omega^{\beta})^{-}(Q) \lor (\omega^{\beta})^{-}(S)$
		=	$((\rho^{\alpha})^{-}(P)\vee(\omega^{\beta})^{-}(Q))\vee((\rho^{\alpha})^{-}(R)\vee(\omega^{\beta})^{-}(S))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(P,Q) \vee (\rho^{\alpha} \times \omega^{\beta})^{-}(R,S)$
	$(\rho^{\alpha} \times \omega^{\beta})^{-}((P,Q) \lor (R,S))$	\leq	$(\rho^{\alpha} \times \omega^{\beta})^{-}(P,Q) \vee (\rho^{\alpha} \times \omega^{\beta})^{-}(R,S)$
vii)	$(\rho^{\alpha} \times \omega^{\beta})^{+}((P,Q) \land (R,S))$	=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(P \land R, Q \land S)$
		=	$(\rho^{\alpha})^{+}(P \wedge R) \wedge (\omega^{\beta})^{+}(Q \wedge S)$
		\geq	$(\rho^{\alpha})^{\scriptscriptstyle +}(P)\wedge(\rho^{\alpha})^{\scriptscriptstyle +}(R)\wedge(\omega^{\beta})^{\scriptscriptstyle +}(Q)\wedge(\omega^{\beta})^{\scriptscriptstyle +}(S)$
		=	$((\rho^{\alpha})^{+}(P)\wedge(\omega^{\beta})^{+}(Q))\wedge((\rho^{\alpha})^{+}(R)\wedge(\omega^{\beta})^{+}(S))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{P}, \mathbf{Q}) \wedge (\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{R}, \mathbf{S})$
	$(\rho^{\alpha} \times \omega^{\beta})^{+}((P,Q) \land (R,S))$	\geq	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{P}, \mathbf{Q}) \land (\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{R}, \mathbf{S})$
viii)	$(\rho^{\alpha} \times \omega^{\beta})^{-}((P,Q) \land (R,S))$	=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(P \land R, Q \land S)$
		=	$(\rho^{\alpha})^{-}(P \land R) \lor \omega^{\beta})^{-}(Q \land S)$
		\leq	$(\rho^{\alpha})^{-}(P) \lor (\rho^{\alpha})^{-}(R)) \lor ((\omega^{\beta})^{-}(Q) \lor (\omega^{\beta})^{-}(S))$
		=	$((\rho^{\alpha})^{-}(P) \lor (\omega^{\beta})^{-}(Q)) \lor ((\rho^{\alpha})^{-}(R) \lor (\omega^{\beta})^{-}(S))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(P,Q) \vee (\rho^{\alpha} \times \omega^{\beta})^{-}(R,S)$
	$(\rho^{\alpha} \times \omega^{\beta})^{-}((P,Q) \land (R,S))$	\leq	$(\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{P}, \mathbf{Q}) \vee (\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{R}, \mathbf{S})$
Hence, a	product $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar	L-fuzzy su	ib ℓ -HX group on $\vartheta_1 \times \vartheta_2$.
	-	-	

Theorem 3.3

Let $\alpha \times \beta$ be a bipolar L-fuzzy sub ℓ -group on $G_1 \times G_2$ then the bipolar L-fuzzy set $\Omega^{\alpha \times \beta}$ is a bipolar L-fuzzy sub ℓ -HX group on $\vartheta_1 \times \vartheta_2$.

Theorem 3.4

If $\rho^{\alpha}, \omega^{\beta}, \Omega^{\mu \times \alpha}$ are bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_1, \vartheta_2, \vartheta_1 \times \vartheta_2$ induced by Bipolar L-fuzzy sub ℓ -groups α,β and $\alpha\times\beta$ of G_1, G_2 and $G_1\times G_2$ respectively. Then $\Omega^{\alpha\times\beta} = \rho^{\alpha}\times\omega^{\beta}$. **Proof:** Let $\rho^{\alpha} = ((\rho^{\alpha})^+, (\rho^{\alpha})^-)$ and $\omega^{\beta} = ((\omega^{\beta})^+, (\omega^{\beta})^-)$ be bipolar L-fuzzy sub ℓ -HX groups of ϑ_1 and ϑ_2 . Then $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar L-fuzzy sub ℓ -HX group of ℓ -HX group $\vartheta_1 \times \vartheta_2$ and $\eta^{\alpha \times \beta}$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$ induced by $\mu \times \alpha$ of $G_1 \times G_2$. Now

i)	$(\Omega^{\alpha imes \beta})^{\scriptscriptstyle +}(M,N)$	=	$\vee \{ (\alpha \times \beta)^+(m,n)/m \in M \subseteq G_1, n \in N \subseteq G_2 \}$
		=	$\forall \{ (\alpha^{\scriptscriptstyle +}(m) \land (\alpha)^{\scriptscriptstyle +}(n)) / m \in M \underline{\subseteq} G_1, n \in N \underline{\subseteq} G_2 \}$
		=	$(\vee \{\alpha^{+}(m)/m \in M \subseteq G_1\}) \land (\vee \{\alpha)^{+}(n)/n \in N \subseteq G_2\})$
		=	$(\rho^{\alpha})^{+}(M)\wedge(\omega^{\beta})^{+}(N)$
		=	$(\rho^{lpha} \times \omega^{eta})^+$ (M,N)
	$(\Omega^{lpha imeseta})^+$ (M,N)	=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{M}, \mathbf{N})$
ii)	$(\Omega^{\alpha \times \beta})^{-}(M,N)$	=	$\land \{ (\alpha \times \beta)^{-}(m,n)/m \in M \subseteq G_1, n \in N \subseteq G_2 \}$
		=	$\land \{(\mu^{-}(m) \lor (\alpha)^{-}(n))/m \in M \subseteq G_1, n \in N \subseteq G_2\}$
		=	$(\land \{\mu^{-}(m)/m \in M \subseteq G_1\}) \lor (\land \{\alpha)^{-}(n)/n \in N \subseteq G_2\})$
		=	$(\rho^{\alpha})^{-}(M) \lor (\omega^{\beta})^{-}(N)$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(M,N)$
	$(\Omega^{\alpha imes \beta})^{-}(M,N)$	=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{M}, \mathbf{N})$
Hence, $\Omega^{\alpha \times \beta} = \rho^{\alpha} \times \omega^{\beta}$.			

Example 3.5 The above result illustrated clearly in this example.

Let $(G_{1,3},5) = (\{1,3,5,7\}, ..., 5\}$ be a l-group where G_1 is the non-negative integer relatively prime to 8 and $(G_{2,12,\leq})=(\{1,5,7,11\}, ..., \leq)$ be a ℓ -group where G_2 is the non-negative integer relatively prime to 12.Then:

 $G_1 \times G_2 = \{(1,1), (1,5), (1,7), (1,11), (3,1), (3,5), (3,7), (3,11), (5,1), (5,5), (5,7), (5,11), (7,1), (7,5), (7,7), (7,11)\}.$ For all $m \in G$, we define the bipolar L-fuzzy subsets μ and α is on G_1 and G_2 respectively as,

$\alpha^{+}(m) = (0.5, \text{ for } m = 1 \ \alpha^{-}(m) = (m)$	$(-0.4, \text{ for } m=1 \ \beta^+(m)=$	(0.8, for m=1 $\beta^{-}(m)$	\neq -0.7, for m=1		
0.4, for m=3 ,	–0.3, for m=3 ,	0.7, for m=5,	-0.6, for m=5		
(0.3, for m=5)	-0.2,for m=50.	6, for m=7	-0.5, for m=7		
0.3, for m=7	-0.2, for m=70.	6, for m=11	-0.5, for m=11		
Clearly, α and Bare bipolar L-fuzzy sub ℓ -group of G ₁ and G ₂ .					

Clearly, $\dot{\alpha}$ and β are bipolar L-

$(\alpha \times \beta)^{+}(m,n) = $	0.5, for (m,n) =(1,1),(1,5),(1,7),(1,11)
	0.4, for (m,n) = (3,1),(3,5),(3,7),(3,11)
\langle	0.3, for (m,n)=(5,1),(5,5),(5,7),(5,11)
	0.3, for (m,n)=(7,1),(7,5),(7,7),(7,11)
and	

and

$(\alpha \times \beta)^{-}(m,n) = \int$	-0.4, for (m,n) = (1,1),(1,5),(1,7),(1,11)
J	-0.3, for (m,n) = (3,1),(3,5),(3,7),(3,11)
1	-0.2, for (m,n) = (5,1),(5,5),(5,7),(5,11)
	-0.2, for (m,n) = (7,1),(7,5),(7,7),(7,11)

Clearly, $\alpha \times \beta$ is a bipolar L-fuzzy sub ℓ -group of $G_1 \times G_2$.

Case(i): if |M|=1, for all $M \in \vartheta$

Let $\vartheta_1 = \{P, O, R, S\}$, Where $P=\{1\}, Q=\{3\}, R=\{5\}, S=\{7\} and \vartheta_2=\{I, J, K, Z\}, Where$ I={1},J={5},K={7},Z={11} are ℓ -HX groups for all M $\in 9$ with |M|=1, Define the bipolar L-fuzzy subsets ρ^{α} and ω^{β} on ϑ as,

$$(\rho^{\alpha})^{+}(M) = \begin{cases} 0.5, \text{ for } M = P & (\rho^{\alpha})^{-}(M) = \\ 0.4, \text{ for } M = Q & , \\ 0.3, \text{ for } M = R & 0.3, \text{ for } M = S \\ 0.3, \text{ for } M = S & 0.4, \text{ for } M = Q & -0.4, \text{ for } M = Q & -0.3, \text{ for } M = Q & -0.2, \text{ for } M = R & -0.2, \text{ for } M = S \\ (\omega^{\beta})^{+}(M) = \begin{cases} 0.8, \text{ for } M = I & (\omega^{\beta})^{-}(M) = & -0.5, \text{ for } M = I & -0.5, \text{ for } M = I & -0.5, \text{ for } M = Z & -0.5, \text{ for } M = Z \end{cases}$$

Clearly, ρ^{α} and ω^{β} are bipolar L-fuzzy sub ℓ -HX group of ϑ_1 and ϑ_2 . $(\rho^{\alpha} \times \omega^{\beta})^+(M,N) = (0.5, \text{ for } (M,N) = (P,I), (P,J), (P,K), (P,Z)$

0.5, for
$$(M,N)=(P,I),(P,J),(P,K),(P,Z)$$

0.4, for $(M,N)=(Q,I),(Q,J),(Q,K),(Q,Z)$
0.3,for $(M,N)=(R,I),(R,J),(R,K),(R,Z)$
0.3,for $(M,N)=(S,I),(S,J),(S,K),(S,Z)$

and

 $(\rho^{\alpha} \times \omega^{\beta})^{-}(M,N) = \begin{cases} -0.4, \text{ for } (M,N) = (P,I), (P,J), (P,K), (P,Z) \\ -0.3, \text{ for } (M,N) = (Q,I), (Q,J), (Q,K), (Q,Z) \\ -0.2, \text{ for } (M,N) = (R,I), (R,J), (R,K), (R,Z) \\ 0.2, \text{ for } (M,N) = (S,I), (S,J), (S,K), (S,Z) \end{cases}$

Clearly, $\rho^{\alpha \times \omega^{\beta}}$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$. Let $\Omega^{\alpha \times \beta} = ((\Omega^{\alpha \times \beta})^+, (\Omega^{\alpha \times \beta})^-)$ be a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$ induced by a bipolar L-fuzzy set $\alpha \times \beta$ of $G_1 \times G_2$, where

$$\begin{array}{l} (\Omega^{\alpha \times \beta})^{+}(M,N) = \forall \{(\alpha \times \beta)^{+}(m,n)/m \in M \underline{\subset} G, n \in N \underline{\subseteq} G\} \\ (\Omega^{\alpha \times \beta})^{-}(M,N) = \wedge \{(\alpha \times \beta)^{-}(m,n)/m \in M \underline{\subseteq} G, n \in N \underline{\subseteq} G\} \end{array}$$

So,

$$(\Omega^{\alpha \times \beta})^{+}(M,N) = \begin{cases} 0.5, \text{ for } (M,N) = (P,I), (P,J), (P,K), (P,Z) \\ 0.4, \text{ for } (M,N) = (Q,I), (Q,J), (Q,K), (Q,Z) \\ 0.3, \text{ for } (M,N) = (R,I), (R,J), (R,K), (R,Z) \\ 0.3, \text{ for } (M,N) = (S,I), (S,J), (S,K), (S,Z) \end{cases}$$

$$(\Omega^{\alpha \times \beta})^{-}(M,N) = \begin{cases} -0.4, \text{ for } (M,N) = (P,I), (P,J), (P,K), (P,Z) \\ -0.3, \text{ for } (M,N) = (Q,I), (Q,J), (Q,K), (Q,Z) \\ -0.2, \text{ for } (M,N) = (R,I), (R,J), (R,K), (R,Z) \\ -0.2, \text{ for } (M,N) = (S,I), (S,J), (S,K), (S,Z) \end{cases}$$

Clearly, $\Omega^{\alpha \times \beta} = \rho^{\alpha} \times \omega^{\beta}$

Case (ii): if $|M| \ge 2$, for all $M \in \vartheta$

Let $\vartheta_1 = \{P,Q\}$, where $P = \{1,3\}, Q = \{5,7\}$ and $\vartheta_2 = \{I,J\}$, where $I = \{1,5\}, J = \{7,11\}$ are ℓ -HX groups, for all $M \in \vartheta$ with $|M| \ge 2$, Define the bipolar L-fuzzy subsets $\rho^{\alpha}, \omega^{\beta}$ on ϑ as,

To all Me S with $|M| \ge 2$, bettie the bipolar L-fuzzy subsets p , ω^{α} of S as $(\rho^{\alpha})^{+}(M) = \begin{cases} 0.4, \text{ for } M = P, & (\rho^{\alpha})^{-}(M) = \\ 0.3, \text{ for } M = Q \end{cases}$ $(\omega^{\beta})^{+}(M) = \begin{cases} -0.3, \text{ for } M = P \\ -0.2, \text{ for } M = Q \end{cases}$ $(\omega^{\beta})^{+}(M) = \begin{cases} 0.7, \text{ for } M = I, & (\omega^{\beta})^{-}(M) = \\ 0.6, \text{ for } M = J \end{cases}$ $(\omega^{\beta})^{-}(M) = \begin{cases} -0.6, \text{ for } M = I \\ -0.5, \text{ for } M = J \end{cases}$ $(\rho^{\alpha} \times \omega^{\beta})^{+}(M,N) = \begin{cases} 0.4, \text{ for } (M,N) = (P,I), (P,J) \\ 0.3, \text{ for } (M,N) = (Q,I), (Q,J) \end{cases}$ $(\rho^{\alpha} \times \omega^{\beta})^{-}(M,N) = \begin{cases} -0.3, \text{ for } (M,N) = (P,I), (P,J) \\ -0.2, \text{ for } (M,N) = (Q,I), (Q,J) \end{cases}$ $(\Omega^{\alpha \times \beta})^{+}(M,N) = \begin{cases} 0.4, \text{ for } (M,N) = (P,I), (P,J) \\ 0.3, \text{ for } (M,N) = (Q,I), (Q,J) \end{cases}$ $(\Omega^{\alpha \times \beta})^{+}(M,N) = \begin{cases} 0.4, \text{ for } (M,N) = (P,I), (P,J) \\ 0.3, \text{ for } (M,N) = (Q,I), (Q,J) \end{cases}$ $(\Omega^{\alpha \times \beta})^{-}(M,N) = \begin{cases} -0.3 \text{ for } (M,N) = (P,I), (P,J) \\ -0.2 \text{ for } (M,N) = (Q,I), (Q,J) \end{cases}$ Clearly, $\Omega^{\alpha \times \beta} = \rho^{\alpha} \times \omega^{\beta}$.

Hence, by cases (i) and (ii), $\Omega^{\alpha \times \beta} = \rho^{\alpha} \times \omega^{\beta}$ is proved.

Theorem 3.6

Let $\alpha = (\alpha^+, \alpha^-)$ and $\beta = (\beta^+, \beta^-)$ are bipolar L-fuzzy subsets of the sub ℓ -groups of G_1 and G_2 respectively. Let $\rho^{\alpha} = ((\rho^{\alpha})^+, (\rho^{\alpha})^-)$ and $\omega^{\beta} = ((\omega^{\beta})^+, (\omega^{\beta})^-)$ be bipolar L-fuzzy sub ℓ -HX groups of the ℓ -HX groups ϑ_1 and 9_2 respectively. Suppose that E_1 and E_2 are the identity elements of 9_1 and 9_2 respectively. If a product $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_1 \times \vartheta_2$ then at least one of the following two statements must hold.

i) $(\omega^{\beta})^{+}(E_{2}) \geq (\rho^{\alpha})^{+}(M), (\omega^{\beta})^{-}(E_{2}) \leq (\rho^{\alpha})^{-}(M) \forall M \in \mathfrak{S}_{1}$

ii) $(\rho^{\alpha})^{+}(E_1) \geq (\omega^{\beta})^{+}(N), (\rho^{\alpha})^{-}(E_1) \leq (\omega^{\beta})^{-}(N) \forall N \in \mathfrak{P}_2.$

Proof: Let $\rho^{\alpha} \times \omega^{\beta} = ((\rho^{\alpha} \times \omega^{\beta})^{+}, (\rho^{\alpha} \times \omega^{\beta})^{-})$ be a bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_{1} \times \vartheta_{2}$. By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find M in ϑ_1 and N in ϑ_2 such that $(\rho^{\alpha})^+(M) > (\omega^{\beta})^+(E_2)$, $(\rho^{\alpha})^-(M) < (\omega^{\beta})^-(E_2)$ and $(\omega^{\beta})^+(N) > (\rho^{\alpha})^+(E_1)$, $(\omega^{\beta})^-(N) < (\rho^{\alpha})^-(E_1)$. We have:

i)

 $(\rho^{\alpha} \times \omega^{\beta})^{+}(M,N) = (\rho^{\alpha})^{+}(M) \wedge (\omega^{\beta})^{+}(N)$ $>(\omega^{\beta})^{+}(E_2)\wedge(\rho^{\alpha})^{+}(E_1)$ $= (\rho^{\alpha})^{+}(E_1) \wedge (\omega^{\beta})^{+}(E_2)$ $>(\rho^{\alpha}\times\omega^{\beta})^{+}(E_1,E_2)$ and $(\rho^{\alpha} \times \omega^{\beta})^{-}(M,N) = (\rho^{\alpha})^{-}(M) \vee (\omega^{\beta})^{-}(N)$ ii) $<(\omega^{\beta})^{-}(E_2)\vee(\rho^{\alpha})^{-}(E_1)$ $= (\rho^{\alpha})^{-}(E_1) \vee (\omega^{\beta})^{-}(E_2)$ $< (\rho^{\alpha} \times \omega^{\beta})^{-}(E_1, E_2)$ Thus the product $\rho^{\alpha} \times \omega^{\beta}$ is not a bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_1 \times \vartheta_2$.

Hence, either $(\omega^{\beta})^+(E_2) \ge (\rho^{\alpha})^+(M)$, $(\omega^{\beta})^-(E_2) \le (\rho^{\alpha})^-(M)$ for all $M \in \vartheta_1$

(or)

 $(\rho^{\alpha})^{+}(E_1) \geq (\omega^{\beta})^{+}(N), (\rho^{\alpha})^{-}(E_1) \leq (\omega^{\beta})^{-}(N)$ for all $N \in \mathfrak{P}_2$.

Theorem 3.7

Let ρ^{α} and ω^{β} be bipolar L-fuzzy subsets of the sub ℓ -HX groups of ϑ_1 and ϑ_2 respectively. Such that $(\rho^{\alpha})^+(M) \leq (\omega^{\beta})^+(E_2)$, $(\rho^{\alpha})^-(M) \geq (\omega^{\beta})^-(E_2)$ for all $M \in \mathfrak{P}_{1,E_2}$ be the identity element of \mathfrak{P}_2 . If a product $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_1 \times \vartheta_2$ then ρ^{α} is a bipolar L-fuzzy sub ℓ -HX groups of ϑ_1 .

Proof: Let $\rho^{\alpha} \times \omega^{\beta} = ((\rho^{\alpha} \times \omega^{\beta})^{+}, (\rho^{\alpha} \times \omega^{\beta})^{-})$ be a bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_1 \times \vartheta_2$ and $M, N \in \vartheta$. Then $(M, E_2), (N, E_2) \in \mathfrak{S}_1 \times \mathfrak{S}_2$. Given:

i) $(\rho^{\alpha})^+(M) \leq (\omega^{\beta})^+(E_2)$, ii) $(\rho^{\alpha})^-(M) \geq (\omega^{\beta})^-(E_2)$ for all $M \in \mathfrak{S}_1$ We have:

i)	$(\rho^{\alpha})^{+}(MN)$	=	$(\rho^{\alpha})^{+}(MN) \wedge (\omega^{\beta})^{+}(E_{2}E_{2})by$ (i)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((M, E_2), (N, E_2))$
		\geq	$(\rho^{\alpha} \times \omega^{\beta})^{+}(M, E_{2}) \land (\rho^{\alpha} \times \omega^{\beta})^{+}(N, E_{2})$
		=	$((\rho^{\alpha})^{+}(M)\wedge(\omega^{\beta})^{+}(E_{2}))\wedge((\rho^{\alpha})^{+}(N)\wedge(\omega^{\beta})^{+}(E_{2}))$
		=	$(\rho^{\alpha})^{+}(M) \wedge (\rho^{\alpha})^{+}(N)$
	$(\rho^{\alpha})^{+}(MN)$	\geq	$(\rho^{\alpha})^{+}(M) \wedge (\rho^{\alpha})^{+}(N)$
ii)	$(\rho^{\alpha})^{-}(MN)$	=	$(\rho^{\alpha})^{-}(MN) \lor (\omega^{\beta})^{-}(E_{2}E_{2}) by (ii)$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((M, E_2), (N, E_2))$
		\leq	$(\rho^{\alpha} \times \omega^{\beta})^{-}(M, E_2) \vee (\rho^{\alpha} \times \omega^{\beta})^{-}(N, E_2)$
		=	$((\rho^{\alpha})^{-}(M) \lor (\omega^{\beta})^{-}(E_{2})) \lor ((\rho^{\alpha})^{-}(N) \lor (\omega^{\beta})^{-}(E_{2}))$
		=	$(\rho^{\alpha})^{-}(M) \vee (\rho^{\alpha})^{-}(N)$

	$(\rho^{\alpha})^{-}(MN)$	\leq	$(\rho^{\alpha})^{-}(M)\vee(\rho^{\alpha})^{-}(N)$
iii)	$(\rho^{\alpha})^{+}(M^{-1})$	=	$(\rho^{\alpha})^{+}(\mathbf{M}^{-1})\wedge(\omega^{\beta})^{+}(\mathbf{E}_{2}^{-1})by$ (i)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+} (M^{-1}, E_2^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+} ((M, E_2)^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(M, E_2)$
		=	$(\rho^{\alpha})^{+}(\mathbf{M})\wedge(\omega^{\beta})^{+}(\mathbf{E}_{2})$
	$(\rho^{\alpha})^{+}(M^{-1})$	=	$(\rho^{\alpha})^{+}(\mathbf{M})$
iv)	$(\rho^{\alpha})^{-}(M^{-1})$	=	$(\rho^{\alpha})^{-}(M^{-1}) \lor (\omega^{\beta})^{-}(E_2^{-1}) \dots by$ (ii)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-} (M^{-1}, E_2^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((M, E_2)^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(M, E_2)$
		=	$(\rho^{\alpha})^{-}(M) \lor (\omega^{\beta})^{-}(E_2)$
	$(\rho^{\alpha})^{-}(M^{-1})$	=	$(\rho^{\alpha})^{-}(\mathbf{M})$
v)	$(\rho^{\alpha})^{+}(M \lor N)$	=	$(\rho^{\alpha})^{+}(M \vee N) \wedge (\omega^{\beta})^{+}(E_{2} \vee E_{2}) \dots by$ (i)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((M \lor N), (E_2 \lor E_2))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((\mathbf{M}, \mathbf{E}_{2}) \vee (\mathbf{N}, \mathbf{E}_{2}))$
		2	$((\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{M}, \mathbf{E}_{2})) \wedge ((\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{N}, \mathbf{E}_{2}))$
		=	$((\rho^{\alpha})^{+}(\mathbf{M})\wedge(\omega^{\beta})^{+}(\mathbf{E}_{2}))\wedge((\rho^{\alpha})^{+}(\mathbf{N})\wedge(\omega^{\beta})^{+}(\mathbf{E}_{2}))$
		=	$(\rho^{\alpha})^{+}(\mathbf{M})\wedge(\rho^{\alpha})^{+}(\mathbf{N})$
$(\rho^{\alpha})^{+}(N)$		$(\rho^{\alpha})^{+}(N)$	$(\Lambda) \wedge (\rho^{\alpha})^{+}(N)$
vi)	$(\rho^{\alpha})^{-}(M \lor N)$	=	$(\rho^{\alpha})^{-}(M \vee N) \vee (\omega^{\beta})^{-}(E_2 \vee E_2) \dots by$ (ii)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((M \vee N), (E_2 \vee E_2))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((\mathbf{M}, \mathbf{E}_{2}) \vee (\mathbf{N}, \mathbf{E}_{2}))$
		\leq	$((\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{M}, \mathbf{E}_{2})) \vee ((\rho^{\alpha} \times \omega^{\beta})^{-}(\mathbf{N}, \mathbf{E}_{2}))$
		=	$((\rho^{\alpha})^{-}(M) \lor (\omega^{\beta})^{-}(E_{2})) \lor ((\rho^{\alpha})^{-}(N) \lor (\omega^{\beta})^{-}(E_{2}))$
		=	$(\rho^{\alpha})^{-}(\mathbf{M}) \vee (\rho^{\alpha})^{-}(\mathbf{N})$
$(\rho^{\alpha})^{-}(M)$,		$A) \lor (\rho^{\alpha})^{-}(N)$
vii)	$(\rho^{\alpha})^{+}(M \wedge N)$	=	$(\rho^{\alpha})^{+}(M \wedge N) \wedge (\omega^{\beta})^{+}(E_{2} \wedge E_{2}) \dots by (i)$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((M \wedge N), (E_2 \wedge E_2))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((\mathbf{M}, \mathbf{E}_{2}) \wedge (\mathbf{N}, \mathbf{E}_{2}))$
		\geq	$((\rho^{\alpha} \times \omega^{\beta})^{+} (\mathbf{M}, \mathbf{E}_{2})) \wedge ((\rho^{\alpha} \times \omega^{\beta})^{+} (\mathbf{N}, \mathbf{E}_{2}))$
		=	$((\rho^{\alpha})^{+}(\mathbf{M})\wedge(\omega^{\beta})^{+}(\mathbf{E}_{2}))\wedge((\rho^{\alpha})^{+}(\mathbf{N})\wedge(\omega^{\beta})^{+}(\mathbf{E}_{2}))$
	$(-\Omega)^{+}(\mathbf{N} \wedge \mathbf{N})$	=	$(\rho^{\alpha})^{+}(\mathbf{M}) \wedge (\rho^{\alpha})^{+}(\mathbf{N})$
	$(\rho^{\alpha})^{+}(M \wedge N)$	≥ =	$(\rho^{\alpha})^{+}(\mathbf{M})\wedge(\rho^{\alpha})^{+}(\mathbf{N})$
viii)	$(\rho^{\alpha})^{-}(M \wedge N)$		$(\rho^{\alpha})^{-}(\mathbf{M}\wedge\mathbf{N})\wedge(\omega^{\beta})^{-}(\mathbf{E}_{2}\wedge\mathbf{E}_{2})$ by (ii)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((M \wedge N), (E_{2} \wedge E_{2}))$ $(\rho^{\alpha} \times \omega^{\beta})^{-}((M, E_{2}) \wedge (N, E_{2}))$
		=	$((\rho^{\alpha} \times \omega^{\beta})^{-}((M, E_{2})) \vee ((\rho^{\alpha} \times \omega^{\beta})^{-}(N, E_{2}))$
		≤ =	$((\rho^{-\times}\omega^{-})(\mathbf{M},\mathbf{E}_{2}))\vee((\rho^{-\times}\omega^{-})(\mathbf{N},\mathbf{E}_{2}))$ $((\rho^{\alpha})^{-}(\mathbf{M})\vee(\omega^{\beta})^{-}(\mathbf{E}_{2}))\vee((\rho^{\alpha})^{-}(\mathbf{N})\vee(\omega^{\beta})^{-}(\mathbf{E}_{2}))$
			$((\rho^{\alpha})^{-}(\mathbf{M})^{\vee}(\omega^{\rho})^{-}(\mathbf{E}_{2}))^{\vee}((\rho^{\alpha})^{-}(\mathbf{M})^{\vee}(\omega^{\rho})^{-}(\mathbf{E}_{2}))$ $(\rho^{\alpha})^{-}(\mathbf{M})^{\vee}(\rho^{\alpha})^{-}(\mathbf{N})$
	$(\rho^{\alpha})^{-}(M \wedge N)$	= <	
Hence	(p^{α}) (MAN)	_	

Hence, ρ^{α} is a bipolar L-fuzzy sub ℓ -HX group of ϑ_1 .

Theorem 3.8

Let ρ^{α} and ω^{β} be bipolar L- fuzzy subsets of the sub ℓ -HX groups of ϑ_1 and ϑ_2 respectively. Such that $(\omega^{\beta})^+(M) \leq (\rho^{\alpha})^+(E_1)$, $(\omega^{\beta})^-(M) \geq (\rho^{\alpha})^-(E_1)$ for all $M \in \vartheta_{2,E_1}$ be the identity element of ϑ_1 . If a product $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_1 \times \vartheta_2$ then ω^{β} is a bipolar L-fuzzy sub ℓ -HX group of ϑ_2 .

Proof: Let $\rho^{\alpha} \times \omega^{\beta} = ((\rho^{\alpha} \times \omega^{\beta})^{+}, (\rho^{\alpha} \times \omega^{\beta})^{-})$ be a bipolar L-fuzzy sub ℓ -HX groups of $\vartheta_{1} \times \vartheta_{2}$ and $M, N \in \vartheta_{2}$, then $(E_{1}, M), (E_{1}, N) \in \vartheta_{1} \times \vartheta_{2}$. Let i) $(\omega^{\beta})^{+}(M) \leq (\rho^{\alpha})^{+}(E_{1}), \quad \text{ii})(\omega^{\beta})^{-}(M) \geq (\rho^{\alpha})^{-}(E_{1})$ for all $M \in \vartheta_{2}$. We have:

	_		
i)	$(\omega^{\beta})^{+}(MN)$	=	$(\rho^{\alpha})^{+}(E_{1}E_{1})\wedge(\omega^{\beta})^{+}(MN)$ by (i)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((E_{1}E_{1}),(MN))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((E_1, M), (E_1, N))$
		\geq	$(\rho^{\alpha} \times \omega^{\beta})^{+}(E_{1}, M) \wedge (\rho^{\alpha} \times \omega^{\beta})^{+}(E_{1}, N)$
		=	$((\rho^{\alpha})^{+}(E_{1})\wedge(\omega^{\beta})^{+}(M))\wedge((\rho^{\alpha})^{+}(E_{1})\wedge(\omega^{\beta})^{+}(N))$
		=	$(\omega^{\beta})^{+}(M) \wedge (\omega^{\beta})^{+}(N)$
	$(\omega^{\beta})^{+}(MN)$	\geq	$(\omega^{\beta})^{+}(M) \wedge (\omega^{\beta})^{+}(N)$
ii)	$(\omega^{\beta})^{-}(MN)$	=	$(\rho^{\alpha})^{-}(E_1E_1) \lor (\omega^{\beta})^{-}(MN)$ by (ii)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((E_1, M), (E_1, N))$
		\leq	$(\rho^{\alpha} \times \omega^{\beta})^{-}(E_{1},M) \vee (\rho^{\alpha} \times \omega^{\beta})^{-}(E_{1},N)$
		=	$((\rho^{\alpha})^{-}(E_1)\vee(\omega^{\beta})^{-}(M))\vee((\rho^{\alpha})^{-}(E_1)\vee(\omega^{\beta})^{-}(N))$
		=	$(\omega^{\beta})^{-}(M) \lor (\omega^{\beta})^{-}(N)$
	$(\omega^{\beta})^{-}(MN)$	\leq	$(\omega^{\beta})^{-}(M)\vee(\omega^{\beta})^{-}(N)$
iii)	$(\omega^{\beta})^+(M^{-1})$	=	$(\rho^{\alpha})^{+}(E_{1}^{-1})\wedge(\omega^{\beta})^{+}(M^{-1})\dots$ by (i)
)		=	$(\rho^{\alpha} \times \omega^{\beta})^{+} (E_{1}^{-1}, M^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((E_1, M)^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}(E_{1}, M)$
		=	$(\rho^{\alpha})^{+}(E_{1})\wedge(\omega^{\beta})^{+}(\mathbf{M})$
	$(\omega^{\beta})^{+}(M^{-1})$	=	$(\omega^{\beta})^{+}(\mathbf{M})$
iv)	$(\omega^{\beta})^{-}(\mathbf{M}^{-1})$	=	$((\rho^{\alpha})^{-}(E_{1}^{-1})\vee(\omega^{\beta})^{-}(M^{-1})\dots$ by (ii)
1.,	(ω) (ω)	=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(E_{1}^{-1}, M^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((E_{1}, M)^{-1})$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}(E_{1},M)$
		=	$(\rho^{\alpha})^{-}(E_1)\vee(\omega^{\beta})^{-}(\mathbf{M})$
	$(\omega^{\beta})^{-}(M^{-1})$	=	$(\omega^{\beta})^{-}(\mathbf{M})$
v)	$(\omega^{\beta})^{+}(M \vee N)$	=	$(\rho^{\alpha})^{+}(E_{1}\vee E_{1})\wedge(\omega^{\beta})^{+}(M\vee N)$ by (i)
V)	(0,) $(101, 10)$	=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((E_1 \vee E_1), (M \vee N))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((E_{1}, M) \land (E_{1}, N))$
		_ 	$((\rho^{\alpha} \times \omega^{\beta})^{+}(E_{1}, \mathbf{M})) \wedge ((\rho^{\alpha} \times \omega^{\beta})^{+}(E_{1}, \mathbf{N}))$
		<u> </u>	$((\rho^{\alpha})^{+}(E_{1})\wedge(\omega^{\beta})^{+}(M))\wedge((\rho^{\alpha})^{+}(E_{1})\wedge(\omega^{\beta})^{+}(N))$
		=	$(\omega^{\beta})^{+}(\mathbf{M})\wedge(\omega^{\beta})^{+}(\mathbf{N})$
	(ω ^β)⁺(M∨N)		$(\omega^{\beta})^{+}(\mathbf{M})\wedge(\omega^{\beta})^{+}(\mathbf{N})$
:)		2	
vi)	$(\omega^{\beta})^{-}(M \lor N)$	_	$(\rho^{\alpha})^{-}(E_1 \lor E_1) \lor (\omega^{\beta})^{-}(M \lor N) \dots by (ii)$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((\varepsilon_{1} \vee \varepsilon_{1}), (M \vee N))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((E_{1}, M) \vee (E_{1}, N))$
		\leq	$((\rho^{\alpha} \times \omega^{\beta})^{-}(E_{1}, M)) \lor ((\rho^{\alpha} \times \omega^{\beta})^{-}(E_{1}, N))$
		=	$((\rho^{\alpha})^{-}(E_{1})\vee(\omega^{\beta})^{-}(M))\vee((\rho^{\alpha})^{-}(E_{1})\vee(\omega^{\beta})^{-}(N))$
		=	$(\omega^{\beta})^{-}(M)\vee(\omega^{\beta})^{-}(N)$
	$(\omega^{\beta})^{-}(M \vee N)$	\leq	$(\omega^{\beta})^{-}(M)\vee(\omega^{\beta})^{-}(N)$
vii)	$(\omega^{\beta})^{+}(M \wedge N)$	=	$(\rho^{\alpha})^{+}(E_{1} \wedge E_{1}) \wedge (\omega^{\beta})^{+}(M \wedge N) \dots by (i)$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((E_{1} \wedge E_{1}), (M \wedge N))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{+}((E_1, M) \land (E_1, N))$
		\geq	$((\rho^{\alpha} \times \omega^{\beta})^{+}(E_{1}, M)) \wedge ((\rho^{\alpha} \times \omega^{\beta})^{+}(E_{1}, N))$
		=	$((\rho^{\alpha})^{+}(E_{1})\wedge(\omega^{\beta})^{+}(M))\wedge((\rho^{\alpha})^{+}(E_{1})\wedge(\omega^{\beta})^{+}(N))$
	0	=	$(\omega^{\beta})^{+}(\mathbf{M})\wedge(\omega^{\beta})^{+}(\mathbf{N})$
	$(\omega^{\beta})^{+}(M \wedge N)$	\geq	$(\omega^{\beta})^{+}(\mathbf{M})\wedge(\omega^{\beta})^{+}(\mathbf{N})$
viii)	$(\omega^{\beta})^{-}(M \wedge N)$	=	$(\rho^{\alpha})^{-}(E_1 \wedge E_1) \wedge (\omega^{\beta})^{-}(M \wedge N) \dots by$ (ii)
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((E_1 \wedge E_1), (M \wedge N))$
		=	$(\rho^{\alpha} \times \omega^{\beta})^{-}((E_1, M) \land (E_1, N))$
		\leq	$((\rho^{\alpha} \times \omega^{\beta})^{-}(E_1, M)) \vee ((\rho^{\alpha} \times \omega^{\beta})^{-}(E_1, N))$
		=	$((\rho^{\alpha})^{-}(E_{1})\vee(\omega^{\beta})^{-}(M))\vee((\rho^{\alpha})^{-}(E_{1})\vee(\omega^{\beta})^{-}(N))$

 $= (\omega^{\beta})^{-}(M) \vee (\omega^{\beta})^{-}(N)$ (\omega^{\beta})^{-}(M \wedge N) \le (\omega^{\beta})^{-}(M) \neq (\omega^{\beta})^{-}(N) Hence,\omega^{\beta} is a bipolar L-fuzzy sub \le -HX group of \tega_{2}.

Corollary 3.9. Let ρ^{α} and ω^{β} be bipolar L-fuzzy subsets of the sub ℓ -HX groups ϑ_1 and ϑ_2 respectively. If $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$, then either ρ^{α} is a bipolar L-fuzzy sub ℓ -HX group of ϑ_1 or ω^{β} is a bipolar L-fuzzy sub ℓ -HX group of ϑ_2 .

4. Properties of a bipolar L-fuzzy sub ℓ -HX group of a ℓ -HX group under homomorphism and anti-homomorphism

In this section, we discuss the properties of the product of bipolar L-fuzzy sub ℓ -HX group of a ℓ -HX group under homomorphism and anti-homomorphism. E₁ and E₂ are the identity elements of the ℓ -HX groups, ϑ_1 and ϑ_2 respectively ,(ϑ_1 and ϑ_2 are not necessarily commutative), and mn we mean m*n. Over this section the finite ℓ -groups G₁,G₂,H₁and H₂ are not necessarily commutative and $\vartheta_1 \subset 2^{G1}$ - $\{\varphi\}, \vartheta_2 \subset 2^{G2} - \{\varphi\}, \vartheta_3 \subset 2^{H1} - \{\varphi\}, \vartheta_4 \subset 2^{H2} - \{\varphi\}$ are their ℓ -HX groups respectively.

Theorem 4.1 [10]

Let φ be homomorphism from $\vartheta_1 \times \vartheta_2$ onto $\vartheta_3 \times \vartheta_4$. If $(\rho^{\alpha} \times \omega^{\beta})$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$, then the image $\varphi(\rho^{\alpha} \times \omega^{\beta})$ of $(\rho^{\alpha} \times \omega^{\beta})$ under φ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_3 \times \vartheta_4$, if $\rho^{\alpha}, \omega^{\beta}$ have sup property and $\rho^{\alpha}, \omega^{\beta}$ are φ -invariant.

Theorem 4.2 [10]

Let f be homomorphism from $\vartheta_1 \times \vartheta_2$ to $\vartheta_3 \times \vartheta_4$. If $(\delta^{\eta} \times \Upsilon^{\varsigma})$ is a bipolar L-fuzzy sub ℓ - HX group of $\vartheta_3 \times \vartheta_4$ then the pre-image $\varphi^{-1}(\delta^{\eta} \times \Upsilon^{\varsigma})$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$, , if $\lambda^{\mu}, \omega^{\beta}$ have sup property and $\rho^{\alpha}, \omega^{\beta}$ are φ -invariant.

Theorem 4.3 [10]

Let φ be an anti-homomorphism from $\vartheta_1 \times \vartheta_2$ on to $\vartheta_3 \times \vartheta_4$. If $(\rho^{\alpha} \times \omega^{\beta})$ is a bipolar L-fuzzy sub ℓ -HX group $\vartheta_1 \times \vartheta_2$, then the image $\varphi(\rho^{\alpha} \times \omega^{\beta})$ of $(\rho^{\alpha} \times \omega^{\beta})$ under φ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_3 \times \vartheta_4$, if $\rho^{\alpha}, \omega^{\beta}$ have sup property and $\rho^{\alpha}, \omega^{\beta}$ are φ -invariant.

Theorem 4.4 [10]

Let φ be an anti-homomorphism from $\vartheta_1 \times \vartheta_2$ to $\vartheta_3 \times \vartheta_4$. If $(\delta^{\eta} \times \Upsilon^{\varsigma})$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_3 \times \vartheta_4$ then the pre-image $\varphi^{-1}(\delta^{\eta} \times \Upsilon^{\varsigma})$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$, if $\rho^{\alpha}, \omega^{\beta}$ have sup property and $\rho^{\alpha}, \omega^{\beta}$ are φ -invariant.

Theorem 4.5

(I), $\phi(J) \in \vartheta_3 \times \vartheta_4$,

Let ϑ_1 and ϑ_2 be any two ℓ -HX groups of the ℓ -groups G_1 and G_2 respectively. Let $\varphi: \vartheta_1 \times \vartheta_2 \longrightarrow \vartheta_3 \times \vartheta_4$ be a homomorphism onto ℓ -HX groups. Let $\rho^{\alpha} \times \omega^{\beta}$ be a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$ then $\varphi(\rho^{\alpha} \times \omega^{\beta}) = \varphi(\rho^{\alpha}) \times \varphi(\omega^{\beta})$, if $\rho^{\alpha}, \omega^{\beta}$ have sup property and $\rho^{\alpha}, \omega^{\beta}$ are φ -invariant. **Proof:** Let α be a bipolar L-fuzzy subset of G_1 . Let β be a bipolar L-fuzzy sub ℓ -group of G_2 . Let $\rho^{\alpha} \times \omega^{\beta}$ be a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$. Let $(I,J) \in \vartheta_1 \times \vartheta_2$, as φ is a homomorphism such that (φ

 $\begin{aligned} (\phi(\rho^{\alpha} \times \omega^{\beta}))^{+}(\phi(\mathbf{I}),\phi(\mathbf{J})) &= (\phi(\rho^{\alpha} \times \omega^{\beta}))^{+}(\phi(\mathbf{I},\mathbf{J})), \text{ as } \phi \text{ is homomorphism} \\ &= (\rho^{\alpha} \times \omega^{\beta})^{+}(\mathbf{I},\mathbf{J}) \\ &= (\rho^{\alpha})^{+}(\mathbf{I}) \wedge (\omega^{\beta})^{+}(\mathbf{J}) \\ &= \phi(\rho^{\alpha})^{+}(\phi(\mathbf{I})) \wedge \phi(\omega^{\beta})^{+}(\phi(\mathbf{J})) \\ &= (\phi(\rho^{\alpha}) \times \phi(\omega^{\beta}))^{+}(\phi(\mathbf{I}),\phi(\mathbf{J})) \end{aligned}$ Therefore, $(\phi(\rho^{\alpha} \times \omega^{\beta}))^{+}(\phi(\mathbf{I}),\phi(\mathbf{J})) = (\phi(\rho^{\alpha}) \times \phi(\omega^{\beta}))^{+}(\phi(\mathbf{I}),\phi(\mathbf{J}))$ and $\begin{aligned} (\varphi(\rho^{\alpha} \times \omega^{\beta}))^{-}(\varphi(I),\varphi(J)) &= & (\varphi(\rho^{\alpha} \times \omega^{\beta}))^{-}(\varphi(I,J)), \text{ as } \varphi \text{ is homomorphism} \\ &= & (\rho^{\alpha} \times \omega^{\beta})^{-}(I,J) \\ &= & (\rho^{\alpha})^{-}(I) \vee (\omega^{\beta})^{-}(J) \\ &= & \varphi(\rho^{\alpha})^{-}(\varphi(I)) \vee \varphi(\omega^{\beta})^{-}(\varphi(J)) \\ &= & (\varphi(\rho^{\alpha}) \times \varphi(\omega^{\beta}))^{-}(\varphi(J),\varphi(J)) \end{aligned}$

Therefore, $(\phi(\rho^{\alpha} \times \omega^{\beta}))^{-}(\phi(I),\phi(J)) = (\phi(\rho^{\alpha}) \times \phi(\omega^{\beta}))^{-}(\phi(I),\phi(J))$ Hence, $\phi(\rho^{\alpha} \times \omega^{\beta}) = \phi(\rho^{\alpha}) \times \phi(\omega^{\beta})$.

Theorem 4.6

Let μ and α be any two bipolar L-fuzzy sub ℓ -groups of G_1 and G_2 respectively. Let ϑ_1 and ϑ_2 be any two ℓ -HX groups of the ℓ -groups of G_1 and G_2 respectively. Let ρ^{α} and ω^{β} be any two bipolar L-fuzzy sub ℓ -HX groups of the ℓ -HX groups ϑ_1 and ϑ_2 respectively. Let $\phi: \vartheta_1 \times \vartheta_2 \rightarrow \vartheta_3 \times \vartheta_4$ be a homomorphism. If $\rho^{\alpha} \times \omega^{\beta}$ is a bipolar L-fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$, then:

 $\varphi^{-1}(\rho^{\alpha} \times \omega^{\beta}) = \varphi^{-1}(\rho^{\alpha}) \times \varphi^{-1}(\omega^{\beta}).$

Proof: Let $\rho^{\alpha} \times \omega^{\beta}$ be a bipolar L- fuzzy sub ℓ -HX group of $\vartheta_1 \times \vartheta_2$. Let $(I,J) \in \vartheta_1 \times \vartheta_2$, since φ is a homomorphism such that $(\varphi(I), \varphi(J)) \in \vartheta_3 \times \vartheta_4$.

$$\begin{split} (\phi^{\text{-1}}(\rho^{\alpha}\times\omega^{\beta}))^{+}(I,J) &= (\rho^{\alpha}\times\omega^{\beta})^{+}(\phi(I,J)) \\ &= (\rho^{\alpha}\times\omega^{\beta})^{+}(\phi(I),\phi(J)) \\ &= (\rho^{\alpha})^{+}(\phi(I))\wedge(\omega^{\beta})^{+}(\phi(J)) \\ &= (\rho^{\alpha})^{+}(\rho^{\alpha})^{+}(I)\wedge\phi^{-1}(\omega^{\beta})^{+}(J) \\ &= (\phi^{-1}(\rho^{\alpha})\times\phi^{-1}(\omega^{\beta}))^{+}(I,J). \end{split}$$
 Therefore, $(\phi^{-1}(\rho^{\alpha}\times\omega^{\beta}))^{+}(I,J) = (\phi^{-1}(\rho^{\alpha})\times\phi^{-1}(\omega^{\beta}))^{+}(I,J).$ and

 $\begin{aligned} (\varphi^{-1}(\rho^{\alpha} \times \omega^{\beta}))^{-}(\mathbf{I},\mathbf{J}) &= (\rho^{\alpha} \times \omega^{\beta})^{-}(\varphi(\mathbf{I},\mathbf{J})) \\ &= (\rho^{\alpha} \times \omega^{\beta})^{-}(\varphi(\mathbf{I}),\varphi(\mathbf{J})) \\ &= (\rho^{\alpha})^{-}(\varphi(\mathbf{I})) \vee (\omega^{\beta})^{-}(\varphi(\mathbf{J})) \\ &= \varphi^{-1}(\rho^{\alpha})^{-}(\mathbf{I}) \vee \varphi^{-1}(\omega^{\beta})^{-}(\mathbf{J}) \\ &= (\varphi^{-1}(\rho^{\alpha}) \times \varphi^{-1}(\omega^{\beta}))^{-}(\mathbf{I},\mathbf{J}). \end{aligned}$

Therefore, $(\phi^{-1}(\rho^{\alpha} \times \omega^{\beta}))^{-}(I,J) = (\phi^{-1}(\rho^{\alpha}) \times \phi^{-1}(\omega^{\beta}))^{-}(I,J)$ Hence, $\phi^{-1}(\rho^{\alpha} \times \omega^{\beta}) = \phi^{-1}(\rho^{\alpha}) \times \phi^{-1}(\omega^{\beta}).$

Definition 4.7[11]

Let ρ^{α} be a bipolar L- fuzzy sub ℓ -HX group of a ℓ -HX group ϑ . The set $I(\rho^{\alpha};\tau,\psi)=\{P\in\vartheta/(\rho^{\alpha})^{+}(P)\geq\tau, (\rho^{\alpha})^{+}(P)\leq\psi\}$, for any $\langle\tau,\psi\rangle\in[0,1]\times[-1,0]$ is called the bipolar level subset of ρ^{α} or $\langle\tau,\psi\rangle$ - level subset of ρ^{α} or upper level subset of ρ^{α} or level subset of ρ^{α} .

Theorem 4.8

Let ρ^{α} and ω^{β} be any two bipolar L- fuzzy sub ℓ -HX groups of the ℓ -HX groups ϑ_1 and ϑ_2 respectively. Let $\langle \tau, \psi \rangle \in [0,1] \times [-1,0]$ then $I(\rho^{\alpha} \times \omega^{\beta}; \tau, \psi) = I(\rho^{\alpha}; \tau, \psi) \times I(\omega^{\beta}; \tau, \psi)$ **Proof:** For all $(M,N) \in I((\rho^{\alpha} \times \omega^{\beta}); \tau, \psi)$

$$\begin{split} & If \ (\rho^{\alpha} \times \omega^{\beta})^{+}(M,N) \geq \tau \ \text{ and } \ (\rho^{\alpha} \times \omega^{\beta})^{-}(M,N) \leq \psi \\ & If \ ((\rho^{\alpha})^{+}(M) \wedge (\omega^{\beta})^{+}(N)) \geq \tau \ \text{ and } \ ((\rho^{\alpha})^{-}(M) \vee (\omega^{\beta})^{-}(N)) \leq \psi \\ & If \ (\rho^{\alpha})^{+}(M) \geq \tau \ \text{ and } \ (\omega^{\beta})^{+}(N) \geq \tau, (\rho^{\alpha})^{-}(M) \leq \psi \ \text{ and } \ (\omega^{\beta})^{-}(N) \leq \psi \\ & If \ (\rho^{\alpha})^{+}(M) \geq \tau \ \text{ and } \ (\rho^{\alpha})^{-}(M) \leq \psi, \ (\omega^{\beta})^{+}(N) \geq \tau \ \text{ and } \ (\omega^{\beta})^{-}(N) \leq \psi \\ & If \ M \in I(\rho^{\alpha};\tau,\psi) \ \text{ and } \ N \in I(\omega^{\beta};\tau,\psi) \\ & If \ (M,N) \in I(\rho^{\alpha};\tau,\psi) \times I(\omega^{\beta};\tau,\psi). \end{split}$$

5. Conclusions

In this paper, we have presented some properties of the Cartesian product of bipolar L-fuzzy subsets of a set and some results of the Cartesian product of bipolar L-fuzzy sub ℓ -HX groups of a ℓ -HX group under homomorphism and anti-homomorphism.

References

- Asok KumerRay., "On Product of Fuzzy Subgroups, Fuzzy Sets and Systems", 105,1999, pp.181-183.
- [2] Glad Dsechrijver, EtienneE.Kerre, "On the Cartesian product of Intutionistic fuzzy sets", Fifth Int.Conf on IFSs, Sofia 22,3 sep 2001,NIFS, 2001,3,14-2.
- [3] Goguen, J.A., "L-Fuzzy sets", J. Math Anal. Appl., 18, 1967, pp. 145-174.
- [4] Li Hongxing, "HX group", BUSEFAL, 33, 1987, pp. 31–37.
- [5] LuoChengzhong, MiHonghai, Li Hongxing, "Fuzzy HX group", BUSEFAL 41 14, 1989, pp. 97 – 106.
- [6] Muthuraj, R., Rakesh kumar, T., 2016, "Some Characterization of L-Fuzzy ℓ HX group", International Journal of Engineering Associates , No.38, Volume 5, Issue 7, pp.38-41.
- [7] Muthuraj,R., Sridharan,M., "Operations on Bipolar Fuzzy HX Subgroups", International Journal of Engineering Associates, Volume 3, Issue 5, 2014, pp.12-18.
- [8] Muthuraj.R, Sridharan.M, "On Product of Bipolar Fuzzy HX Subgroup", International Journal of Engineering Associates, Vol.4, Issue 4, 2015.
- [9] Muthuraj.R, Santha Meena.G, "Homomorphism and Anti Homomorphism on a Bipolar Anti L-Fuzzy subℓ–HX Group", Middle East Journal of Scientific Research, Volume 25(2), 2017, pp: 402-407, ISSN : 1990-9233.
- [10] Muthuraj.R, Santha Meena.G, "Some Characterization of Bipolar L-Fuzzy &-HX Group" International Journal of Computational and Applied Mathematics, Volume 12, Number 1 (2017), pp. 137-155, ISSN 1819-4966.
- [11] Muthuraj.R, Santha Meena.G, "Bipolar L-Fuzzy l-HX group and its Level Sub l-HX group", International Conference on Mathematical Impacts in Science and Technology(MIST-17), International Journal for Research in Applied Science and Engineering Technology, November 2017, pp.44-54. [UGC Approved Journal].
- [12] Muthuraj.R.,Santha Meena.G.,"Union And Intersection of Bipolar L-Fuzzy sub *l*-HX Groups" Web of Science(Communicated)
- [13] Rosenfeld, A., "Fuzzy Groups", J. Math. Anal. Appl. 35, 1971, pp. 512-517.
- [14] Satyasaibaba, G.S.V., "Fuzzy lattice ordered groups", South east Asian Bulletin of Mathematics, 32, 2008, pp. 749-766.
- [15] Zadeh, L.A., "Fuzzy Sets", Inform and Control, 8, 1965, pp. 338-365.
- [16] Zhang, W.R., "Bipolar fuzzy sets", Proc. of FUZZ-IEEE, 1998, pp: 835-840.