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Abstract. This article we investigate the damage of the diabetic patient's of two organs A and 
B. These organs ' dysfunction can cause the person to die. 
Organ A is subjected to accumulated cycle of damage and organ B has a steady risk of failure.
Organ A damage occurs according to the Revised Erlang cycle and organ B has a system of da
mage of varying rates of damage.Considering treatment of all the damage caused by the two or
gans of a diabetic individual.Finally, to illustrate the main results, the numerical example is 
given. 
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1.  Introduction 

Diabetes is a disorder of metabolism caused by inadequate action of insulin, characterized by 
elevated blood sugar levels. Cardio-vascular disease causes people with diabetes to die.  
Diabetes nephropathy can cause kidney failure. Diabetes is the main cause of kidney dysfunction and 
the huge cost of dialysis.  We are researching a diabetic person’s case.  This paper contains two 
diabetic organs subject to the damage process. 

Either the two organs are equivalent to pancreas, head, liver or arms.  Modified Erlang process and S
CBZ failure characteristics of organ B. We apply a new concept that Raja Rao has introduced as 
setting the Clock Back to Zero (SCBZ) [10] and studied for damage process by Murthy. et. all [9]. 
Due to the fact that gestational diabetes mellitus is temporary condition that happens during 
pregnancy and goes away after birth, there is an exponential distribution of the level of damage from 
one frequency to another.  The time for hospitalization of the patient (T) is T= min{T1,T2}, in which 
T1 and T2 are the times which affect organ A and organ B. The models are obtained from Joint 
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Laplace Stieltjes that transforms time into hospitalization and diagnosis time distributions. The 
numerical explanations were given at various times at the end of the session 

 

2.   Mathematical Model and Assumptions 
 
In this model, we find the system with SCBZ dysfunctioning property in which organ A has operating 
time given by updated Erlang distribution organ B. 
 
(i) Organ A is given with an exponential distribution with the parameter ' μ ' before hospitalization 

at most k observation times. When the first cumulative observation period is finished, α-
probability or second observation treatment starts with β-probability where α+β=1 ends.  
The process is repeated for i observation for 1≤i≤k-1.  
Subsequently completion of the study of 𝑘𝑡ℎ 36T, treatment is performed with probability equal to 1.  
If T1 is the time for treatment due to organ A, where 𝑇1=∑ 𝑋𝑗𝑘

𝑗=1 36Twith probability to  𝛼 𝛽𝑘−1for 
1≤i≤k-1. 

(ii) Organ B has a damage cycle with varying damage levels after an exponential time, organ B dam
age level is a period with parameter c.Let T 0 be the point of truncation which changes the 
parameter. 

(iii) Let 𝑇2 36Tbe the time when organ B hospital treatment needs immediate treatment.  
(iv) When the procedure is done due to organ a dysfunction, the treatment time corresponding to 𝑖𝑡ℎ 36T

observation is 𝑅𝑅𝑖 36T , 1 ≤ 𝑖 ≤ 𝑘 where hospitalization is due to organ B dysfunction(y) such 
that∫ 𝑦 𝑑𝑅𝑅(𝑦)𝑦

0 < ∞.  The treatments are done one by one.  Treatment starts at the time T={T 
1,T 2} based on the assumptions.  The pdf of time T1 is used to calculate the exponential step 
time of the modified Erlangian 

f (x) =𝛼𝑒−𝜇𝑥𝜇𝜇∑ (𝜇𝑥)𝑖

𝑖!
𝑘−2
𝑖=0 𝛽𝑖+𝛽𝑘−1𝜇𝜇

(𝜇𝑥)𝑘−1

(𝑘−1)!
𝑒−𝜇𝑥  (2.1) 

The pdf of time 𝑇2 is given byh(x) =�
a 𝑒−𝑎𝑥 ,                   if x ≤ 𝑇0
 b𝑒−𝑏𝑥𝑒(𝑏−𝑎)𝑇0 , 𝑖𝑓 𝑥 > 𝑇0

 

𝑇0 Is random variable with Pdf =c𝑒−𝑐𝑇0.Now 

h (x) =𝑎𝑒−𝑎𝑥𝑒𝑐𝑥 + 𝑏𝑒−𝑏𝑥 ∫ 𝑒(𝑏−𝑎)𝑇0𝑥
0 𝑐𝑒−𝑐𝑇0𝑑𝑇0 = (𝑎−𝑏)(𝑐+𝑎)

(𝑐+𝑎−𝑏)
𝑒−(𝑐+𝑎)𝑥+𝑐𝑏  𝑒−𝑏𝑥

(𝑐+𝑎−𝑏)
       (2.2)                        

With   d𝑖𝑠tribution function 

H(X) =1-p 𝑒−(𝑐+𝑎)𝑥 −q𝑒−𝑏𝑥                          (2.3)   

Where p = 𝑎−𝑏
𝑐+𝑎−𝑏

   q = 𝑐
(𝑐+𝑎−𝑏)

  and  p+q=1.  

The treatment time 𝑅𝑅∗𝑡𝑡 = ∑ 𝑅𝑅𝑗𝑖
𝑗=1  when damage occurs 

In case of damage due to group B and I Observations for organ A are completed due to organ A for 1 
locality, 1≤ 𝑖 ≤ 𝑘 ,𝑅𝑅∗t=∑ 𝑅𝑅𝑗𝑖

𝑗=0 +R . The pdf T and R*t is given by 

𝜕2

𝜕𝑥𝜕𝑦
 P (T≤ 𝑥,𝑅𝑅∗t≤ 𝑦)= (1-H(x)) [𝜇𝜇𝑒−𝜇𝑥𝛼𝑟∗(y) +𝜇𝜇 (𝜇𝑥)

1!
𝑒−𝜇𝑥𝛼𝛽𝑟∗2(y) +𝜇𝜇 (𝜇𝑥)2)

2!
𝑒−𝜇𝑥𝛼𝛽2𝑟∗3(y) +… 
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+𝜇𝜇 (𝜇𝑥)𝑘−2

(𝑘−2)!
𝑒−𝜇𝑥𝛼𝛽𝑘−2𝑟∗(𝑘−1)(y) + 𝜇𝜇 (𝜇𝑥)𝑘−1

(𝑘−1)!
𝑒−𝜇𝑥𝛼𝛽𝑘−1𝑟∗(𝑘)(y)] +h(x) ∑ 𝑒−𝜇𝑥𝑘−1

𝑖=0
(𝜇𝑥)𝑖

𝑖!
𝛽𝑖𝑟∗(𝑖+1)(y) 

        (2.4) 

The first term is organ A damage and the second term is usually organ B hazard using (2.2) and (2.3). 

We find 𝜕2

𝜕𝑥𝜕𝑦
 P (T≤ 𝑥,𝑅𝑅∗t≤ 𝑦)= [p𝑒−(𝑐+𝑎)𝑥+q𝑒−𝑏𝑥]∑ 𝛼𝑘−2

𝑖=0 𝑒−𝜇𝑥𝜇𝜇 (𝜇𝑥)𝑖

𝑖!
𝛽𝑖𝑟∗(𝑖+1)(y)   + [p𝑒−(𝑐+𝑎)𝑥+ 

q𝑒−𝑏𝑥  ]   𝑒−𝜇𝑥𝜇𝜇 (𝜇𝑥)𝑘−1

(𝑘−1)!
𝛽𝑘−1𝑟∗(𝑘)(y)+[p(c+a)𝑒−(𝑐+𝑎)𝑥+qb𝑒−𝑏𝑥  ] ∑ 𝑒−𝜇𝑥𝑘−1

𝑖=0
(𝜇𝑥)𝑖

𝑖!
𝛽𝑖𝑟∗(𝑖+1) (y)  (2.5) 

by double Laplace transform 

E(𝑒−𝛿𝑇𝑒𝜉𝑅∗𝑡) = � 𝑃𝑟∗(𝜉)
𝜇+𝛿+𝑐+𝑎−𝜇𝛽𝑟∗(𝜉)

� ×[c+a+𝛼𝜇𝜇 − 𝛼𝜇𝜇 � 𝜇𝛽𝑟∗(𝜉)
𝜇+𝛿+𝑐+𝑎

�
𝑘−1

− (c+a)� 𝜇𝛽𝑟∗(𝜉)
𝜇+𝛿+𝑐+𝑎

�
𝑘
] +  

 (  𝑞𝑟∗(𝜉)
{𝜇+𝛿+𝑏−𝜇𝛽𝑟∗(𝜉)

)[𝜇𝜇𝛼 + 𝑏 − 𝜇𝜇𝛼(�𝜇𝛽𝑟
∗(𝜉)

𝜇+𝛿+𝑏
�
𝑘−1

−b (�𝜇𝛽𝑟
∗(𝜉)

𝜇+𝛿+𝑏
�
𝑘
] +p 𝛽𝑘−1(𝜇𝑟

∗(𝜉)
𝜇+𝛿+𝑏

)𝑘] (2.6) 

for  𝜉 = 0 and 𝛿 = 0 we obtain  from (2.6) 

E (𝑒−𝛿𝑡)   = 
𝑝𝜇𝑐𝑥[1−( 𝜇𝛽

𝛿+𝑐+𝑎+𝜇𝑎

𝑘−1
]

(𝛿+𝑐+𝑎+𝜇𝛼)
 +
𝑞𝜇𝛼[1−( 𝜇𝛽

𝜇+𝑐+𝑏)𝑘−1

(𝑐+𝑏+𝜇𝛼)
 

 =p 𝛽𝑘−1( 𝜇
𝜇+𝛿+𝑐+𝑎

)𝑘+q 𝛽𝑘−1( 𝜇
𝜇+𝛿+𝑏

)𝑘+
𝑝(𝑐+𝑎)[1−( 𝜇𝛽

𝜇+𝛿+𝑐+𝑎)𝑘]

(𝛿+𝑐+𝑎+𝜇𝛼)
 +
𝑞𝑏[1−( 𝜇𝛽

𝜇+𝛿+𝑏)𝑘]

(𝛿+𝑏+𝜇𝛼)
                     (2.7) 

E (𝑒−𝜉𝑅∗𝑡) = 
[ 𝑟^∗ (𝜉)𝑝
𝜇+𝑐=𝑎−𝜇𝛽𝑟∗(𝜉)

]×[c+a+𝜇𝜇𝛼 − 𝜇𝜇𝛼 �𝜇𝛽𝑟
∗(𝜉)

𝜇+𝑐+𝑎
)𝑘−1� −(c+a) (𝜇𝛽𝑟

∗(𝜉)
𝜇+𝑐+𝑎

)𝑘]+[ 𝑞𝑟∗(𝜉)
𝜇+𝑏−𝜇𝛽𝑟∗(𝜉)

][b+𝜇𝜇𝛼 −

𝜇𝜇𝛼(𝜇𝛽𝑟
∗(𝜉)

𝜇+𝑏
)𝑘−1 −b (𝜇𝛽𝑟

∗(𝜉)
𝜇+𝑏

)𝑘]+p𝛽𝑘−1(𝜇𝑟
∗(𝜉)

𝜇+𝑐+𝑎
)𝑘  +q𝛽𝑘−1(𝜇𝑟

∗(𝜉)
𝜇+𝑏

)𝑘    
 (2.8) 

From (2.7) and (2.8) by differentiating 

E (T) = 𝑝
𝑐+𝑎+𝜇𝛼

[1-( 𝜇𝛽
𝜇+𝑐+𝑎

)𝑘] + 𝑞
𝑏+𝜇𝛼

[1-( 𝜇𝛽
𝜇+𝑏

)𝑘  ] 

E(𝑅𝑅∗𝑡𝑡) = E (𝑅𝑅∗)  �1 + 𝑝𝛽𝜇
𝑐+𝑎+𝜇𝛼

[1 − ( 𝜇𝛽
𝜇+𝑐+𝑎

)𝑘−1]  +    𝑞𝛽𝜇
𝑏+𝜇𝛼

�1 − ( 𝜇𝛽
𝑏+𝜇

)𝑘−1��  (2.9) 

Where p= 𝑎−𝑏
𝑐+𝑎−𝑏

and q= 𝑐
𝑐+𝑎−𝑏

 . 
 

3.  Mathematical Results with Numerical Examples 

By giving the parameters in E (T) and E (R^*t) different values and varying μ from 1 to 10, we 
represent the E (T) and E (R^*t) graph. Table 3.1 

𝑎 = 0.05,𝑏 = 0.02, 𝑐 = 0.01,𝐸(𝑅𝑅∗) =3, k=2,𝛼 = 0.2,𝛽 = 0.8 

𝜇𝜇 1 2 3 4 5 6 7 8 9 10 

E (T) 1.679 0.869 0.586 0.442 0.355 0.296 0.255 0.223 0.198 0.179 
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E(𝑅𝑅∗𝑡𝑡) 3.815 5.342 5.36 5.37 5.376 5.38 5.383 5.386 5.387 5.388 

 
 

 

Table-3.2 

𝛼 = 0.05,𝑏 = 0.02, 𝑐 = 0.01,𝐸(𝑅𝑅∗) =3,k=2,𝛼 = 0.8,𝛽 = 0.2 

𝜇𝜇 1 2 3 4 5 6 7 8 9 10 

E (T) 1.13 0.582 0.392 0.296 0.236 0.198 0.17 0.149 0.132 0.119 

E(𝑅𝑅∗𝑡𝑡) 3.572 3.585 3.59 3.592 3.594 3.595 3.596 3.596 3.597 3.597 
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4. Conclusion 

Finally,  we conclude that, our mathematical model leads that from the table 3.1 and 3.2 shows that the 
functions of E(T) and E(R*t).  Before mean time treatment for fixed values of arbitrary constants for 
E(R*t).  Both cases the parameter μupturns then the value of E(T) also upturns and E(R*t) diminishes. 
When α increases both E(T) And E(R*t)diminishes. It will be use full for in the field of medicine. 
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