

gη-HOMEOMORPHISM IN TOPOLOGICAL SPACES

D. Subbulakshmi¹, Dr. K. Sumathi² and Dr. K. Indirani³

¹ Department of Mathematics, Rathnavel Subramaniam College of Arts and Science, Sulur – 641402, Coimbatore, Tamilnadu, India

² Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India

³ Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India

Email: subbulakshmi169@gmail.com <u>&² indirani009@ymail.com</u>

Abstract In this paper a new class of maps namely $g\eta$ -closed maps, $g\eta$ -open maps and $g\eta$ -homeomorphism in topological spaces are introduced. Further some of their characterizations are investigated.

Keywords gn-closed maps, gn-open maps, gn-homeomorphism, gn*-homeomorphism

1. Introduction

In recent years a number of generalizations of open sets have been developed by many mathematicians. In 1963, Levine [9] introduced the notion of semi-open sets in topological spaces. In 1984, Andrijevic [1] introduced some properties of the topology of α -sets. In 2016, Sayed MEL and Mansour FHAL introduced [19] new near open set in Topological Spaces. Motivated by various open and closed sets are discussed in the previous literature, in this paper a new class of maps called gn-closed maps and gn-open maps has been introduced using the concept of gn-closed sets, gn-continuous by Subbulakshmiet al [22, 23]. Further we study the basic properties of gn-closed maps and gn-open maps.

2. Preliminaries

Definition 2.1 A subset A of a topological space (X, τ) is called:

(i) α -open set [1] if A \subseteq int(cl(int(A))), α -closed set if cl (int (cl(A))) \subseteq A.

(ii) pre-openset [15] if A \subseteq int (cl (A)), pre-closed set if cl (int(A)) \subseteq A.

(iii) semi-openset [9] if A \subseteq cl(int (A)), semi-closed set if int (cl(A) \subseteq A.

(iv) regular-open set [18] if A = int (cl(A)), regular-closed set if A = cl (int (A))).

(v) β -open (or semi-pre-open) set [2] if $A \subseteq (cl(int(cl(A))), semi-pre-closed set if int(cl(int(A))) \subseteq A.$

(vi) η -open set [21] if A \subseteq int (cl(int(A))) \cup cl (int (A)), η -closed set if cl (int (cl (A))) \cap int(cl(A)) \subseteq A.

Definition 2.2 A subset A of a topological space (X, τ) is called:

(i) g-closed set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).

(ii)g*-closed set [25] if cl(A) \subseteq U whenever A \subseteq U and U is g open in(X, τ).

(iii) ga-closed set [13] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in(X, τ).

(iv) αg -closed set [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).

(v) sg-closed set [4] if scl(A) \subseteq U whenever A \subseteq U and U is semi-open in(X, τ).

(vi) gpr-closed set [8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in(X, τ).

(vii) gar-closed set [20] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in(X, τ).

(viii) rg-closed set [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in(X, τ).

(ix) gq-closed set [22] if $\eta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).

Definition 2.3 A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called:

(i) continuous [3] if $f^{-1}(V)$ is a closed in(X, τ) for every closed set V of(Y, σ).

(ii) semi-continuous [9] if f⁻¹(V) is a semi-closed in (X, τ) for every closed set V of (Y, σ) .

(iii) α -continuous [13] if f⁻¹(V) is a α -closed in(X, τ) for every closed set V of(Y, σ).

(iv) r-continuous [11] if f⁻¹(V) is ar-closed in (X, τ) for every closed set V of(Y, σ).

(v) g-continuous [3] if f⁻¹(V) is a g-closed in(X, τ) for every closed set V of(Y, σ).

(vi) g*-continuous [16] if f⁻¹(V) is a g*-closed in(X, τ) for every closed set V of(Y, σ).

(vii) sg-continuous [24] if f⁻¹ (V) is a sg-closed in(X, τ) for every closed set V of(Y, σ).

(viii) ga-continuous [6] if f⁻¹(V) is a ga-closed in(X, τ) for every closed set V of (Y, σ).

(ix) α g-continuous [12] if f⁻¹(V) is a α g-closed in(X, τ) for every closed set V of(Y, σ).

(x) η -continuous [23] if f⁻¹(V) is a η -closed in (X, τ) for every closed set V of(Y, σ).

(xi) gar-continuous [20] if f⁻¹ (V) is a gar-closed in(X, τ) for every regular-closed set V of(Y, σ).

(xii) rg-continuous [17] if f⁻¹ (V) is arg-closed in(X, τ) for every regular-closed set V of(Y, σ).

(xiii) gpr-continuous [8] if f⁻¹ (V) is a gpr-closed in(X, τ) for every regular-closed set V of(Y, σ).

(xiv) gη-continuous [23] iff $^{-1}(V)$ is a gη-closed in(X, τ) for every closed set V of(Y, σ). (xv)gη-irresolute[23] if f $^{-1}(V)$ is gη-closed in(X, τ) for every gη-closed V of (Y, σ).

Definition 2.4 A bijective function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called:

(i) homeomorphism [3] if both f and f^{-1} are continuous.

(ii) semi-homeomorphism [5] if both f and f^{-1} are semi-continuous.

(iii) α -homeomorphism [13] if both f and f⁻¹are α -continuous.

(iv) r-homeomorphism [11] if both f and f^{-1} are r-continuous.

(v) g-homeomorphism [14] if both f and f^{-1} are g-continuous.

(vi) g *-homeomorphism [16] if both f and f $^{-1}$ are g*-continuous.

(vii) sg-homeomorphism [7] if both f and f^{-1} are sg-continuous.

(viii) ga-homeomorphism [6] if both f and f $^{-1}$ are ga-continuous.

(ix) α g-homeomorphism [12] if both f and f⁻¹ are α g-continuous.

(x) rg-homeomorphism [17] if both f and f^{-1} are rg-continuous.

- (xi) gar-homeomorphism [20] if both f and f⁻¹ are gar-continuous.
- (xii) gpr-homeomorphism [8] if both f and f⁻¹ are gar-continuous.

3. gn-closed maps

Definition 3.1 A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be a gn-closed map if the image of every closed set in (X, τ) is gn-closed in (Y, σ) .

Example 3.2 Let $X = Y = \{a, b, c, d\}, \tau = \{X, \varphi, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{Y, \varphi, \{b\}, \{c, d\}, \{b, c, d\}\}$. Define $f: X \rightarrow Y$ as f(a) = a, f(b) = b, f(c) = d, f(d) = c. Then $f(\{d\}) = \{c\}$, $f(\{c, d\}) = \{c, d\}, f(\{a, b, d\}) = \{a, b, c\}$. Therefore f is gn-closed map. Since the image of every closed set in X is gn-closed in Y.

Theorem 3.3 Let (X, τ) and (Y, σ) be topological spaces. Then for a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$. The following results are true.

- (i) Every closed map is $g\eta$ -closed map.
- (ii) Every semi-closed map is gn-closed map.
- (iii) Every α -closed map is gη-closed map.
- (iv) Every r-closed map is gn-closed map.

(v) Every η -closed map is $g\eta$ -closed map.

(vi) Every g-closed map is gη-closed map.

(vii) Every g*-closed map is gη-closed map.

(viii) Every sg-closed map is gη-closed map.

(ix) Every αg -closed map is $g\eta$ -closed map.

(x) Every ga-closed map is $g\eta$ -closed map.

Proof. (i) Let $f : (X, \tau) \to (Y, \sigma)$ be a closed map and V be a closed set in (X, τ) , then f(V) is closed in (Y, σ) and hence $g\eta$ -closed in (Y, σ) . Thus f is $g\eta$ -closed. Proof of (ii) to (x) are similar to (i).

Remark. The converse of the above theorem need not be true as seen from the following example.

Example 3.4 (i). Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b, d\}, \{a, b, d\}\}$. Define $f : X \rightarrow Y$ as f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then the function is gn-closed but not closed, semi-closed, r-closed, a-closed, g-closed, g* closed, ga-closed, ag-closed as the image of closed set{d} in X is {d} which is not closed, semi-closed, r-closed, a-closed, g* closed, ga-closed, ag-closed in Y. (ii). Let $X = Y = \{a, b, c, d\}, \tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{Y, \varphi, \{b\}, \{c, d\}, \{b, c\}, \{c, d\}, \{b, c\}, \{c, d\}, \{c, d$

(11). Let $X = Y = \{a, b, c, d\}, \tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{Y, \varphi, \{b\}, \{c, d\}, \{b, c, d\}\}$. Define f: X \rightarrow Y as f (a) = a, f (b) = c, f (c) = b, f (d) = d. Then the function is gη-closed but not sg-closed, η-closed as the image of closed set {a, c, d} in X is {a, b, d} which is not sg-closed, η-closed Y.

Remark. The concept of rg-closed map, gar-closed map, gpr-closed map and gη-closed map are independent.

Example 3.5 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\ \text{and } \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}\)$. Define $f: X \to Y$ as f(a) = b, f(b) = c, f(c) = a. Here f is $g\eta$ -closed map. But f is not rg-closed map and $g\alpha$ -closed map, gpr closed map. Since for closed set $\{a, b\}$ in X, $f(\{a, b\}) = \{b, c\}$ is not rg-closed and $g\alpha$ -closed, gpr closed in Y.

Example 3.6 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\)$ and $\sigma = \{Y, \phi, \{a\}\}.$ Define $f: X \rightarrow Y$ as f(a) = c, f(b) = a, f(c) = b. Here f is rg-closed map, gpr-closed map, gar-closed map. But f is not gn-closed map. Since for the closed set $\{c\}$ in X, $f(\{c\}) = \{c\}$ is not gn-closed in Y.

Theorem 3.7 Let $f: (X, \tau) \to (Y, \sigma)$ be a closed map and $g: (Y, \sigma) \to (Z, \eta)$ be a gn-closed map then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is gn-closed.

Proof. Let V be a closed set in (X, τ) . Then f (V) is a closed set in (Y, σ) . Hence g (f(V)) = (g \circ f) (V) is gn-closed set in (Z, η). Therefore, g \circ f is a gn-closed map.

Remark. The composition of two $g\eta$ -closed maps need not be $g\eta$ -closed map as seen from the following example.

Example 3.8 Let $X = Y = Z = \{a,b,c,d\}$ with $\tau = \{X,\phi, \{c\}, \{a,b\}, \{a,b,c\}\}, \sigma = \{Y,\phi, \{b\}, \{c,d\}, \{b,c,d\}\}$ and $\mu = \{Z,\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$. Define $f: (X,\tau) \rightarrow (Y,\sigma)$ as f(a) = b, f(b) = a, f(c) = d, f(d) = c and $g: (Y,\sigma) \rightarrow (Z,\mu)$ be defined by g(a) = b, g(b) = c, g(c) = a, g(d) = d. Then the functions f and g are gn-closed maps but their composition $g \circ f: (X,\tau) \rightarrow (Z,\mu)$ is not gn-closed map, since for the closed set $\{a, b, d\}$ in $(X, \tau), (g \circ f)\{a, b, d\} = \{a, b, c\}$ is not gn-closed in (Z, μ) .

Theorem 3.9 Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$ be two mappings such that their composition $g \circ f: (X, \tau) \to (Z, \mu)$ be a gη-closed mapping. Then the following statements are true: (i). if f is continuous and surjective then g is gη-closed.

(i). If t is continuous and surjective then g is g_{1} -closed.

(ii). If g is $g\eta$ -irresolute, injective then f is $g\eta$ -closed.

Proof. (i). Let A be a closed set in (Y, σ) . Since f is continuous, $f^{-1}(A)$ is closed in (X, τ) and since g of is gn-closed, $(g \circ f) (f^{-1}(A)) = g(A)$ is a gn-closed in (Z, η) , since f is surjective. Therefore, g is a gn-closed map.

(ii). Let A be a closed set in (X, τ) . Since $g \circ f$ is $g\eta$ -closed, then $(g \circ f)$ (A) is $g\eta$ -closed in (Z, η) . Since g is $g\eta$ -irresolute, then $g^{-1}[(g \circ f) (A)] = f(A)$ is $g\eta$ -closed in (Y, σ) , since g is injective. Thus, f is a $g\eta$ -closed map.

Theorem 3.10 Let (X, τ) and (Y, σ) be any topological spaces, Then if : (i). $f: (X, \tau) \to (Y, \sigma)$ is gq-closed and A is a closed subset of (X, τ) then $f_A: (A, \tau_A) \to (Y, \sigma)$ is gq-closed. (ii). $f: (X, \tau) \to (Y, \sigma)$ is gq-closed and $A = f^{-1}(B)$, for some closed set B of (Y, σ) , then $f_A: (A, \tau_A) \to (Y, \sigma)$ is gq-closed.

Proof. (i). Let B be a closed set of (A, τ_A) . Then $B = A \cap F$ for some closed set F of (X, τ) and so B is closed in (X, τ) . Since f is gq-closed, then f (B) is gq-closed in (Y, σ) . But f (B) = f_A (B) and therefore f_A is a gq-closed map.

(ii). Let F be a closed set of (A, τ_A) . Then $F = A \cap H$ for some closed set H of (X, τ) . Now $f_A(F) = f(F) = f(A \cap H) = f(f^{-1}(B) \cap H) = B \cap f(H)$. Since f is gn-closed, f (H) is gn-closed in (Y, σ) and so $B \cap f(H)$ is gn-closed in (Y, σ) . Therefore, f A is a gn-closed map.

Theorem 3.11 A map $f : (X, \tau) \to (Y, \sigma)$ is $g\eta$ -closed if and only if for each subset S of (Y, σ) and for each open set U containing $f^{-1}(S)$ there is a $g\eta$ -open set V of (Y, σ) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Suppose f is $g\eta$ -closed. Let $S \subseteq Y$ and U be an open set of (X, τ) such that $f^1(S) \subseteq U$. Now X - U is closed set in (X, τ) . Since f is $g\eta$ -closed, f(X-U) is an $g\eta$ -closed set in (Y,σ) . Then V = Y - f(X - U) is $g\eta$ -open set in (Y, σ) . $f^1(S) \subseteq U$ implies $S \subseteq V$ and $f^{-1}(V) = X - f^{-1}(f(X - U)) \subset X - (X - U) = U$, ie, $f^{-1}(V) \subseteq U$.

Conversely, let F be a closed set of (X,τ) . Then $f^1(f(F)^c) \subset F^c$ is an open set in (X,τ) . By hypothesis, there exists an gn-open set V in (Y,σ) such that $f(F)^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) \subseteq V^c$. Since V^c is gn-closed, f(F) is gn-closed. That is f(F) is gn-closed in (Y,σ) . Therefore, f is gn-closed map.

4. gn open maps

Definition 4.1 A map $f: (X, \tau) \to (Y, \sigma)$ is said to be a gn-open map if the image of every open set in (X, τ) is gn-open in (Y, σ) .

Example 4.2 Let $X = Y = \{a, b, c, d\}, \tau = \{X, \varphi, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Define $f: X \rightarrow Y$ as f(a) = a, f(b) = c, f(c) = b, f(d) = d. Then $f(\{b\}) = \{c\}$, $f(\{c, d\}) = \{b, d\}, f(\{b, c, d\}) = \{b, c, d\}$. Therefore, f is gn-open map. Since the image of every open set in X is gn-open in Y.

Theorem4.3 Let (X, τ) and (Y, σ) be a topological spaces. Then for a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$. The following results are true.

- (i) Every open map is gn-open map.
- (ii) Every semi-open map is gn-open map.
- (iii) Every α -open map is $g\eta$ -open map.
- (iv) Every r-open map is gη-open map.
- (v) Every η -open map is $g\eta$ -open map.
- (vi) Every g-open map is gn-open map.
- (vii) Every g*- open map is gn-open map.
- (viii) Every sg-open map is gn-open map.
- (ix) Every αg-open map is gη-open map.
- (x) Every $g\alpha$ -open map is $g\eta$ -open map.

Proof. (i). Let $f: (X, \tau) \to (Y, \sigma)$ be a open map and V be an open set in (X, τ) , then f(V) is open in (Y, σ) and hence $g\eta$ -open in (Y, σ) . Thus f is $g\eta$ -open. Proof of (ii) to (x) are similar to (i).

Remark. The converse of the above theorem need not be true as may be seen by the following example.

Example 4.4 (i). Let $X = Y = \{a, b, c\}, \tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}\)$ and $\sigma = \{Y, \varphi, \{a\}\}.$ Define $f: X \to Y$ as f(a) = b, f(b) = a, f(c) = c. Then the function is $g\eta$ -open but notsemi-open, sgopen, η -open as the image of open set $\{a\}\)$ in X is $\{b\}\)$ which is not semi-open, sg-open, η -open in Y. (ii). Let $X = Y = \{a, b, c, d\}, \tau = \{X, \varphi, \{b\}, \{c, d\}, \{b, c, d\}\}\)$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{c\}\}\}$. Define $f: X \to Y$ as f(a) = a, f(b) = c, f(c) = b, f(d) = d. Then the function is $g\eta$ -open but not open, α -open, r-open, g^* -open, $g\alpha$ -open, g^* -open, $g\alpha$ -open, α -open in Y.

Remark The concept of rg-open map, gar-open map, gpr-open map and $g\eta$ -open map are independent.

Example 4.5 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Define $f : X \rightarrow Y$ as f(a) = b, f(b) = a, f(c) = c. Here f is rg-open map, gar-open map, gpr-open map. But f is not gn-open map. Since for the open set $\{a\}$ in X, $f(\{a\}) = \{c\}$ is not gn-open in Y.

Example 4.6 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$. Define $f : X \rightarrow Y$ as f(a) = a, f(b) = b, f(c) = c. Here f is $g\eta$ -open map. But f is not rg-open map, $g\alpha$ r-open map, gpr-open map. Since for the open set $\{b, c\}$ in $X, f(\{b, c\}) = \{b, c\}$ is not rg-open, $g\alpha$ r-open, gpr-open in Y.

Remark. The composition of two gn-open map need not be gn-open map as seen from the following example.

Example 4.7 Let $X = Y = Z = \{a,b,c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}, \sigma = \{Y, \phi, \{b, c\}\}$ and $\mu = \{Z, \phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ as f(a) = b, f(b) = a, f(c) = c and $g : (Y, \sigma)$

 \rightarrow (Z,µ) as g(a) = b, g(b) = c, g(c) = a. Then the functions f and g are gη-open map but their composition g \circ f : (X, τ) \rightarrow (Z, µ) is not gη-open map, since the open set {a} in (X, τ), (g \circ f){a} = {c} is not gη-open in (Z, µ).

Theorem 4.8 For any bijection $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent. (i). $f^{-1}: (Y, \sigma) \to (X, \tau)$ is gn-continuous (ii). f is a gn-open map and (iii). f is a gn-closed map.

Proof. (i) \Rightarrow (ii). Let U be an open set of (X, τ). By assumption, (f⁻¹)⁻¹ (U) = f (U) is gn-open in (Y, σ) and so f is a gn-open map. (ii) \Rightarrow (iii). Let V be a closed set of (X, τ). Then V ^cis open in (X, τ). By assumption f (V ^c) =

(ii) \Rightarrow (iii). Let V be a closed set of (X, t). Then V is open in (X, t). By assumption $\Gamma(V) = (f(V))^{c}$ is gn-open in (Y, σ) and therefore f (V) is gn-closed in (Y, σ). Hence f is a gn-closed map. (iii) \Rightarrow (i) Let V be a closed set of (X, τ). By assumption f (V) is gn-closed in (Y, σ). But f (V) = (f⁻¹)⁻¹ (V) and therefore f⁻¹ is gn-continuous on (Y, σ).

Theorem 4.9 Let $f: (X, \tau) \to (Y, \sigma)$ be mapping. If f is a gq-open mapping, then for each $x \in X$ and for each neighborhood U of x in (X, τ) , there exists a gq-neighborhood W of f(x) in (Y, σ) such that $W \subset f(U)$.

Proof. Let $x \in X$ and U be an arbitrary neighborhood of x. Then there exists an open set V in (X, τ) such that $x \in V \subseteq U$. By assumption, f (V) is a gn-open set in (Y, σ) . Further, $f(x) \in f(V) \subseteq f(U)$, clearly f(U) is a gn-neighborhood of f(x) in (Y, σ) and so the theorem holds, by taking W = f(V).

Theorem 4.10 Let X, Y and Z be topological spaces. (i). If $f: X \to Y$ is an open map and $g: Y \to Z$ is a gn-open map, then $g \circ f: X \to Z$ is a gn-open map. (ii). If $f: X \to Y$ and $g: Y \to Z$ are open maps, then $g \circ f: X \to Z$ is a gn-open map. (iii). If $f: X \to Y$ is an open map and $g: Y \to Z$ is ann-open map, then $g \circ f: X \to Z$ is a gn-open map.

Proof. (i). Let U be an open set in X. Since f is an open map, f(U) is open in Y. Then $g(f(U)) = (g \circ f)(U)$ is a gn-open set in Z. Therefore, $g \circ f$ is a gn-open map.

(ii). Let U be an open set in X. Since f is an open map, f(U) is open in Y. Also, since g is an open map, g(f(U)) isopen in Z. That is, $(g \circ f)(U)$ is an open set in Z. And every open set is gn-open, $(g \circ f)(U)$ is a gn-open set in Z. Therefore, $g \circ f$ is a gn-open map.

(iii). Let U be an open set in X. Since f is an open map, f(U) is open in Y. Then g(f(U)) is a nη-open set in Z. That is, $(g \circ f)(U)$ is a nη-open set in Z. As every η-open set is gη-open, $(g \circ f)(U)$ is a gη-open set in Z. Hence $g \circ f$ is a gη-open map.

Theorem 4.11 A map $f:(X, \tau) \to (Y, \sigma)$ is gn-open if and only if for any subset S of (Y, σ) and any closed set containing $f^{-1}(S)$, there exists a gn-closed set K of (Y, σ) containing S such that $f^{-1}(K) \subseteq F$.

Proof. Suppose f is a gq-open map. Let $S \subseteq Y$ and F be a closed set of (X, τ) , such that $f^{-1}(S) \subseteq F$. Now X-F is an open set in (X, τ) . Since f is gq-open map, f (X - F) is gq-open set in (Y, σ) . Then K = Y - f (X - F) is a gq-closed set in (Y, σ) . Note that $f^{-1}(S) \subseteq F$ implies $S \subseteq K$ and $f^{-1}(K) = X - f(f^{-1}(X - F)) \subseteq X - (X - F) = F$. That is $f^{-1}(K) \subseteq F$. For the converse let U be an open set of (X, τ) , Then $f^{-1}((f(U))^c) \subseteq U^c$ and U^c is a closed set in (X, τ) . By hypothesis, there exists a gq-closed set K of (Y, σ) such that $(f(U))^c \subseteq K$ and $f^{-1}(K) \subseteq U^c$ and so $U \subseteq (f^{-1}(K))^c$. Hence $K^c \subseteq f(U) \subseteq f((f^{-1}(K)))^c$ which implies $f(U) = K^c$. Since K^c is a gq-open, f(U) is gq-open in (Y, σ) and therefore f is gq-open map.

5. gn-Homeomorphism

Definition 5.1 A bijection $f:(X, \tau) \rightarrow (Y, \sigma)$ is called a η -homeomorphism if f is both η continuous map and η -open map. That is, both f and f⁻¹are η -continuous map.

Definition 5.2 A bijection $f:(X, \tau) \rightarrow (Y, \sigma)$ is called a $g\eta$ -homeomorphism if f is both $g\eta$ -continuous map and $g\eta$ -open map. That is, both f and f⁻¹ are $g\eta$ -continuous map.

Example 5.3 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$. Definef : $X \rightarrow Y$ as f (a) = c, f (b) = b, f (c) = a. Here the sets $\{b\}, \{a, b\}, \{b, c\}$ are closed in Y. Then f⁻¹ ($\{b\}$) = $\{b\}, f^{-1} (\{a, b\}) = \{b, c\}, f^{-1} (\{b, c\}) = \{a, b\}$ are gn-closed in X. Therefore, f is gn-continuous. And the sets $\{a\}, \{b, c\}$ are open in X. Then f (a) = c, f ($\{b, c\}$) = $\{a, b\}$ are gn-open in Y. Therefore f is open map. Hence, f is gn-homeomorphism.

Theorem 5.4

- (i) Every homeomorphism is gn-homeomorphism.
- (ii) Every semi-homeomorphism is gn-homeomorphism.
- (iii) Every α -homeomorphism is gn-homeomorphism.
- (iv) Every r-homeomorphism is gn-homeomorphism.

(v) Every η -homeomorphism is $g\eta$ -homeomorphism map.

(vi)Every g-homeomorphism is gn-homeomorphism map.

(vii) Every g*-homeomorphism is gn-homeomorphism.

(viii) Every sg-homeomorphism is gn-homeomorphism.

(ix) Every α g-homeomorphism is gn-homeomorphism.

(x) Every $g\alpha$ -homeomorphism is $g\eta$ -homeomorphism.

Proof. (i). Let $f: (X, \tau) \to (Y, \sigma)$ be a homeomorphism. Then f and f⁻¹ are continuous and f is bijection. Since every continuous function is gq-continuous, f and f⁻¹ are gq-continuous. Hence f is gq-homeomorphism.

Proof of (ii) to (x) are similar to (i).

Remark. The converse of the above theorem need not be true as may be seen by the following example.

Example 5.4. (i). Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Define $f : X \rightarrow Y$ as f(a) = b, f(b) = a, f(c) = c. Then this function is gn-homeomorphism. But $f^{-1}(\{a\}) = \{b\}$ is not closed X. Here the set $\{a\}$ is closed in Y. Therefore, f is not continuous. Hence f is not homeomorphism.

(ii). Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : X \rightarrow Y$ as f(a) = a, f(b) = b, f(c) = c. Then this function is gn-homeomorphism. But $f(\{a, c\}) = \{a, c\}$ is not r-open Y. Here the set $\{a, c\}$ is open in X. Therefore, f is not r-open map. Hence f is not r-homeomorphism.

(iii). Let $X = Y = \{a, b, c\}, \tau = \{X, \varphi, \{b, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{c\}, \{a, c\}\}$. Define $f: X \rightarrow Y$ as f(a) = c, f(b) = b, f(c) = a. Then this function is gn-homeomorphism. Here the set $f(\{b, c\}) = \{a, b\}$ is not g-open, g*-open, α -open, α -open, α -open, α -open in Y. Here the set $\{b, c\}$ is open in X. Therefore, f is not g-open, g*-open, α -open, α -open, α -open map. Hence f in notg-homeomorphism, g*-homeomorphism, α -homeomorphism, α -homeomorphism, α -homeomorphism.

(iv). Let $X = Y = \{a, b, c, d\}, \tau = \{X, \varphi, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{c\}\}$. Define $f : X \rightarrow Y$ as f(a) = b, f(b) = a, f(c) = c, f(d) = d. Then the function is $g\eta$ -

homeomorphism. Here the set $f({c}) = {c}$ is not semi-open, η -open, sg-open in Y. Here the set ${c}$ is open in X. Therefore, f is not semi-homeomorphism, η -homeomorphism, sg-homeomorphism.

Remark. The concept of rg-homeomorphism, gar-homeomorphism and gη-homeomorphism are independent.

Example 5.5 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Define $f : X \to Y$ as f(a) = a, f(b) = c, f(c) = b. Clearly f is rg-continuous, gpr-continuous, gar-continuous. Then $f^{-1}(\{a\}) = \{a\}$ is not $g\eta$ -closed in X. Therefore, f is not $g\eta$ -continuous. Hence f is not $g\eta$ -homeomorphism.

Example 5.6 Let $X = Y = \{a, b, c, d\}, \tau = \{X, \varphi, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $\sigma = \{Y, \varphi, \{c\}, \{a, b\}, \{a, b, c\}\}$. Define $f: X \rightarrow Y$ as f(a) = a, f(b) = b, f(c) = c. Clearly f is $g\eta$ -continuous. Then $f^{-1}(\{c, d\}) = \{c, d\}$ is not rg-closed, gpr-closed, gar-closed in X. Therefore f is not rg-continuous, gpr-continuous, gar-continuous. Hence f is not rg-homeomorphism, gpr-homeomorphism, gar-homeomorphism.

Remark. The composition of two $g\eta$ -homeomorphism need not be $g\eta$ -homeomorphism as seen from the following example.

Example 5.7 Let $X = Y = Z = \{a,b,c\}$ with $\tau = \{X, \varphi, \{b, c\}\}, \sigma = \{Y, \varphi, \{a\}\}$ and $\mu = \{Z,\varphi,\{a\}, \{b, c\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ as f(a) = b, f(b) = c, f(c) = a and $g : (Y, \sigma) \rightarrow (Z,\mu)$ as g(a) = b, g(b) = a, g(c) = c. Then the functions f and g are gn-continuous but their composition $g \circ f : (X, \tau) \rightarrow (Z, \mu)$ is not gn-continuous, since for the closed set $\{b, c\}$ in (Z, μ) , $(g \circ f)^{-1}\{b, c\} = \{b, c\}$ is not gn-closed in (X, τ) .

Theorem 5.8 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a bijective and $g\eta$ -continuous map. Then the following statements are equivalent:

- (i) f is gη-open map(ii) f is gη-homeomorphism
- (iii) f is gn-closed map

Proof. (i) \Rightarrow (ii) Let F be a closed set in (X, τ). Then {X – F} is open in (X, τ). Since f is gn-open, then f (X - F) is gn-open in (Y, σ). This implies Y - f (F) is gn-open in (Y, σ). That is, f (F) is gn-closed in (Y, σ). Thus f is gn-closed. Further (f⁻¹)⁻¹(F) = f (F) is gn-closed in (Y, σ). Thus f⁻¹ is gn-continuous and bijective. Hence f is gn-homeomorphism. (ii) \Rightarrow (iii) Suppose f is an gn-homeomorphism. Then f is bijective, f and f⁻¹ are gn-continuous. Let f be a closed set in (X, τ). Since f⁻¹ is gn-continuous. Then (f⁻¹)⁻¹(F) = f (F) is gn-closed in (Y, σ). Thus f is gn-closed.

(iii) \Rightarrow (i) Let f be a gn-closed map. Let V be an open in X. Then X - V is a closed in (X, τ). Since f is gn-closed, f (X - V) is gn-closed in (Y, σ). This implies Y-f(V) is gn-closed in (Y, σ). Therefore, f (V) is gn-open in (Y, σ).

Definition 5.9 A bijection $f:(X, \tau) \to (Y, \sigma)$ is called a $g\eta^*$ -homeomorphism if both f and f⁻¹ are $g\eta$ -irresoulte.

Theorem 5.10 Every $g\eta^*$ -homeomorphism is $g\eta$ -homeomorphism but not conversely.

Proof. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be an $g\eta^*$ -homeomorphism. Then f and f^{-1} are $g\eta$ -irresolute and f is bijection. Also f and f^{-1} are $g\eta$ -continuous. Therefore f is $g\eta$ -homeomorphism. The converse of the above theorem need not be true as seen from the following example.

Example 5.11 Let $X = Y = \{a,b,c\}$, $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y,\phi, \{b,c\}\}$. Define $f: X \rightarrow Y$ as f(a) = b, f(b) = a, f(c) = c. Here the sets $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$ are $g\eta$ -closed in Y. Then $f^{-1}(\{c\}) = \{c\}, f^{-1}(\{a, c\}) = \{b, c\}$ are not $g\eta$ -closed in X. Therefore, f is not $g\eta$ -irresolute. But $f^{-1}(\{b, c\}) = \{a, c\}$ is $g\eta$ -closed in X. Hence f is $g\eta$ -continuous

References

[1] And rijevic D. "Some properties of the topology of α -sets", Mat. Vesnik 36(1984).

[2] Andrijevic D. "Semi-preopen sets", Mat. Vesnik 38(1) (1986), 24-32.

[3] Balachandran. K, Sundaram. P & Maki. H, Ongeneralised continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math, 12(1991), 5-13.

[4] Bhattacharya. P, and Lahiri. B. K, Semi-generalized closed set in topology, Indian J. Math. 29 (3) (1987), 375 – 382.

[5] Biswas. N, "On some mappings in topological spaces" Bull. Calcutta Math. Soc.1 (1969), 127-135.

[6] Devi. R & Balachandran. K (2001), Some generalizations of α -homeomorphisms in topological spaces , Indian J.PureAppl.Math, 32(4) : 551-563

[7] Devi. R, Balachandran. K, and Maki. H, semi generalized homeomorphisms and generalized Semi homeomorphisms in topological spaces, Indian J. Pure Appl. Math., 26(3) :271:284, 1995.

[8] Gnanambal. Y, Generalized Pre-regular closed sets in topological spaces, Indian J. Pure Appl. Math., 28 (3)(1997), 351-360.

[9] Levine N., Semi open sets and semi continuity in Topological spaces, Amer. Math. Monthly,70(1963), 36-41.

[10] Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Ser. III, 10, (1975), 347 – 350.

[11] Mahmood. S. I. (2012), on generalized regular continuous functions in topological spaces, Kyungpook Math. J., 14:131 -143.

[12] Maki. H, Devi. R and Balachandran. K, Associated topologies of generalized α closed sets and α generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 15, (1994), 51-63.

[13] Maki. H, Devi. R and Balachandran. K, Generalized α closed sets in topology, Bull. Fukuoka Univ. Ed. Part III 42, (1993), 13 – 21.

[14] Maki. H, Sundaram. P and Balachandran. K, On Generalized Homeomorphisms in Topological Spaces, Bull. Fukuoka Univ. Ed, part-III, 40(1991),13-21.

[15] Mashhour A. S., Abd El Mousef M. E.and El-Deeb S. N., On pre-continuous and weak pre-

continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.

[16] Murugalingam. M, Somasundaram. S and Palaniammal. S, A generalized star sets. Bulltin of Pure and Applied Science, 24(2):233:238, 2005.

[17] Palaniappan. N. and Rao.K.C.," Regular generalized closed sets, Kyungpook Math.J.33 (1993), 211-219

[18] Pious Missier. S. and Annalakshmi. M., Between Regular Open Sets and Open Sets, Internat. J. Math. Archive, 7(5) (2016), 128-133.

[19] Sayed MEL and Mansour FHAL, New near open set in Topological Spaces, J Phys Math, 7(4) (2016).

[20] Sekar, S., Kumar, G., On gαr-closed set in Topological Spaces, International Journal of Pure and Applied Mathematics, 108, 4(2016), 791-800.

[21] Subbulakshmi. D, Sumathi. K, Indirani. K., η-open sets in topological spaces, International Journal of Innovative Technology and Exploring Engineering (2019) communicated...

[22] Subbulakshmi. D, Sumathi. K, Indirani. K., gη-closed sets in topological spaces, International Journal of Innovative Technology and Exploring Engineering (2019) communicated...

[23] Subbulakshmi. D,Sumathi. K, Indirani. K., gη-continuous in topological spaces, International Journal of Innovative Technology and Exploring Engineering (2019) communicated...

[24] Sundaram. P, Maki. H and Balachandran. K, Semi-generalized continuous maps and semi- $T_{1/2}$ spaces, Bull. Fukuoka Univ. Ed. Part-III, 40:33-40, 1991.

[25] Veerakumar. M. K. R. S, Between g* closed sets and g closed sets Antartica J. Math, Reprint.