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Abstract. Magneto hydrodynamic (MHD) peristaltic flow of a Couple Stress model of blood flow through a 
permeable channel is examined in this investigation. The flow analysis is performed in the presence of an 
External Magnetic Field. Long wavelength and low Reynolds number methodology is actualized. Mathematical 
expressions of axial velocity, pressure gradient and volume flow rate are obtained. Pressure rise, frictional force 
and pumping phenomenon are portrayed and symbolized graphically. The elemental characteristics of this 
analysis is a complete interpretation of the influence of Couple Stress Parameter, magnetic number, non 
dimensional amplitude ratio and permeability parameter on the velocity, pressure gradient, pressure rise and 
frictional forces. 
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1.  Introduction 
 
Peristalsis is a form of transporting fluids in which an induced wave causes the propagation of the 
flexible walls of a channel/tube. This mechanism is found in many physiological situations like urine 
transport from kidney to the bladder through the ureter, swallowing of food through the esophagus, 
movement of chyme in the gastrointestinal tract, transport of spermatozoa in the ducts efferent of the 
male reproductive organ, movement of ovum in the female fallopian tube, vasomotion of small blood 
vessels, motion of spermatozoa in cervical canal, transport of bile in bile duct. Some worms like 
earthworm use peristalsis for their locomotion. Some biomedical instruments such as heart-lung 
machine work on this principle. Mechanical devices like finger pumps, roller pumps use peristalsis to 
pump blood, slurries and corrosive fluids. The mechanism of peristaltic transport has been exploited 
for industrial applications like sanitary fluid transport, transport of corrosive fluids where the contact 
of the fluid with the machinery parts is prohibited and transport of a toxic liquid is used in nuclear 
industry to avoid contamination from the outside environment. 
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Various studies on peristaltic transport, experimental as well as theoretical, have been carried out by 
many researchers to explain peristaltic pumping in physiological systems. Srivastava et.al [1] studied 
the peristaltic transport of a physiological fluid: part I flow in non-uniform geometry. Latham [2] 
investigated the fluid mechanics of peristaltic pump. Very recently, Mekheimer [3] has discussed the 
effects of the induced magnetic field on peristaltic flow of a couple stress fluid in a slit channel. 
According to him, the magneto hydrodynamic flow of a fluid in channel in connection with peristaltic 
flow has applications in physiological fluids. Recently, Sinha et al.[4] modelled peristaltic transport of 
MHD flow and heat transfer in an asymmetric channel. Srinivasacharya et al.[5] investigated 
peristaltic flow of micropolar fluid through a tube under low Reynolds number and long wavelength 
approximations. They found that pumping improves for micropolar fluids compared with Newtonian 
fluids. Hayat et al.[6] investigated the effects of different wave forms on peristaltic flow of micro polar 
fluids through a channel and reported that the maximum pressure against which peristalsis works, 
increases with the coupling number but decreases with the micro polar parameter. Rathod and 
Mahadev [7] studied slip effects and heat transfer on MHD peristaltic flow of Jeffrey fluid in an 
inclined channel. Rathod and Laxmi [8] studied peristaltic transport of a conducting fluid in an 
asymmetric vertical channel with heat and mass transfer. Pandey and Chaube [9] studied peristaltic 
flow of a micro polar fluid through a porous medium in the presence of an external magnetic. 

 
Flow through porous media has been of considerable interest in the recent years due to the potential 
application in all fields of Engineering, Geo-fluid dynamics and Bio-Mechanics. For example study of 
flow through porous media is immense use to understand transport process in lungs, in kidneys, 
gallbladder with stones, movement of small blood vessels and tissues cartilage and bones etc. Most of 
the tissues in the body (e.g. bone, cartilage, muscle) are deformable porous media. Sobh [10] 
investigated peristaltic transport of a magneto Newtonian fluid through a porous medium. Recently, 
Abd-Alla et al.[11], Tripathi [12], Mekheimer et al.[13], Maiti and Misra [14], Elshehawey et al.[15] 
studied the interaction of peristalsis through a porous medium. The peristaltic fluid flow through 
channels with flexible walls has been studied by RaviKumar et al.[16]-[19]. Vajravelu et al.[20] 
discussed the peristaltic flow and heat transfer in a vertical porous annulus, with long wave 
approximation. 

 
The couple stress fluid is a special case of the non-Newtonian fluids where these fluids are consisting 
of rigid randomly oriented particles suspended in a viscous medium and their sizes are taken into 
account. There have only few attempts for studying the peristaltic flow of a couple stress fluids, first 
discussed by Stokes [21]. For couple stress fluids, there have been a number of studies carried out due 
to its widespread industrial and scientific applications, such as the works of Srivastava [22], 
Mekheimer and Abdelmaboud [23] and Sobh [24] 

 

2.  Mathematical Formulation  
 

Consider the flow of an incompressible, electrically conducting Couple stress fluid through a porous 
medium in presence of an external magnetic field. The fluid fills a two dimensional channel of non 
uniform thickness. Sinusoidal waves of constant speed (c) propagate along the channel boundaries. 
The plates of the channel are assumed to be electrically insulated. We choose a rectangular coordinate 
system for the channel with x along center-line in the direction of wave propagation and y transverse 
to it. 

 
The geometry of the channel walls is given by 

  (1) 
with 

 a(x′) = a + kx′ (2) 
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where a(x′) is the half width of the channel at any axial distance x′ from inlet, a is the half-width at the 
inlet, b is the amplitude, k(<<1) is a constant whose magnitude depends on the length of the channel 
and exit and inlet dimensions, λ is the wavelength, c is the wave speed, and t′ is the time. 

 
Figure 1: The Geometry of the problem 

 
The flow is unsteady in the laboratory frame (X′,Y ′) whereas it is steady if observed in the coordinate 
system (x′,y′), termed as a wave frame, moving with velocity c. The transformation from the fixed 
frame of reference (X′,Y ′) to the wave frame of reference (x′,y′) is given by 

 x′ = X′ −ct′,y′ = Y ′,u′ = U′ −c,v′ = V ′. (3) 
 
In absence of body forces and body couple, the governing equations for the flow in wave frame of 
reference are given by 
 

 

(4) 
 
 
 
(5) 
 
 
 
 
(6) 

where u′ and v′ are the velocity components in the x′ and y′ directions, respectively, ρ is the density of 
the fluid, p′ is the pressure, µ is the viscosity constant of the classical fluid dynamics, η∗is the 
coefficient of couple stress, σis the electrical conductivity, B0 is the strength of the magnetic field and

 is the permeability of the porous medium. 

Now we introduce the non-dimensional variables and parameters as follows 
 

 

 
 
(7) 

where, M is termed as the Hartman number, Re as the Reynolds number and δ as the wave number. 

Using the non-dimensional variables and parameters given above in Eqs.(5) and (6), we get the 
modified equations as 
 



 

 

 
 

823 
 

 

 
(8) 
 
 
 
 
(9) 

Using the long wavelength approximation and neglecting the wave number along with low Reynolds 
number, one can find from Eqs. (8) and (9) that 
 

 
 

 

(10) 
 
 
(11) 

Since it is presumed that the couple stress is caused by the presence of the suspending particles, 
obviously the clear fluid cannot support couple stress at the boundary, hence we have tactically 
assumed that the components of the couple stress tensor vanish at the wall, the corresponding 
boundary conditions in dimensionless form are given by 
 

 
 

 

(12) 
 
 
(13) 

 

3.  Method of Solution 

Solving Eq. (10) by using the boundary conditions from Eqs. (12) and (13), we get 
 

 

 
 
(14) 

where the volume flow rate in the fixed frame is given by 

 

 
(15) 

where h′ is a function of X′ and t′. The rate of volume flow in the wave frame can be expressed as 

 

 
(16) 

where h′ is a function of x′ alone. Eqs. (3), (15) and (16) yield 

Q(X′,t′) = q′(x′) + ch′(X′,t′).  
(17) 

The time averaged mean flow rate over a period T at a fixed position X′ is expressed as 

The time averaged mean flow rate over a period T at a fixed position X′ is expressed as 
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 .  (18) 

Using Eq. (17) into Eq. (18), we get  

Q′(X′) = q′(x′) + ac (19) 

The dimensionless mean flow rates Qe (in the laboratory frame) and q (in the wave frame) are defined as 

 
 
(20) 

By using Eq. (20) in Eq. (19), we get 

Qe = q + 1 
 
(21) 

where 

 

 
(22) 

Substitute Eq. (14) in Eq. (22), we have 

 

 
(23) 

The pressure gradient obtained from Eq. (23) and Eq. (21) can be expressed as 

 

The expressions for pressure rise ∆p and the frictional force F over one wavelength are given by 

 

(25) 

(26) 
 

4.  Results and Discussion 

In this section, the numerical and the computational results are discussed through the graphical 
illustration. We have presented the graphical results of the solutions of axial velocity (u), pressure 
gradient (7 ), pressure rise (∆p) and friction force (F) for different values of Couple stress (S), Porous 
medium (K1), amplitude ratio ϕand Magnetic number (M). 

The axial velocity is shown in the Figs. (2) to (7) for different values of Couple stress parameter (S), 
Porous parameter (K1), Magnetic number (M) and amplitude ratio ϕ. Fig. (2) reveals that the axial 
velocity distribution decreases by increasing the couple stress parameter (S) with K1 = 10. Fig. 

(3) reveals that the axial velocity distribution increases by increasing the porous parameter (K1) with 
S= 0.1 and interestingly there is no significant effect of porous parameter (K1) on the axial velocity (u) 
for large values of K1. 

The effect of Magnetic field on the axial velocity has been shown in the figs. (4) to (6). These figures 
illustrate that by increasing the magnetic number (M), the axial velocity decreases with S ≥ 0.1. Fig. 
(7) illustrates that the axial velocity distribution decreases by increasing the amplitude ratio ϕ. 
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Figs. (8) to (15) illustrate the variation of pressure gradient  for a given wavelength versus x, where 
x ∈ [0,1]. Fig. (8) shows the variation of  for variation of the Couple stress parameter S 

with t = 0. We observed that the flow cannot pass easily through the narrow part of the channel i.e x ∈ 
(0.5,0.9). Therefore, it requires large pressure gradient to maintain the same flux to pass it in the 
narrow part of the channel. Whereas, the flow can easily pass through the wider part of the channel x ∈ 
(0.9,1) without applying the large pressure gradient. It can be seen that an increase in the Couple stress 
parameter S increases  in the narrow part of the channel x ∈ (0.5,0.9) while in the wider part of the 
channel x ∈ (0,0.4) ∪ (0.9,1) there is no noticeable difference.Fig. (9) reveals the variation of  for 
different values of Couple stress parameter S with t = 0.5. We notice that  is maximum at x=0.2. It is 
observed that in the narrow part of the channel x ∈ (0.1,0.4) it requires large pressure gradient to make 
the flow as normal fluid flow while in the wider part of the channel x ∈ (0,0.1)∪(0.4,1) fluid can pass 
easily because of the low pressure gradient. Fig. (10) reveals the variation of  for different values of 
Couple stress parameter S with t = 0.75. We notice that is maximum at x=0.5. It is observed that in 
the narrow part of the channel x ∈ (0.3,0.6) it requires large pressure gradient to make the flow as 
normal fluid flow while in the wider part of the channel x ∈ (0,0.3)∪(0.6,1) fluid can pass easily 
because of the low pressure gradient. Fig. (11) illustrates the 

increase in the Averaged flow rate Qe. Fig. (12) depicts that by increasinge ϕ,dx
dp increases in the 

narrow variation of  for variation of Averaged Flow Rate Q. It is interesting to note that  decreases 
with part of the channel while  negligibly decreases in the wider part of the channel. 

The effect of magnetic field on pressure gradient has been shown in Figs. (13) to (15). On increasing 
the magnetic number M, dx

dp decreases in the wider part of the channel x ∈ (0,0.4) ∪ (0.9,1) while in 
the narrow part of the channel x ∈ (0.5,0.9) there is a negligible decrease in the pressure gradient. 
 

 
Figure 2: Distribution of axial velocity for 
different value of S with fixed K1 = 10, dx

dp = 
−2, 

0005,  

 
Figure 3: Distributioyn of axial velocity for 
different value of K1 with fixed S = 0.1, M = 1, 

0005, 
 

 

 
Figure 4: Distribution of axial velocity for 
different value of M with fixed S = 0.1, K1 = 
10, 

0005, 

 
Figure 5: Distribution of axial velocity for 
different value of M with fixed S = 0.2, K1 = 
10, 

0005, y 
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Figure 6: Distribution of axial velocity for 
different value of M with fixed S = 0.3, K1 = 
10, 

0005, 

 
Figure 7: Distribution of axial velocity for 
different value of ϕwith fixed S = 0.1, K1 = 10, 

= 10, 

 

 
Figure 8: Distribution of axial pressure 
gradient for different value of S with fixed K1 = 
10, t = 0, ϕ= 0.7, M = 0.5, λ = 10, k = 0.0005, 
a0 = 0.01, 

Qe = 0.5. 

 
Figure 9: Distribution of axial pressure 
gradient for different value of S with fixed K1 = 
10, t = 0.5, ϕ= 0.7, M = 0.5, λ = 10, k = 0.0005, 
a0 = 0.01, 

Qe = 0.5. 
 

 
Figure 10: Distribution of axial pressure 
gradient for different value of S with fixed K1 = 
10, t = 0.75, ϕ= 0.7, M = 0.2, λ = 10, k = 
0.0005, a0 = 0.01, Qe = 0.5. 

 
Figure 11: Distribution of axial pressure 
gradient for different value of Qe with fixed K1 

= 10, t = 0, ϕ= 0.7, λ = 10, k = 0.0005, a0 = 
0.01, S = 0.1. 

 

 
Figure 12: Distribution of axial pressure 

 
Figure 13: Distribution of axial pressure 
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gradient for different value of ϕwith fixed K1 = 
10, Qe = 0.5, 

t = 0, λ = 10, k = 0.0005, M = 0.5, a0 = 0.01, S 
= 0.1. 

gradient for different value of M with fixed K1 

= 10, S = 0.1,t = 0, ϕ= 0.7, λ = 10, k = 0.0005, 
a0 = 0.01, Qe = 0.5. 

 

 
Figure 14: Distribution of axial pressure 
gradient for different value of M with fixed K1 

= 10, S = 0.2,t = 0, ϕ= 0.7, λ = 10, k = 0.0005, 
a0 = 0.01, Qe = 0.5. 

 
Figure 15: Distribution of axial pressure 
gradient for different value of M with fixed K1 

= 10, S = 0.3,t = 0, ϕ= 0.7, λ = 10, k = 0.0005, 
a0 = 0.01, Qe = 0.5. 

 

 
Figure 16: Effect of S on ∆p when K1 = 10, 

= 10, 

 
Figure 17: Effect of K1 on ∆p when S = 0.1, 

= 10, 
 

 
Figure 18: Effect of ϕon ∆p when S = 0.1, 

= 10, 

k = 0.0005, a0 = 0.01. 

 
 
Figure 19: Effect of M on ∆p when S = 0.1, 

= 10, 

k = 0.0005, a0 = 0.01. 
 

 
 
Figure 20: Effect of S on F when ,  
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M = 0.5, x = 0.25, ϕ= 0.7, λ = 10, k = 0.0005, 

a0 = 0.01. 

 
Figure 21: Effect of K1 on F when S = 0.1, 

= 10, 
 

 
 
Figure 22: Effect of ϕon F when , 

M = 0.5, x = 0.25, K1 = 10, λ = 10, k = 0.0005, 

a0 = 0.01. 

 
 
Figure 23: Effect of M on ∆p when S = 0.1, 

= 10, 

k = 0.0005, a0 = 0.01. 
 

 

 
 

 

The Variation of Pressure rise ∆p over one wavelength, friction force F across one wavelength against 
the average volume flux Qe has been illustrated in Figs. (16) to (23) for different values of Couple 
stress1 parameter S, Porous parameter K , amplitude ratio ϕand magnetic number M. The pressure rise 
against the volume flow rate for various parameters of interest is illustrated in Figs. (16) to (19). We 
discern that the pressure rise and volume flow rate have an opposite behavior. In these figures the 

region (∆p >0,Q <e 0), augmented regione (∆p <0,Q >e 0) and free pumping regione (∆p = 0). The 
region is divided into four parts: peristaltic pumping region (∆p >0,Q >0), retrograde pumping 

region in which ∆p >0,Q >0) is known as the peristaltic pumping region. In this region the peristaltic 
wave overcomes the pressure rise and induces the fluid in the direction of its propagation. The region 
where ∆p >0 and Q <e 0 is called a retrograde pumping region. In this region, the flow is oppositee to 
the direction of the peristaltic motion. The region in which ∆p <0,Q >0 is known as augmented 
pumping region or co-pumping region. In this region, the negative pressure rise increases the flow due 
to the peristalsis of the walls. In the free pumping region, where ∆p = 0, the fluid is exclusively 
propelled by the peristalsis of the walls. 

From Fig. (16), it is depicted that increase of couple stress fluid parameter decreases the pumping rate 
Qe in the augmented pumping region. In the free pumping region, the pumping rate reaches to ae 
critical value of Q. In the peristaltic and retrograde pumping regions, the pumping rate increases by 
increasing S. The behavior is quite opposite with increase in amplitude ratio ϕas shown in Fig. (18). 
From Fig. (17) it is noticed that on increasing the porous parameter K1, the pumping rate increases in 
the augmented, peristaltic and free pumping regions and decreases in the retrograde pumping region. 
Fig. (19) demonstrates that increase of magnetic effects decreases the pumping rate in the augmented, 
free and peristaltic pumping regions and increases the pumping rate in the retrograde pumping region. 
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Figs. (20) to (23) describes the variation of frictional forces F against the flow rate for different 
parameters of interest. The frictional forces exactly have an opposite behavior when compared to the 
pressure rise. 
 

5.  Conclusion 

In this paper we have discussed the peristaltic flow of blood flow of a couple stress fluid through a 
porous medium in the presence of an external magnetic field. The governing two dimensional 
equations are simplified using low Reynolds number and long wavelength approximation. The 
accurate expressions for axial velocity, pressure gradient, volumetric flow rate, pressure rise and 
frictional forces are obtained analytically. Graphical results are presented for these expressions. The 
key findings can be summarized as follows:Axial velocity increases by increasing K1 and decreases by 
increasing the couple stress fluid parameter S, magnetic number M and amplitude ratio ϕ.Pressure 
gradient increases by increasing S and ϕin the narrow part of the channel while in the wider part of the 
channel there is no appreciable difference. Magnetic field shows opposite behavior as compared to 
S.By increasing the averaged flow ratedecreases.Best pumping can be seen at higher values of the 
magnetic field.The frictional forces have an opposite behavior as compared to the pressure rise 
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