

Advances in Mathematics: Scientific Journal 9 (2020), no.1, 295-303

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.1.24

INTUITIONISTIC FUZZY TRANSLATION ON INK-ALGEBRA

M.KAVIYARASU, K.INDHIRA¹, AND V.M.CHANDRASEKARAN

ABSTRACT. In this article, We introduced intuitionistic fuzzy translation and intuitionistic fuzzy multiplication on INK-algebras and derived some results to get the structure of intuitionistic fuzzy INK-subalgebra.

1. INTRODUCTION

The idea of fuzzy translations trendy fuzzy subalgebras in addition ideals in BCK/BCI-algebras has been deliberated respectively by Lee et al. and Jun. They studied relatives' mid fuzzy translations, fuzzy extensions and fuzzy multiplications. Inspired by this, Senapati, T and M. Bhowmik, M. Pal presented fuzzy translations of fuzzy H-ideals in BCK/BCI-algebras. They likewise outspread this learning from fuzzy translations to intuitionistic fuzzy translations in BCK/BCI-algebras. In this paper,intuitionistic fuzzy translations, intuitionistic fuzzy extensions and intuitionistic fuzzy multiplications of intuitionistic fuzzy INK-subalgebra in INK-algebras be situated conversed. Relatives between intuitionistic fuzzy translations,intuitionistic fuzzy extensions too intuitionistic fuzzy multiplications of intuitionistic fuzzy INK-algebra in INK-algebras are as well studied in [2–7] and [1].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. INK-Algebra,Fuzzy INK-Subalgebra, Intuitionistic fuzzy INK-Subalgebra, Intuitionistic fuzzy translation, Intuitionistic fuzzy multiplication.

2. PRELIMINARIES

Definition 2.1. An algebra $(E, \odot, 0)$ is called a INK-algebra if you meet the ensuing conditions for every $p, q, r \in E$.

INK-1: $((p \odot q) \odot (p \odot r)) \odot (r \odot q) = 0$

INK-2: $((p \odot r) \odot (q \odot r)) \odot (p \odot q) = 0$

INK-3: $p \odot 0 = p$

INK-4: $p \odot q = 0$ and $q \odot p = 0$ imply p = q.

Definition 2.2. Let $Y \subseteq E$ is called a INK-subalgebra of E. If $p \odot q \in Y$.

Definition 2.3. Let E be a INK-algebra. Then a fuzzy set A is defined as $A = \{(p, v_A(p)) | p \in E\}, 0 \le v_A(p) \le 1$, for all $p \in E$.

Definition 2.4. A FS v in a INK-algebra E is called a fuzzy INK ideal of E, if:

- i) v(0) > v(p)
- ii) $v(p) \ge \min \{(v(q \odot p) \odot (q \odot r)), v(q)\}$ for all $p, q, r \in E$.

Definition 2.5. A fuzzy set v in a INK-algebra E is named a fuzzy INK-subalgebra of E if $v_A(p \odot q) \ge min\{v_A(p), v_A(q)\}$, for all $p, q \in E$.

Definition 2.6. An intuitionistic fuzzy set(IFS) A in a non-empty set E is an object having the form $A = \{(p, v_A(p), w_A(p)) | p \in E\}$, where the function: $v_A : E \to [0,1]$ and $w_A : E \to [0,1]$, denote the degree of membership and the degree of non-membership of each element $p \in E$ to the set A respectively, and $0 \le v_A(p) + w_A(p) \le 1$, for all $p \in E$. Then denoted by $A = (p, v_A, w_A)$ for the intuitionistic fuzzy set $A = \{(p, v_A(p), w_A(p)) | p \in E\}$.

Definition 2.7. An IFS $A = (p, v_A, w_A)$ is named an IF-subalgebra of E if it satisfies:

- i) $v_A(p \odot q) \ge min\{v_A(p), v_A(q)\},\$
- ii) $w_A(p \odot q) \leq max\{w_A(p), w_A(q)\}$, for all $p, q \in E$.

3. Translation of intuitionistic fuzzy subalgebra

For the sake of straightforwardness, we mean to usage the symbol $A = (p, v_A, w_A)$ for the IFS $A = \{(p, v_A(p), w_A(p)|p \in E)\}$. We consider $T = 1 - \inf\{w_A(p)|p \in E\}$ for any $A = (p, v_A, w_A)$ of E. **Definition 3.1.** Let $A = (p, v_A, w_A)$ be an IFS of E and let $\alpha \in [0, T]$. An object having the form $A_{\alpha}^T = ((v_A)_{\alpha}^T, (w_A)_{\alpha}^T)$ is named an IF- α -translation of A if $(v_A)_{\alpha}^T(p) = v_A(p) + \alpha$ and $(w_A)_{\alpha}^T(p) = v_A(p) - \alpha$ for all $p \in E$.

Theorem 3.1. let A be an IF-INK subalgebra of E and $\alpha \in [0,T]$. Then the IF- α -translation A_{α}^{T} of A is an IF-INK subalgebra of E.

Proof. Let $p, q \in E$. Then $v(p \odot q) \ge min\{v(p), v(q)\}$. Now

$$\begin{aligned} v_{\alpha}^T(p\odot q) &= v(p\odot q) + \alpha \\ &\geq \min\left\{v(p), v(q)\right\} + \alpha \\ &= \min\left\{v(p) + \alpha, v(q) + \alpha\right\} \\ &= \min\left\{v_{\alpha}^T(p), v_{\alpha}^T(q)\right\}, \end{aligned}$$

and

$$\begin{aligned} w_{\alpha}^T(p \odot q) &= w(p \odot q) - \alpha \\ &\leq \max \left\{ w(p), w(q) \right\} - \alpha \\ &= \max \left\{ w(p) - \alpha, w(q) - \alpha \right\} \\ &= \max \left\{ w_{\alpha}^T(p), w_{\alpha}^T(q) \right\}. \end{aligned}$$

Theorem 3.2. Let A be an IFS of E such that the IF- α -translation A_{α}^{T} of A is an IF-INK subalgebra of E for some $\alpha \in [0,T]$. Then A is an IF-INK subalgebra of E.

Proof. Let A_{α}^T is an IF-subalgebra of E for some $\alpha \in [0,T]$. Then

$$\begin{split} v(p\odot q) + \alpha &= v_{\alpha}^T(p\odot q) \\ &\geq \min\left\{v_{\alpha}^T(p), v_{\alpha}^T(q)\right\} \\ &= \min\left\{v(p) + \alpha, v(q) + \alpha\right\} \\ &= \min\left\{v(p), v(q)\right\} + \alpha \\ v(p\odot q) &\geq \min\left\{v(p), v(q)\right\} \;, \end{split}$$

and

$$\begin{split} w(p\odot q) - \alpha &= w_{\alpha}^T(p\odot q) \\ &\leq \max\left\{w_{\alpha}^T(p), w_{\alpha}^T(q)\right\} \\ &= \max\left\{w(p) - \alpha, w(q) - \alpha\right\} \\ &= \max\left\{w(p), w(q)\right\} - \alpha \\ w(p\odot q) &\leq \max\left\{w(p), w(q)\right\} \,. \end{split}$$

This implies that $v(p \odot q) \ge \min \{v(p), v(q)\}$ and $w(p \odot q) \le \max \{w(p), w(q)\}$. Hence A is an IF-INK subalgebra of E.

Definition 3.2. Let A be an IFS of E and $e \in [0,1]$. An object having the form $A_e^M = ((v_A)_e^M, (w_A)_e^M)$ is called an IF e-multiplication of A if $(v_A)_e^M(p) = v_A(p) \cdot e$ and $(w_A)_e^M(p) = w_A(p) \cdot e$ for all $p \in E$.

Theorem 3.3. If $A = (v_A, w_A)$ be an IF-INK subalgebra of E, then the IF e-multiplication of A is an IF-INK subalgebra of E for all $e \in [0, 1]$.

Proof. Assume that $A = (v_A, w_A)$ is a IF-INK subalgebra of E. Then $e \in [0, 1]$.

$$(v_A)_e^M(p \odot q) = e \cdot v_A(p \odot q)$$

$$\geq e \cdot \min\{v_A(p), v_A(q)\}$$

$$\geq \min\{(v_A)_e^M(p), (v_A)_e^M(p)\},$$

and

$$(w_A)_e^M(p \odot q) = e \cdot w_A(p \odot q)$$

$$\leq e \cdot max \{ w_A(p), w_A(q) \}$$

$$\leq max \{ (w_A)_e^M(p), (w_A)_e^M(p) \}.$$

Hence $(v_A)_e^M$ and $(w_A)_e^M$ is an IF-INK subalgebra of E.

Theorem 3.4. If $A = (v_A, w_A)$ be an IF subset of E, then the following assertions are equivalent.

- i) v_A is an IF-INK subalgebra of E.
- ii) $(v_A)_e^M$ is an IF-INK-subalgebra of E.

Proof. Necessity follows from Theorem 3.3. For the sufficiency part, let $e \in [0, 1]$ be such that A_e^M is an IF-INK subalgebra of A. Then for all $p, q \in E$ we have:

$$v_{A}(p \odot q) \cdot e = (v_{A})_{e}^{M}(p \odot q)$$

$$\geq \min \{(v_{A})_{e}^{M}(p), (v_{A})_{e}^{M}(q)\}$$

$$\geq \min \{v_{A}(p) \cdot e, v_{A}(q) \cdot e\}$$

$$v_{A}(p \odot q) \cdot e = \min \{v_{A}(p), v_{A}(q)\} \cdot e,$$

$$w_{A}(p \odot q) \cdot e = (w_{A})_{e}^{M}(p \odot q)$$

$$\leq \max \{(w_{A})_{e}^{M}(p), (w_{A})_{e}^{M}(q)\}$$

$$\leq \max \{w_{A}(p) \cdot e, w_{A}(q) \cdot e\}$$

$$w_{A}(p \odot q) \cdot e = \max \{w_{A}(p), w_{A}(q)\} \cdot e.$$

Hence, A is an IF-INK subalgebra of E.

4. INTUITIONISTIC FUZZY EXTENSION ON INK-SUBALGEBRA

Definition 4.1. Let $A = (p, v_A, w_A)$ and $B = (p, v_B, w_B)$ be IFS of E. If $A \ge B$, $v_A(p) \le v_B(p)$ and $w_A(p) \ge w_B(p)$ for all $p \in E$. Then we call B is an IF-extension of A.

Definition 4.2. Let $A = (p, v_A, w_A)$ and $B = (p, v_B, w_B)$ be IFS of E. Then B is named an IF-S-extension of A. It the ensuing assertions are valid:

- i) B is an IF-extension of A.
- ii) If A is an IF-INK subalgebra of E, then B is an IF-INK subalgebra of E.

Theorem 4.1. Let A be an IF-INK subalgebra of E and $\alpha \in [0,T]$. Then the IF α -translation v_{α}^{T} of A is an IF-S-extension of A.

The converse of Theorem 4.1 is not true in general as seen in the following example.

Example 1. Consider a INK-algebra $E = \{0, 1, 2, 3, 4\}$ with the following Cayley table.

\odot	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	2	0
3	3	1	3	0	1
4	4	4	4	4	0

Define $A = (p, v_A, w_A)$ be an IF subset of E by

	Ξ	0	1	2	3	4
ι	$^{\prime}A$	0.8	0.5	0.3	0.6	0.2
l	v_A	0.36	0.45	0.55	0.65	0.69

Then A is an IF-INK subalgebra of E. Let $B = (p, v_B, w_B)$ be an IF subset of E given by

E	0	1	2	3	4
v_B	0.84	0.56	0.38	0.67	0.21
w_B	0.10	0.35	0.40	0.32	0.25

Then B is an IF-S-extension of A. But it is not an IF- α -translation of A_{α}^{T} of A, for all $\alpha \in [0,T]$. clearly, the intersection of IF S-extension of an IF-INK subalgebra A of E is an IF S-extension of A. But the union of IF S-extensions of an IF-INK subalgebra A of E is not an IF S-extension of A as seen in the following example.

Example 2. Consider a INK-algebra $A = \{0, 1, 2, 3, 4\}$ with the following Cayley table:

\odot	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	0	0
3	3	1	1	0	0
4	4	3	3	1	0

Define $A = (p, v_A, w_A)$ be an IF subset of E by

E	0	1	2	3	4
v_A	0.7	0.4	0.6	0.3	0.3
w_A	0.2	0.3	0.4	0.4	0.6

Then A is an IF-INK subalgebra of E. Let $B = (p, v_B, w_B)$ be an IF subset of E given by

E	0	1	2	3	4
v_B	0.8	0.6	0.8	0.4	0.4
w_B	0.2	0.3	0.2	0.3	0.2

and

E	0	1	2	3	4
v_C	0.9	0.6	0.6	0.6	0.7
w_C	0.1	0.2	0.2	0.2	0.2

Then B and C are IF- S-extensions of A. But the union BUC is an IF- S-extension of A since, but it is not an IF S-extension of A, since,

$$v_{BUC}(4 \odot 2) = 0.6 \neq 0.7 = min\{v_{BUC}(4), v_{BUC}(2)\}$$

 $w_{BUC}(4 \odot 2) = 0.3 \neq 0.2 = min\{w_{BUC}(4), w_{BUC}(2)\}$

For an IF-subset $A=(v_A,w_A)$ of $E,\alpha\in[0,T]$ and $t,s\in[0,1]$ by $t\geq\alpha$. Let $U_\alpha(v_A;t)=\{p\in E|v_A(p)\geq t-\alpha\}$ and $L_\alpha(w_A;s)=\{p\in E|w_A(p)\geq s+\alpha\}$. If A is an IF-INK subalgebra of E, then it is clear that $U_\alpha(v_A;t)$ and $L_\alpha(w_A;s)$ are subalgebras of E, for all $t\in Im(v_A)$ and $s\in Im(w_A)$ with $t\geq\alpha$. But, if we do not give a condition that A is an IF-INK subalgebra of E, then $U_\alpha(v_A;t)$ and $L_\alpha(w_A;s)$ are not INK-subalgebras of E as seen in the following example.

Example 3. Let $A = \{0, 1, 2, 3, 4\}$ be a INK-algebra which is given in Example 4.1. Define an IF-subset v of E by

E	0	1	2	3	4
v_A	0.7	0.4	0.6	0.3	0.5
w_A	0.2	0.3	0.4	0.7	0.6

Then v is not an IF-INK subalgebra of E. Then

$$v_A(4 \odot 2) = 0.3 \neq 0.5 = min\{v_A(4), v_A(2)\},\$$

and

$$w_A(4 \odot 1) = 0.7 \neq 0.6 = max\{w_A(4), w_A(1)\}\$$

 $A=(v_A,w_A)$ is not an IF-INK subalgebra of E. For $\alpha=0.1$ and t=0.5, we obtain $U_{\alpha}(v_A;t)=\{0,1,2,4\}$, which is not a INK-subalgebra of E. For $\alpha=0.1$ and s=0.6, we obtain $L_{\alpha}(w_A;s)=\{0,1,2,4\}$ which is not a INK-subalgebra of E.

Theorem 4.2. Let $A = (v_A, w_A)$ be an IF-INK subalgebra of A and let $\alpha, \beta \in [0, T]$. If $\alpha \geq \beta$ then the IF translation $A_{\alpha}^T = ((v_A)_{\alpha}^T, (w_A)_{\alpha}^T)$ of A is an IF S-extension of the IF β -translation $A_{\beta}^T = ((v_A)_{\beta}^T, (w_A)_{\beta}^T)$ of A.

For every IF-INK subalgebra A of E and $\beta \in [0,T]$, the IF β -translation A_{β}^T of A is an IF-INK subalgebra of E. If IF S-extension of A_{β}^T , then there exists $\alpha \in [0,T]$ such that $\alpha \geq \beta$ and $B \geq A_{\beta}^T$, that is $v_A(p) \geq (v_A)_{\alpha}^T$ and $w_A(p) \leq (w_A)_{\alpha}^T$, for all $\alpha \in E$. Hence, we have the following theorem.

Theorem 4.3. Let A be an IFINK-subalgebra of E and let $\beta \in [0,T]$ for every IF S-extension $B = (v_B, w_B)$ of the IF β -translation A_{β}^T of A, there exists $\alpha \in [0,T]$ such that $\alpha \geq \beta$ and B is an IF S-extension of the IF α -translation $(v_A)_{\alpha}^T$ of A.

Let us illustrate the Theorem 4.3 using the following example.

Example 4. Let $A = \{0, 1, 2, 3, 4\}$ be a INK-algebra and $A = (v_A, w_A)$ be an IFS of E. Take T = 0.3. If we take $\beta = 0.15$, then the IF β -translation A_{β}^T of A is given by

E	0	1	2	3	4
$(v_A)_{\beta}^T$	0.85	0.55	0.75	0.45	0.65
$(w_A)_{\beta}^T$	0.05	0.15	0.25	0.25	0.45

Let $B = (v_B, w_B)$ be an IFS of E defined by

ig E	0	1	2	3	4
v_B	0.90	0.68	0.88	0.58	0.78
w_B	0.12	0.22	0.32	0.32	0.52

Then B is clearly an IF INK subalgebra of E which is an IF S-extension of the IF β -translation A_{β}^{T} of A. But B is not an IF translation of A, for all $\alpha \in [0,T]$. If

we take $\alpha = 0.18$ then $\alpha = 0.18 > 0.15 = \beta$ and the IF translation $A_{\alpha}^{T} = ((v_{A})_{\alpha}^{T}, (w_{A})_{\alpha}^{T})$, of A is given as follows,

E	0	1	2	3	4
$(v_A)_{\alpha}^T$	0.90	0.68	0.88	0.58	0.78
$(w_A)_{\alpha}^T$	0.12	0.22	0.32	0.32	0.52

Note that $B(p) \geq (v_A)_{\alpha}^T(p)$ that is $v_B(p) \geq (v_A)_{\alpha}^T$ and $w_B(p) \leq (w_A)_{\alpha}^T$, for all $p \in E$, and hence, B is an IF S-extension of the IF α -translation $(v_A)_{\alpha}^T$ of A.

REFERENCES

- [1] L.A. ZADEH: Fuzzy sets, Information and Control., 2 (1965), 338-353.
- [2] M. KAVIYARASU, K. INDHIRA, V.M. CHANDRASEKARAN: Fuzzy Sub algebras and Fuzzy K-ideals in INK-Algebras, International Journal of pure and applied Mathematics, 113(6)(1991), 47 55.
- [3] K. ISEKI, S. TANAKA: An introduction to the theory of BCK algebras, Math Japonica., **23**(2) (1978), 1–20.
- [4] K. ISEKI: On BCI-algebras, Math. Seminar Notes., 8(1980), 125-130.
- [5] M. KAVIYARASU, K. INDHIRA: *Fuzzy translation on INK-Algebras*, Journal of advanced research in dynamical and control systems., **11**(10)(2019), 1938 1943.
- [6] M. KAVIYARASU, K. INDHIRA, V.M. CHANDRASEKARAN, J. KAVIKUMAR,: *Intervalvalued fuzzy subalgebra and fuzzy INK-ideal in INK-algebra*, V. Madhu, A. Manimaran, D. Easwaramoorthy, D. Kalpanapriya, and M.M. Unnissa (editors), Advances in Algebra and Analysis, Birkhäuser, Cham., (2018), 19–25.
- [7] M. KAVIYARASU, K. INDHIRA, V. M CHANDRASEKARAN: *Fuzzy p-ideal in INK-Algebra*, Journal of Xian University of Architecture and Technology, **12**(3)(2020), 4746 4752.

DEPARTMENT OF MATHEMATICS

University of Vellore Institute of Technology

VELLORE-632014, INDIA.

E-mail address: kavitamilm@gmail.com

DEPARTMENT OF MATHEMATICS

University of Vellore Institute of Technology

Vellore-632014, India.

E-mail address: kindhira@vit.ac.in

DEPARTMENT OF MATHEMATICS,

University of Vellore Institute of Technology

VELLORE-632014, INDIA.

E-mail address: vmcsn@vit.ac.in