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REMEMBERING RAMANUJAN

R. SIVARAMAN1

ABSTRACT. Mathematicians like Guido Grandi, Ernesto Cesaro and others found
novel way of assigning finite sum to divergent series. This created a new
scope of understanding leading to analytic continuation of real valued func-
tions. One among such methods was called “Ramanujan Summation” pro-
posed by Indian Mathematician Srinivasa Ramanujan. In this paper, I try to
highlight how Ramanujan could have possibly arrived at those values by look-
ing through his notebook jottings and extending further to provide Geometri-
cal meaning behind those values obtained by him. Finally, I provide a novel
way to arrive at the general formula obtained by Ramanujan regarding his
summation of zeta function.

1. INTRODUCTION

Srinivasa Ramanujan an Indian mathematician was considered to be one of
the greatest mathematicians of 20th century for his extra ordinary contributions
to mathematics spanning nearly 11 sub-disciplines. In particular, he is consid-
ered to be a magician in the areas of Summability Theory, Integrals, Elliptic
Functions, Continued Fractions, Theta Functions to name a few. Ramanujan
produced 3872 theorems and conjectures in his short lifetime spanning just
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32 years, 4 months and 5 days. During this short time, he produced extra-
ordinary formulas whose truth baffle even current mathematicians and make
them wonder how he would have even thought about them in first place.

With the help of famous English mathematician G.H. Hardy at Trinity Col-
lege, Cambridge University, England, Ramanujan did research for five years in
the period from 1914 to 1919. He produced seven papers in collaboration with
Hardy during this period. Each one of these is considered to be a gem in math-
ematics. Much of what Ramanujan did in Analytic Number Theory became a
basic tool for solving many unsolved problems. In this regard, Ramanujan’s
contribution became very essential for the development of mathematics par-
ticularly in Analytic Number Theory during last century. More importantly,
Ramanujan’s life and contributions made other scientists of India to believe
that they can also produce such high quality research at other parts of globe
and scale greater heights in mountain of mathematics.

One of the curious contributions that Ramanujan made was called “Ramanu-
jan Summation” which comes under Summability Theory in particular the cat-
egory of “Cesaro Summation”. These summations became prominent for the
last three to four centuries and huge amount of research is being carried out
even today in this area, see [1–10].

It is well known that Ramanujan Summation is related to the Bernoulli num-
bers. In particular, using this idea, while seeking patronage of other math-
ematicians before he left to England, Ramanujan wrote in almost all of his
letters that “Under my theory, I found that

1 + 2 + 3 + 4 + · · · = −1
12

,

12 + 22 + 32 + 42 + · · · = 0 ,

13 + 23 + 33 + 43 + · · · = 1

240
.

· · · · · ·

For usual mathematicians, these results seemed to be completely unobvious
and incorrect, because in all the equations presented above, the left hand side
we have positive numbers added up but in right hand side we find answers
either negative number or 0 or a number which is less than 1. How come this
makes any meaning on earth? This was the first opinion of any mathematician
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to whom Ramanujan had sent his work. In fact, Professor J.M. Hill of University
College of London while seeing these equations mentioned the following to
Professor Griffith:

“Mr. Ramanujan has fallen into the pitfalls of the very difficult subject of
Divergent series. Otherwise he could not have got the erroneous results you
send me

1 + 2 + 3 + 4 & c =
−1
12

12 + 22 + 32 + 42 & c = 0

13 + 23 + 33 + 43 & c =
1

240
,

all the 3 series have infinity for their sums · · · ”
In this paper, I will try to explain the Geometric meaning of how Ramanujan

churned out these equations and what does it try to convey to the mathematical
world. Today, research mathematicians knew the mathematical significance of
these ideas, but seldom normal mathematicians could have any idea about why
and how these equations must be true. In this aspect, this paper will provide a
new insight in to what probably could have made Ramanujan to produce such
weird equations.

2. SUMMING THROUGH RAMANUJAN’S WAY

In the three notebooks that Ramanujan wrote while in India before leaving
to England, he mentioned the following in chapter VIII (see [1]), of his first
notebook: Let us take the sum 1 + 2 + 3 + 4 + 5 + & c. Let C be its constant.
Then:

C = 1 + 2 + 3 + 4 & c

4C = 4 + 8 + &c

−3C = 1− 2 + 3− 4 & c =
1

(1 + 1)2
=

1

4

Therefore C = − 1

12
.
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According to this calculation, we get 1 + 2 + 3 + 4 + & c = − 1

12
or in the

notation that we use today we have 1+ 2+ 3+ 4+ · · · = − 1

12
. We observe that

Ramanujan wrote 4, 8 and other numbers in the second line by leaving one gap
between each term in the series 4C as compared to that of C in the first line. I
will first try to explain how Ramanujan obtained this value and generalize that
idea to arrive at a final expression that we know as of today.

First let us try to understand the basic aspect of summing the following infi-
nite series

1 + 1 + 1 + 1 + · · ·

1 + 2 + 3 + 4 + · · ·

12 + 22 + 32 + 42 + · · ·

13 + 23 + 33 + 43 + · · ·

14 + 24 + 34 + 44 + · · ·

15 + 25 + 35 + 45 + · · ·

16 + 26 + 36 + 46 + · · ·

· · · · · · · · ·

1k + 2k + 3k + 4k + · · ·

It is known from basic analysis that all the above series diverges to plus infinity
as the sum increase as large as possible as we sum the terms for each of the
above series. In this paper I will provide ways to compute the values of above
series through novel method and try to connect it with Ramanujan Summation
method which led him to wrote those answers in his letters.

3. DEFINITION

The zeta function defined by ζ(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+ · · · =

∞∑
n=1

1

ns

was studied by great Swiss mathematician Leonhard Euler for all real vari-
ables s. With this convention, the infinite series listed in 2, are respectively
ζ(0), ζ(−1), ζ(−2), ζ(−3), · · · , ζ(−k). Euler worked extensively and obtained
nice expressions for computing ζ(2k).
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Later, German mathematician Bernhard Riemann considered the variable
s to be complex number and extended the real valued Euler zeta function
to complex valued Riemann zeta function. Thus if s is a complex number

then the series ζ(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+ · · · =

∞∑
n=1

1

ns
is called Riemann

zeta function. Notice in 2, Ramanujan proved rather in non-rigorous way

that ζ(−1) = − 1

12
. I will try to present methods concerning calculation of

ζ(0), ζ(−1), ζ(−2), ζ(−3), · · · and try to explain the geometric meaning behind
those values.

4. CONSTRUCTING FUNCTIONS

Here, I try to generate functions representing certain class of rational expres-
sions. We begin with the expression 1 − x + x2 − x3 + x4 − x5 + x6 − · · · . We
need to determine a rational expression whose Maclaurin’s series expansion is
the given expression.

Let S0(x) = 1− x+ x2 − x3 + x4 − x5 + x6 − · · · , and then we have

S0(x) = 1− x+ x2 − x3 + x4 − x5 + x6 − · · ·

−xS0(x) = −x+ x2 − x3 + x4 − x5 + x6 − · · ·

Subtracting these two equations, we get (1 + x)S0(x) = 1.
Hence we get

(4.1) S0(x) = 1− x+ x2 − x3 + x4 − x5 + x6 − · · · = 1

1 + x

In general, let Sk(x) = 1k − 2kx+ 3kx2 − 4kx3 + 5kx4 − 6kx5 + 7kx6 − · · · .
I will provide methods to generate functions for Sk(x) corresponding to cer-

tain integer values of k and use it for further exploration. Equation (4.1) pro-
vide such value when k = 0.

Now, we will find S1(x) = 1 − 2x + 3x2 − 4x3 + 5x4 − 6x5 + 7x6 − · · ·
For this, in equation (4.1), we should multiply S0(x) by x and differentiating
term by term to get

xS0(x) = x− x2 + x3 − x4 + x5 − x6 + · · · = x

1 + x
,

1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + · · · = 1

(1 + x)2
.
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Hence

(4.2) S1(x) = 1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + · · · = 1

(1 + x)2
.

Now to compute S2(x) = 12− 22x+32x2− 42x3+52x4− 62x5+72x6− · · · using
(4.2), we first multiply S1(x) by x and differentiate term by term to get:

xS1(x) = x− 2x2 + 3x3 − 4x4 + 5x5 − 6x6 + 7x7 − · · · = x

(1 + x)2
,

12 − 22x+ 32x2 − 42x3 + 52x4 − 62x5 + 72x6 − · · · = 1− x
(1 + x)3

.

Hence,

(4.3) S2(x) = 12 − 22x+ 32x2 − 42x3 + 52x4 − 62x5 + 72x6 − · · · = 1− x
(1 + x)3

.

Extending this process for S3(x) and S4(x) we find that

xS2(x) = 12x− 22x2 + 32x3 − 42x4 + 52x5 − 62x6 + 72x7 − · · · = x− x2

(1 + x)3
,

S3(x) = 13 − 23x+ 33x2 − 43x3 + 53x4 − 63x5 + 73x6 − · · · = 1− 4x+ x2

(1 + x)4
,

(4.4)

xS3(x) = 13x− 23x2 + 33x3 − 43x4 + 53x5 − 63x6 + 73x7 − · · · = x− 4x2 + x3

(1 + x)4
,

S4(x) = 14 − 24x+ 34x2 − 44x3 + 54x4 − 64x5 + 74x6 − · · · = 1− 11x+ 11x2 − x3

(1 + x)5
.

(4.5)

In similar fashion, we can get the following equations:

S5(x) = 15 − 25x+ 35x2 − 45x3 + 55x4 − 65x5 + 75x6 − · · ·(4.6)

=
1− 26x+ 66x2 − 26x3 + x4

(1 + x)6

S6(x) = 16 − 26x+ 36x2 − 46x3 + 56x4 − 66x5 + 76x6 − · · ·(4.7)

=
1− 57x+ 302x2 − 302x3 + 57x4 − x5

(1 + x)7
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S7(x) = 17 − 27x+ 37x2 − 47x3 + 57x4 − 67x5 + 77x6 − · · ·(4.8)

=
1− 120x+ 1191x2 − 2416x3 + 1191x4 − 120x5 + x6

(1 + x)8

From the equations (4.1) to (4.8) derived above, we observe the following
facts:
Sk(x) for each value of k = 0, 1, 2, 3, 4, 5, · · · is an rational expression such that:

(i) The denominator is (1 + x)k+1.
(ii) The numerator is a polynomial of degree k− 1 such that its coefficients

are symmetric with opposite signs for even values of k and same signs
for odd values of k.

(iii) Let Sk(x) =
Pk(x)

(1 + x)k+1
. Then Pk(x) is a polynomial of degree k−1 such

that P0(1) = 1 and Pk(1) = 0 for k = 2, 4, 6, 8, 10, · · ·

We will now find ways to compute Pk(1) for odd values of k say k = 1, 3, 5, 7,

9, 11, · · · For doing this, we need the following special type of numbers.

5. BERNOULLI NUMBERS

Definition 5.1. Bernoulli Numbers are numbers which occur as coefficients of
xn

n!
in the Taylor’s series expansion of

x

ex − 1
about x = 0. We denote the nth Bernoulli

Number by Bn.

Thus by definition we get

(5.1)
x

ex − 1
=
∞∑
n=0

Bn
xn

n!
.

We notice that the constant term of
x

ex − 1
is 1 and so from (5.1) it follows that

B0 = 1.
Now to determine other Bernoulli Numbers we use the coefficients of Pascal’s

triangle to obtain the following equations:

0 = 1B0 + 2B1

0 = 1B0 + 3B1 + 3B2

0 = 1B0 + 4B1 + 6B2 + 4B3
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0 = 1B0 + 5B1 + 10B2 + 10B3 + 5B4

0 = 1B0 + 6B1 + 15B2 + 20B3 + 15B4 + 6B5

· · · · · · · · ·

In general we have

(5.2)
n∑

j=0

(
n+ 1

j

)
Bj = 0 .

Since B0 = 1, from 0 = 1B0 + 2B1, we have B1 = −1

2
. Similarly substituting

the values of B0 = 1, B1 = −
1

2
in 0 = 1B0 + 3B1 + 3B2, we get B2 =

1

6
. Using

successive values of Bn in (5.2) we get the following few values of Bernoulli
Numbers:
B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
, B7 = 0,

B8 = − 1

30
, B9 = 0, B10 =

5

66
, B11 = 0, B12 = − 691

2730
, B13 = 0, B14 =

7

6
,

B15 = 0, B16 = −
3617

510
, · · ·

From the above values we observe that except for B1, Bn = 0 for all odd
values of n.

Furthermore, we see that B4n−2 > 0, B4n < 0, n = 1, 2, 3, 4, 5, 6, · · ·

6. CONNECTION

We now make the connection between Pk(1) for values of k = 1, 3, 5, 7, 9,

11, · · · and the Bernoulli Numbers Bn.

Since, S1(x) =
P1(x)

(1 + x)2
. From (4.2), we see that P1(x) = 1. Hence P1(1) = 1.

Also B2 =
1

6
Hence:

(6.1) P1(1) = 1 = 6× 1

6
= 6B2 = 22 × (22 − 1)× B2

2
.

Similarly, from equations (4.4), (4.6) and (4.8) we get the following equations:

(6.2) P3(1) = −2 = 60×− 1

30
= 60B4 = 24 × (24 − 1)× B4

4
,



REMEMBERING RAMANUJAN 497

(6.3) P5(1) = 16 = 672× 1

42
= 672B6 = 26 × (26 − 1)× B6

6
,

(6.4) P7(1) = −272 = 8160× −1
30

= 8160B8 = 28 × (28 − 1)× B8

8
.

Thus from equations (6.1) to (6.4), we see that:

(6.5) P2k−1(1) = 22k × (22k − 1)× B2k

2k
.

Equation (6.5) provides the desired connection between Bernoulli Numbers
and Pk(1) for all odd values of k. We already knew that

(6.6) P0(1) = 1 and Pk(1) = 0 for k = 2, 4, 6, 8, 10, · · ·

Thus equations (6.5) and (6.6) provide the values of Pk(1) for all whole num-
bers k.

7. COMPUTING ZETA FUNCTION VALUES

Making use of the equations derived above, we now compute the values
ζ(0), ζ(−1), ζ(−2), ζ(−3), · · ·

For doing this, we use the idea of Ramanujan as presented in 2.

ζ(0) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + · · ·

2ζ(0) = 2 + 2 + 2 + 2 + · · ·

Subtracting these two equations, and using equation (4.1), we get:

−ζ(0) = 1− 1 + 1− 1 + 1− 1 + 1− 1 + · · · = S0(1) =
1

2
.

Hence,

(7.1) ζ(0) = 1 + 1 + 1 + 1 + 1 + 1 + · · · = −1

2
.

Now using the fact that Sk(1) =
Pk(1)

2k+1
we now proceed in similar fashion

to determine the more general value of Riemann Zeta function at negative
integers as follows:

ζ(−k) = 1k + 2k + 3k + 4k + 5k + 6k + 7k + 8k + · · ·

2k+1ζ(−k) = 2× 2k + 2× 4k + 2× 6k + 2× 8k + · · ·
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Subtracting these two equations, we get:

(1− 2k+1)ζ(−k) = 1k − 2k + 3k − 4k + 5k − 6k + 7k − 8k + · · · = Sk(1) =
Pk(1)

2k+1
,

(7.2) ζ(−k) = Pk(1)

2k+1 × (1− 2k+1)
= − Pk(1)

2k+1 × (2k+1 − 1)
.

From equations (6.5) and (6.6) we know the values of Pk(1) for each positive
integer k. In particular, from equation (6.6), we know that Pk(1) = 0 for all
values of k = 2, 4, 6, 8, 10, · · · Using this information in (7.2) we see that

(7.3) ζ(−k) = 1k+2k+3k+4k+5k+6k+7k+8k+· · · = 0, k = 2, 4, 6, 8, 10, 12, · · ·

If k is odd, say k = 2m − 1, then we can use equation (6.5) in equation (7.2)
to get

(7.4) ζ(1− 2m) = − P2m−1(1)

22m × (22m − 1)
= −

22m × (22m − 1)× B2m

2m

22m × (22m − 1)
= −B2m

2m
.

Equations (7.3) and (7.4) provide complete values of the zeta function for all
negative integer values of k. In particular from (7.3) and (7.4) we can write
the following equations:

12m + 22m + 32m + 42m + 52m + 62m + · · · = 0 ,(7.5)

12m−1 + 22m−1 + 32m−1 + 42m−1 + 52m−1 + 62m−1 + · · · = −B2m

2m
,(7.6)

where m = 1, 2, 3, 4, 5, 6, 7, 8, · · ·
Equations (7.5) and (7.6) are called Ramanujan Summation for Divergent

Series. These equations are probably the reason why Ramanujan had written so
in his letter correspondences to most of the mathematicians before his potential
is fully recognized. But Ramanujan never gave any clue about how he arrived
at these equations anywhere in his writings.

8. GEOMETRIC MEANING OF ZETA VALUES

By definitions of Riemann Zeta function, Sk(x) and the way Ramanujan sum-
mation is performed, we have

(1− 2k+1)ζ(−k) = 1k − 2k + 3k − 4k + 5k − 6k + 7k − 8k + · · · = lim
x→1

Sk(x)
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(8.1) ζ(−k) = 1

1− 2k+1
lim
x→1

Sk(x) .

We first observe that Sk(x) =
Pk(x)

(1 + x)k+1
is continuous at all points except at

x = −1 and the denominator of Sk(x) is finite as x → 1. Further ζ(−k) is
evaluated using equation (8.1) by knowing the limit as x →1 in Sk(x). But
since Sk(x) is continuous at x = 1 we should have lim

x→1
Sk(x) = Sk(1). Hence

equation (8.1) can be written as

(8.2) ζ(−k) = Sk(1)

1− 2k+1
.

Now we try to identify values of ζ(−k) for each k through respective graphs
shown below:

FIGURE 1. Graph of S0(x) =
1

1 + x
near x = 1

We notice that S0(1) = 0.5 =
1

2
.

Hence by equation (8.2) we get ζ(0) = −S0(1) = −
1

2
.

Thus ζ(0) = 1+ 1+ 1+ 1+ 1+ 1+ · · · = −1

2
which is equation (7.1) derived

above.
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FIGURE 2. Graph of S1(x) =
1

(1 + x)2
near x = 1

We notice from Figure 2 that S1(1) = 0.25 =
1

4
. Hence by equation (8.2) we

get

ζ(−1) = −S1(1)

3
=
−1

4
3

= − 1

12
.

Thus

ζ(−1) = 1 + 2 + 3 + 4 + · · · = − 1

12
= −B2

2
,

which agrees with equation (7.6) when m = 1. We notice from Figure 3 that
S2(1) = 0. Hence by equation (8.2) we get

ζ(−2) = −S2(1)

7
= 0 .

Thus

ζ(−2) = 12 + 22 + 32 + 42 + · · · = 0 .

which agrees with equation (7.5) when m = 1. We notice from Figure 4 that

S3(1) = −0.125 = −1

8
. Hence by equation (8.2) we get

ζ(−3) = −S3(1)

15
=

−
(
−1

8

)
15

=
1

120
.
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FIGURE 3. Graph of S2(x) =
1− x

(1 + x)3
near x = 1

FIGURE 4. Graph of S3(x) =
1− 4x+ x2

(1 + x)4
near x = 1

Thus

ζ(−3) = 13 + 23 + 33 + 43 + · · · = 1

120
= −B4

4
,

which agrees with equation (7.6) when m = 2.
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FIGURE 5. Graph of S4(x) =
1− 11x+ 11x2 − x3

(1 + x)5
near x = 1

We notice from Figure 5 that S4(1) = 0. Hence by equation (8.2) we get

ζ(−4) = −S4(1)

31
= 0 .

Thus
ζ(−4) = 14 + 24 + 34 + 44 + · · · = 0 ,

which agrees with equation (7.5) when m = 2.

FIGURE 6. Graph of S5(x) =
1− 26x+ 66x2 − 26x3 + x4

(1 + x)6
near x = 1
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We notice that S5(1) = 0.25 =
1

4
. Hence by equation (8.2) we get

ζ(−5) = −S5(1)

63
=

−
(
1

4

)
63

= − 1

252
.

Thus

ζ(−5) = 15 + 25 + 35 + 45 + · · · = − 1

252
= −B6

6
,

which agrees with equation (7.6) when m = 3.

FIGURE 7. Graph of S6(x) =
1− 57x+ 302x2 − 302x3 + 57x4 − x5

(1 + x)7

near x = 1

We notice that S6(1) = 0. Hence by equation (8.2) we get

ζ(−6) = −S6(1)

127
= 0 .

Thus

ζ(−6) = 16 + 26 + 36 + 46 + · · · = 0 ,

which agrees with equation (7.5) when m = 3.
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FIGURE 8. Graph of

S7(x) =
1− 120x+ 1192x2 − 2416x3 + 1192x4 − 120x5 + x6

(1 + x)8

near x = 1

We notice from Figure 8 that S7(1) ≈ −1.0625 = −17

16
. Hence by equation

(8.2) we get

ζ(−7) = −S7(1)

255
=

−
(
−17

16

)
255

=
1

240
.

Thus

ζ(−7) = 17 + 27 + 37 + 47 + · · · = 1

240
= −B8

8
,

which agrees with equation (7.6) when m = 4.
In general, we find that the graph of Sk(x) pass through (1,0) if k is even.

Hence by equation (8.2) we have ζ(−k) =
Sk(1)

1− 2k+1
= 0 whenever k is even.

That is, the Riemann zeta function vanishes at all negative even integer values.
These values are called trivial zeros of the Riemann zeta function.

In the case if k is odd, ζ(−k) is identified through Bernoulli Numbers as
proved in equation (7.6). The values of ζ(−k) gives an idea of how Sk(x)

would behave near x = 1.
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9. CONCLUSION

In this paper, I had proved the general result of Ramanujan summation
through equations (7.5) and (7.6) using very different approach. The advan-
tage of this method is that it never require complex function theory which is
usually employed by many researchers in dealing with Riemann zeta function.
In fact, the truth established in equation (7.5) that trivial zeros of zeta func-
tion are negative even integers, is viewed as analytic continuation of Euler
zeta function to extend to Riemann zeta function. This paper has completely
avoided the usual analytic continuation theory and had obtained same results
just by using real valued functions and basic ideas. This is one of the significant
aspects of this paper. I had made use of the Desmos Graphing Software tool to
create graphs presented in Figures 1 to 8 of this paper.

The other significant part of this paper is to provide the Geometric meaning
by conveying the fact that the behavior of Riemann zeta function for negative
integer values depends on the behavior of Sk(x) near x = 1. I am very much
sure, that Srinivasa Ramanujan would himself have got similar Geometric in-
sights and could have arrived at the values ζ(−1), ζ(−2), ζ(−3), · · · which he
mentioned consistently in his letters to seek patronage for his work, but never
seem to have disclosed any information that he was actually dealing with Rie-
mann zeta function. At the same time, his thought process would be much
more wonderful compared to how I discussed these concepts. He could have
obtained these results effortlessly and elegantly. Nevertheless, I am happy that
I had obtained two of his notebook jotting results by introducing novel ap-
proach using elementary concepts and providing some hint to the meaning of
the answers obtained.

I dedicate this paper in memory of the Genius Srinivasa Ramanujan com-
memorating his Centenary Remembrance Year.

10. APPLICATIONS AND SCOPE

It is well known in mathematical world, that the Riemann zeta function has
profound applications both in mathematical sub-disciplines and other areas
of science like Theoretical Physics, particularly in String Theory and Atomic
Physics. The quest for locating the non-trivial zeros of Riemann zeta function
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has been the holy grail of mathematics today. Even after 160 years we couldn’t
either prove or disprove Riemann Hypothesis.

In this paper, a simple and novel way is presented to understand the behavior
of Riemann zeta function at negative integer values. Similarly, we can try
to construct nice functions of complex variables to understand the non-trivial
zeros and general behavior of the zeta function. That will be a very big step
towards developing mathematics to greater horizon.

REFERENCES

[1] S. RAMANUJAN: Manuscript Book 1 of Srinvasa Ramanujan, First Notebook, VIII, 66 –
68.

[2] B. C. BERNDT: Ramanujan’s Notebooks Part II, Springer, Corrected Second Edition,
1999.

[3] G.H. HARDY, J.E. LITTLEWOOD: Contributions to the theory of Riemann zeta-function
and the theory of distribution of primes, Acta Arithmetica, 41(1) (1916), 119–196.

[4] S. PLOUFFE: Identities inspired by Ramanujan Notebooks II, part 1, July 21 (1998), and
part 2, April 2006, http://www.plouffe.fr.

[5] G. H. HARDY, P.V. SESHU IYER, B.M. WILSON: Collected Papers of Srinivasa
Ramanujan, New York, Chelsea Pubishing Company, (1962), 136 – 162.

[6] A. TERRAS: Some formulas for the Riemann zeta function at odd integer argument resulting
from Fourier expansions of the Epstein zeta function, Acta Arithmetica, XXIX (1976), 181–
189.

[7] E. C. TITCHMARSH: The theory of the Riemann zeta-function, Oxford University Press,
1951.

[8] B. CANDELPERGHER, H. GOPALAKRISHNA GADIYAR, R. PADMA: Ramanujan Summa-
tion and the Exponential Generating Function, Cornell University, 2009, arXiv.org > math
> arXiv:0901.3452.

[9] B. C. BERNDT: An Unpublished Manuscript of Ramanujan on Infinite Series Identities,
Illinois University, American Mathematical Society publication.

[10] Y. NESTERENKO: Some Identities of Ramanujan Type, Moscow Journal of Number Theory
and Combinatorics, 1(2), 89 – 99.

DEPARTMENT OF MATHEMATICS

D.G. VAISHNAV COLLEGE

CHENNAI – 600 106
TAMILNADU, INDIA

E-mail address: rsivaraman1729@yahoo.co.in


