

Advances in Mathematics: Scientific Journal 9 (2020), no.2, 643-650

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

Spec. Issue on ICCSPAM-2020 https://doi.org/10.37418/amsj.9.2.13

ON b-CHROMATIC NUMBER OF THETA GRAPH FAMILIES

M. VINITHA¹, M. VENKATACHALAM AND DAFIK

ABSTRACT. In this paper, we investigate the b-chromatic number for the theta graph $\theta(s_1,s_2,\cdots,s_n)$, middle graph of theta graph M(G), total graph of theta graph T(G), line graph of theta graph L(G) and the central graph of theta graph C(G).

1. Introduction

The b-coloring is the maximal integer k such that G have b-coloring by k colors.

The b-chromatic number of G is the largest positive integer k, it is a proper coloring with the additional property that each color class contains a color dominating vertex (a vertex that has a neighbour in all other color classes, [7].

The b-chromatic number was found by Irving and Manlove in the year 1999. It is denoted as $\varphi(G)$ [7]. Irving and Manlove introduced b-chromatic number by considering the proper coloring that are minimal with respect to the partial order defines on the set of all partitions of vertices V(G). They also proved that determining of $\varphi(G)$ is NP-hard in general polynomial for trees.

Irving and Manlove [7] have shown a result for upper bound of $\varphi(G)$,

$$\varphi(G) \leq \Delta(G) + 1.$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C15.

Key words and phrases. b-coloring, Theta graph, Middle graph, Total graph, Line graph, Central graph.

Effaintin and Kheddouci studied [3–5] the *b*-chromatic number for the complete caterpillars, the powers of paths, cycles, and complete *k*-ary trees.

Kouider and Maheo [8] gave some lower and upper bounds for the *b*-chromatic number of the chartesian product of two graphs.

Here, we consider the b-chromatic number of graphs derived from Theta graph.

2. Preliminaries

Definition 2.1. The generalized theta graph [1] $\theta(s_1, s_2, \dots, s_n)$ consists of a pair of end vertices joined by n internally disjoint paths of lengths ≥ 1 , where s_1, s_2, \dots, s_n denote the number of internal vertices in the paths. The end vertices are North pole (N) and South pole (S). A path between the North pole and south pole are the longitude and is denoted as L.

In this paper we denote the end vertices as *X* and *Y*.

Definition 2.2. The Line graph [6] of a graph G, denoted by L(G), is a graph whose vertices are the edges of G, and if $u, v \in E(G)$ then $uv \in E(L(G))$ if u and v share a vertex in G.

Definition 2.3. Let G be a graph with vertex set and edge set V(G) and E(G). The Middle graph [2, 10] of G, denoted by M(G) is defined as follows.

The vertex set is adjacent of M(G) is $V(G) \cup E(G)$. Two vertices x, y of M(G) are adjacent in M(G) in case one of the following holds:

- x, y are in E(G) and x, y are adjacent in G.
- x is in V(G), y is in E(G), and x, y are incident in G.

Definition 2.4. Let G be a graph with vertex set and edge set V(G) and E(G). The Total graph [6] of G, denoted by T(G) is defined in the following ways. The vertex set T(G) is $V(G) \cup E(G)$. Two vertices x,y of T(G) are adjacent in T(G) in case one of the following holds:

- x, y are in V(G) and x is adjacent to y in G.
- \bullet x, y are adjacent in G.
- x is in V(G), y is in E(G), and x y are incident in G.

Definition 2.5. The central graph [9] of G, is denoted by C(G) is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G in C(G).

3. Main results

Theorem 3.1. Let $G = \theta(s_1, s_2, \dots, s_n)$ be the generalized theta graph with longitudes L_1 , L_2 , L_3 , L_4 respectively. Then the b-chromatic number of theta graph is $\varphi(G) = 3$.

Proof. Let $\{t_1, t_2, \dots, t_n\}$, $\{u_1, u_2, \dots, u_n\}$, $\{v_1, v_2, \dots, v_n\}$ and $\{w_1, w_2, \dots, w_n\}$, be, respectively, the vertices of the longitude. Assign the color,

- c_1 to t_1 , c_2 to t_2 , c_3 to t_3 in L_1 .
- c_1 to u_1 , c_2 to u_2 , c_3 to u_3 in L_2 .
- c_1 to v_1 , c_2 to v_2 , c_3 to v_3 in L_3 .
- c_1 to w_1 , c_2 to w_2 , c_3 to w_3 in L_4 .

For the remaining vertices of t_i , u_i , v_i , w_i ($4 \le i \le n$) and also for the end vertices X and Y assign the existing colors without affecting the conditions of proper coloring.

Suppose, we assume that $\varphi(G)=4$. The maximum degree vertices are X and Y

Remaining vertices are of degree 2. All 2 degree vertices, overrulled the b-coloring conditions. It contradicts our assumption. Hence, $\varphi(G) = 3$.

Theorem 3.2. Let $G = \theta(s_1, s_2, \dots, s_n)$ be the generalized theta graph with longitudes L_1 , L_2 , L_3 , L_4 . Then the b-chromatic number of middle graph of theta graph is $\varphi(M(G)) = 6$.

Proof. Let the vertices of the longitude L_1 from X to Y be $\{t_1, t_2, \dots, t_n\}$, the longitude L_2 is $\{u_1, u_2, \dots, u_n\}$, the longitude L_3 is $\{v_1, v_2, \dots, v_n\}$, and the longitude L_4 is $\{w_1, w_2, \dots, w_n\}$.

Let.

$$V(G) = \{t_1, t_2, \dots, t_n\} \cup \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\} \cup \{w_1, w_2, \dots, w_n\}$$

and

$$E(G) = \{a'_i : 1 \le i \le n, b'_i : 1 \le i \le n, c'_i : 1 \le i \le n, d'_i : 1 \le i \le n\},\$$

where

• a'_1 be the edge corresponding to Xt_1 , a'_{i+1} are the edges corresponding to t_it_{i+1} $(1 \le i \le n-1)$ and a'_{n+1} be the edge corresponding to Yt_n ;

- b'_1 be the edge corresponding to Xu_1 , b'_{i+1} are the edges corresponding to u_iu_{i+1} $(1 \le i \le n-1)$ and b'_{n+1} be the edge corresponding to Yu_n ;
- c_1' be the edge corresponding to Xv_1 , c_{i+1}' are the edges corresponding to v_iv_{i+1} $(1 \le i \le n-1)$ and c_{n+1}' be the edge corresponding to Yv_n ;
- d'_1 be the edge corresponding to Xw_1 , d'_{i+1} are the edges corresponding to w_iw_{i+1} $(1 \le i \le n-1)$ and d'_{n+1} be the edge corresponding to Yw_n .

By the definition of middle graph,

$$V[M(G)] = \{t_i : 1 \le i \le n\} \cup \{t'_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le n\}$$
$$\cup \{u'_i : 1 \le i \le n\} \cup \{v_i : 1 \le i \le n\} \cup \{v'_i : 1 \le i \le n\}$$
$$\cup \{w_i : 1 \le i \le n\} \cup \{w'_i : 1 \le i \le n\},$$

where,

- t'_1 be the sub divided vertices of Xt_1 , t'_{i+1} are the sub divided vertices of t_it_{i+1} $(1 \le i \le n-1)$ and t'_{n+1} be the sub divided vertices of Yt_n ;
- u_1' be the sub divided vertices of Xu_1 , u_{i+1}' are the sub divided vertices of u_iu_{i+1} $(1 \le i \le n-1)$ and u_{n+1}' be the sub divided vertices of Yu_n ;
- v_1' be the sub divided vertices of Xv_1 , v_{i+1}' are the sub divided vertices of v_iv_{i+1} $(1 \le i \le n-1)$ and v_{n+1}' be the sub divided vertices of Yv_n ;
- w'_1 be the sub divided vertices of Xw_1 , w'_{i+1} are the sub divided vertices of w_iw_{i+1} $(1 \le i \le n-1)$, and w'_{n+1} be the sub divided vertices of Yw_n .
- t_i , u_i , v_i , w_i , $(1 \le i \le n)$ are the vertices respectively.

Consider the following 6-coloring $(c_1, c_2, c_3, c_4, c_5, c_6)$ of M(G).

Assign c_1 to t_1 , c_2 to t'_1 , c_3 to X, c_4 to w'_1 , c_5 to v'_1 , c_6 to u'_1 , c_1 to u_1 , c_1 to v_1 , c_1 to w_1 . For $(2 \le i \le n)$ t_i , u_i , v_i , w_i , t'_i , u'_i , v'_i , w'_i and for end vertex Y. Assign the existing colors without affecting the conditions of proper coloring.

Suppose we assume $\varphi(M(G)) = 6$.

Here, the maximal degree is 6. i.e, $\Delta(G) = 6$. This maximal degree occurs only at X and Y. But, the remaining vertices are of degree 4, they are not connected to all the 6-color.

This cannot satisfy b-coloring conditions. This contradicts our assumption. Hence, $\varphi(M(G))=6$.

Theorem 3.3. Let $G = \theta(s_1, s_2, \dots, s_n)$ be the generalized theta graph with longitudes L_1 , L_2 , L_3 , L_4 . Then the b-chromatic number of total graph of theta graph is $\varphi(T(G)) = 6$.

Proof. Consider the coloring of M(G) which has been proved in theorem 2. By the definition of Total graph and by theorem 2 of middle graph, we say that this satisfies all the conditions of b-coloring of T(G). Hence, $\varphi(T(G)) = 6$.

Theorem 3.4. Let $G = \theta(s_1, s_2, \dots, s_n)$ be the generalized theta graph with longitudes L_1 , L_2 , L_3 , L_4 . Then the b-chromatic number of the line graph of theta graph is $\varphi(L(G)) = 5$.

Proof. Let the vertices of the longitude L_1 from X to Y be $\{t_1, t_2, \dots, t_n\}$, the longitude L_2 is $\{u_1, u_2, \dots, u_n\}$, the longitude L_3 is $\{v_1, v_2, \dots, v_n\}$, and the longitude L_4 is $\{w_1, w_2, \dots, w_n\}$.

Let

$$V(G) = \{t_1, t_2, \dots, t_n\} \cup \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\} \cup \{w_1, w_2, \dots, w_n\}$$

and $E(G) = \{e_i, e_i', e_i'', e_i''', 1 \le i \le n\}$, where

- e_1 be the edge corresponding to Xt_1 , e_{i+1} are the edges corresponding to t_it_{i+1} $(1 \le i \le n-1)$ and e_{n+1} be the edge corresponding to Yt_n ;
- e'_1 be the edge corresponding to Xu_1 , e'_{i+1} are the edges corresponding to u_iu_{i+1} ($i \le i \le n-1$) and e'_{n+1} be the edge corresponding to Yu_n ;
- e_1'' be the edge corresponding to Xv_1 , e_{i+1}'' are the edges corresponding to v_iv_{i+1} $(1 \le i \le n-1)$ and e_{n+1}'' be the edge corresponding to Yv_n ;
- e_1''' be the edge corresponding to Xw_1 , e_{i+1}'' are the edges corresponding to w_iw_{i+1} $(1 \le i \le n-1)$, and e_{n+1}'' be the edge corresponding to Yw_n .

By the definition of line graph, the E(G) is converted into V[L(G)] i.e., $V[L(G)] = \{e_i \cup e_i' \cup e_i'' \cup e_i''', 1 \le i \le n\}.$

Consider the following 5-coloring (1,2,3,4,5) of the line of theta graph.

In L(G), the maximum degree occurs in the vertex e_1 by the adjacency of e_2 , e'_1 , e''_1 , e'''_1 .

By the definition of *b*-chromatic number, we assign c_1 to e_1 , c_2 to e_2 , c_3 to e_1' , c_4 to e_1'' , c_5 to e_1''' . For the remaining vertices of e_i $(3 \le i \le n)$ and e_i' , e_i'' , e_i''' $(2 \le i \le n)$, assign the existing colors without affecting the conditions of proper coloring.

Here, the minimum degree is 2. This shows that this is b-coloring, $\varphi(L(G)) \geq 5$. Since, $\Delta(L(G)) = 4$, we know that, $\varphi(G) \leq \Delta(G) + 1$ and we have, $\varphi(L(G)) \leq 5$. Hence, $\varphi(L(G)) = 5$.

Theorem 3.5. Let $G = \theta\{s_1, s_2, \dots, s_n\}$ be the generalized theta graph with longitudes L_1 , L_2 , L_3 , L_4 . Then the b-chromatic number of central graph of theta graph is $\varphi(C(G)) = m + 2$, where $m = n_1 + n_2 + n_3 + n_4 + 2$.

Proof. Let the vertices of the longitude L_1 from X to Y be $\{t_1, t_2, \dots, t_{n_1}\}$, the longitude L_2 is $\{u_1, u_2, \dots, u_{n_2}\}$, the longitude L_3 is $\{v_1, v_2, \dots, v_{n_3}\}$, and the longitude L_4 is $\{w_1, w_2, \dots, w_{n_4}\}$.

We have, $m = n_1 + n_2 + n_3 + n_4 + 2$. Let,

$$V(G) = \{t_1, t_2, \cdots, t_{n_1}\} \cup \{u_1, u_2, \cdots, u_{n_2}\} \cup \{v_1, v_2, \cdots, v_{n_3}\} \cup \{w_1, w_2, \cdots, w_{n_4}\}$$
 and
$$E(G) = \{a_i' : 1 \le i \le n_1, b_i' : 1 \le i \le n_2, c_i' : 1 \le i \le n_3, d_i' : 1 \le i \le n_4\},$$
 where

- a'_1 be the edge corresponding to Xt_1 , a'_{i+1} are the edges corresponding to t_it_{i+1} $(1 \le i \le n_1 1)$, and a'_{n_1+1} be the edge corresponding to Yt_{n_1} ;
- b'_1 be the edge corresponding to Xu_1 , b'_{i+1} are the edges corresponding to u_iu_{i+1} $(1 \le i \le n_2 1)$, and b'_{n_2+1} be the edge corresponding to Yu_{n_2} ;
- c'_1 be the edge corresponding to Xv_1 , c'_{i+1} are the edges corresponding to v_iv_{i+1} $(1 \le i \le n_3 1)$, and c'_{n_3+1} be the edge corresponding Yv_{n_3} ;
- d'_1 be the edge corresponding to Xw_1 , d'_{i+1} are the edges corresponding to w_iw_{i+1} $(1 \le i \le n_4 1)$, and d'_{n_4+1} be the edge corresponding to Yw_{n_4} .

By the definition of central graph, the edge joining the vertices V(G) are subdivided by the new vertices as follows,

$$V[C(G)] = \{t_i(1 \le i \le n_1) \cup t'_i(1 \le i \le n_1) \cup u_i(1 \le i \le n_2) \cup u'_i(1 \le i \le n_2) \cup v_i(1 \le i \le n_3) \cup v'_i(1 \le i \le n_3) \cup v'_i(1 \le i \le n_3) \cup v'_i(1 \le i \le n_4) \},$$

where,

- t'_1 be the sub divided vertices of Xt_1 , t'_{i+1} are the sub divided vertices of t_it_{i+1} , $(1 \le i \le n_1 1)$, and t'_{n+1} be the sub divided vertices of Yt_{n_1} ;
- u'_1 be the sub divided vertices of Xu_1 , u'_{i+1} are the sub divided vertices of u_iu_{i+1} , $(1 \le i \le n_2 1)$, and u'_{n+1} be the sub divided vertices of Yu_{n_2} ;
- v_1' be the sub divided vertices of Xv_1 , v_{i+1}' are the sub divided vertices of v_iv_{i+1} , $(1 \le i \le n_3 1)$, and v_{n+1}' be the sub divided vertices of Yv_{n_3} ;

- w_1' be the sub divided vertices of Xw_1 , w_{i+1}' are the sub divided vertices of w_iw_{i+1} , $(1 \le i \le n_4 1)$, and w_{n+1}' be the sub divided vertices of Yw_n :
- $t_i(1 \le i \le n_1)$, $u_i(1 \le i \le n_2)$, $v_i(1 \le i \le n_3)$, $w_i(1 \le i \le n_4)$ are the vertices respectively.

Consider the following (m+2) coloring as follows.

Assign, c_1 to t_1 in L_1 , c_2 to u_1 in L_2 , c_3 to v_1 in L_3 , c_4 to w_1 in L_4 . Repeat this procedure for all other vertices $(ie., t_{n_1}, u_{n_2}, v_{n_3}, w_{n_4})$ by increasing the color from L_1 to L_4 . Also for the end vertices, assign c_{n_4+1} to X and c_{n_4+2} to Y.

For the remaining vertices of $t_i'(1 \le i \le n_1)$, $u_i'(1 \le i \le n_2)$, $v_i'(1 \le i \le n_3)$, $w_i'(1 \le i \le n_4)$ assign the existing colors without affecting the condition of the proper coloring.

Here, the maximal degree is $\Delta(C(G))=m+1$. This satisfies all the conditions of b-coloring. Therefore, $\varphi(G)\geq m+2$. From $\varphi(G)\leq \Delta(G)+1$ we have, $\varphi(C(G))\leq m+2$.

Hence,
$$\varphi(C(G)) = m + 2$$
.

REFERENCES

- [1] R. BHARATI, I. RAJASINGH, P. VENUGOPAL: Metric Dimension of Uniform and Quasi-Uniform Theta graphs, J. Comp. and Math. Sci., 2 (1) (2011) 37-46.
- [2] D. MICHALAK: On Middle and Total Graphs with Coarseness Number equal 1, Lagow proceedings, Berlin Heidelberg, NewYork, Tokyo, 1(1981),139-150.
- [3] B. EFFANTIN: *The b-chromatic number of a power graphs of complete caterpillars*, J. Discrete Math. Sci. Cryptogr., **8**(3) (2005), 483-502.
- [4] B. EFFANTIN, H. KHEDDOUCI: *The b-chromatic number of some power graphs*, Discrete Math. Theor. Comput. Sci., **6** (2003), 45-54.
- [5] B. EFFANTIN, H. KHEDDOUCI: Exact Values for the b-chromatic number of power complete k-ary tree, J. Discrete Math. Sci. Cryptogr., 8(1) (2005, 117-129.
- [6] F.HARARY: Graph Theory, Narosa publishing Home, New Delhi, 1969.
- [7] R. W. IRVING, D. F. MANLOVE: *The b-chromatic number of a graph*, Discrete Appl. Math., **91** (1999), 127-141.
- [8] M. KOUIDER, M. MAHEO: *Some bounds for the b-chromatic number of a graph*, Discrete Math., **256**(1-2) (2002), 267-277.
- [9] J. VERNOLD VIVIN: *Harmonious coloring of Total graphs, n-leaf*, Central graphs and circumdentric graphs, Ph.D Thesis, Bharathiyar University, Coimbatore, India, 2007.

[10] J. VERNOLD VIVIN, M. VENKATACHALAM, M. M. AKBAR ALI: Achromatic Coloring on Double Star Graph Families, International Journal of Mathematical Combinatorics, 3 (2009), 251-255.

PG and Research Department of Mathematics Kongunadu Arts and Science College Coimbatore-641029

E-mail address: muruganvinitha5@gmail.com

PG and Research Department of Mathematics Kongunadu Arts and Science College Coimbatore-641029

E-mail address: venkatmaths@gmail.com

CGANT - UNIVERSITY OF JEMBER
MATHEMATICS EDUCATION DEPARTMENT
UNIVERSITY OF JEMBER, INDONESIA
E-mail address: d.dafik@unej.ac.id