

Advances in Mathematics: Scientific Journal 9 (2020), no.2, 667–677

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

Special Issue on ICCSPAM2020; https://doi.org/10.37418/amsj.9.2.16

β^{**} GENERALIZED CLOSED SETS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

S. M. SUDHA¹ AND D. JAYANTHI

ABSTRACT. In this paper, we have introduced the notion of intuitionistic fuzzy β^{**} generalized closed sets, and investigated some of their properties and produced some characterization theorems.

1. Introduction

A generalization of fuzzy set was introduced by Atanassov [1] in 1986 as intuitionistic fuzzy set which incorporated the degree of membership and non-membership. Later the concept of intuitionistic fuzzy topological space was coined by Coker [2] in 1997. And here we have introduced a new type of intuitionistic fuzzy closed set called intuitionistic fuzzy β^{**} generalized closed sets. In this paper we have analyzed some of their properties and obtained some fascinating theorems.

2. Preliminaries

Definition 2.1. [1] An intuitionistic fuzzy set (IFS) D is of the form

$$D = \{ \langle s, \mu_D(s), \nu_D(s) \rangle : s \in S \},\$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03F55, 54A40.

Key words and phrases. Intuitionistic fuzzy topology, intuitionistic fuzzy closed sets, intuitionistic fuzzy β^{**} generalized closed sets, intuitionistic fuzzy point.

where the functions $\mu_D: S \to [0,1]$ and $\nu_D: S \to [0,1]$ denote the degree of membership and the degree of non-membership of each element $s \in S$ to the set D, respectively, and $0 \le \mu_D(s) + \nu_D(s) \le 1$ for each $s \in S$.

An intuitionistic fuzzy set D in S is simply denoted by $D = \langle s, \mu_D, \nu_D \rangle$ instead of denoting $D = \{\langle s, \mu_D(s), \nu_D(s) \rangle : s \in S\}$.

Definition 2.2. [1] Let D and E be two IFSs of the form

$$D = \{ \langle s, \mu_D(s), \nu_D(s) \rangle : s \in S \}$$

and $E = \{\langle t, \mu_E(t), \nu_E(t) \rangle : t \in T\}$. Then,

- (a) $D \subseteq E$ if and only if $\mu_D(s) \le \mu_E(t)$ and $\nu_D(s) \ge \nu_E(t)$ for all $s \in S, t \in T$;
- (b) D = E if and only if $D \subseteq E$ and $D \supseteq E$;
- (c) $D^c = \{ \langle s, \nu_D(s), \mu_D(s) \rangle : s \in S \};$
- (d) $D \cup E = \{\langle s, \mu_D(s) \vee \mu_E(t), \nu_D(s) \wedge \nu_E(t) \rangle : s \in S, t \in T\};$
- (e) $D \cap E = \{\langle s, \mu_D(s) \wedge \mu_E(t), \nu_D(s) \vee \nu_E(t) \rangle : s \in S, t \in T\}.$

The intuitionistic fuzzy sets $0_{\sim} = \langle s, 0, 1 \rangle$ and $1_{\sim} = \langle s, 1, 0 \rangle$ are resp the empty set and the whole set of S.

Definition 2.3. [3] An intuitionistic fuzzy topology on S is a family τ of IFSs in S satisfying the below conditions:

- (i) $0_{\sim}, 1_{\sim} \in \tau$;
- (ii) $Q_1 \cap Q_2 \in \tau$ for any $Q_1, Q_2 \in \tau$;
- (iii) $\cup Q_i \in \tau$ for any family $\{Q_k : k \in K\} \in \tau$.

In this case the pair (S, τ) is called an intuitionistic fuzzy topological space and any IFS in τ is said to be an intuitionistic fuzzy open set in S. The complement D^c of an IFOS D in an IFTS (S, τ) is called an intuitionistic fuzzy closed set in S.

Definition 2.4. [7] Two IFSs D and E are said to be q-coincident $(D_q E)$ iff there exits an element $s \in S$ such that $\mu_D(s) > \nu_E(s)$ or $\nu_D(s) < \mu_E(s)$.

Definition 2.5. [7] Two IFSs A and E are said to be not q-coincident $(A_{\bar{q}}E)$ if and only if $A \subseteq E^c$.

Definition 2.6. [3] An intuitionistic fuzzy point (IFP), written as $q_{(\alpha,\beta)}$, is defined to be an IFS of S given by

$$q_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta) & \text{if } x = p \\ (0,1) & \text{otherwise} \end{cases}$$

An intuitionistic fuzzy point $q_{(\alpha,\beta)}$ is said to belong to a set D if $\alpha \leq \mu_D$ and $\beta \geq \nu_D$.

Definition 2.7. [5] An IFS D in (S, τ) is an intuitionistic fuzzy Q-set if int(cl(D)) = cl(int(D)).

Definition 2.8. [2] Let (S, τ) be an IFTS and $D = \langle x, \mu_D, \nu_D \rangle$ be an IFS in S. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

$$int(D) = \bigcup \{Q / Q \text{ is an IFOS in S and } Q \subseteq D\},$$

 $cl(D) = \bigcap \{R / R \text{ is an IFCS in S and } D \subseteq R\}.$

It is to be noted that for any IFS D in (S, τ) , we have $cl(D^c) = (int(D))^c$ and $int(D^c) = (cl(D))^c$.

Definition 2.9. [4] An IFS $D = \langle s, \mu_D, \nu_D \rangle$ in an IFTS (S, τ) is said to be an

- (i) intuitionistic fuzzy γ closed set $(IF\gamma CS)$ if $cl(int(D)) \cap int(cl(D)) \subseteq D$,
- (ii) intuitionistic fuzzy γ open set $(IF\gamma OS)$ if $D \subseteq int(cl(D)) \cup cl(int(D))$.

Definition 2.10. [3] Let (S, τ) be an IFTS and $D = \langle s, \mu_D, \nu_D \rangle$ be an IFS in S. Then intuitionistic fuzzy kernel of D is the intersection of all IFOSs containing D.

Definition 2.11. [6] An IFS D in (S, τ) is an intuitionistic fuzzy nowhere dense set if there exists no IFOS O such that $O \subseteq cl(D)$. That is $int(cl(D)) = 0_{\sim}$.

3. Intuitionistic fuzzy β^{**} generalized closed sets

Here we have defined intuitionistic fuzzy β^{**} generalized closed set and investigated some of its properties.

Definition 3.1. An IFS A of an IFTS (S, τ) is said to be an intuitionistic fuzzy β^{**} generalized closed set (IF $\beta^{**}GCS$) if $cl(int(cl(A))) \cap int(cl(int(A))) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (S, τ) .

Example 1. Let $S = \{p,q\}$ and $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on S, where $G_1 = \langle s, (0.5_p, 0.4_q), (0.5_p, 0.6_q) \rangle$, $G_2 = \langle s, (0.8_p, 0.6_q), (0.2_p, 0.4_q) \rangle$. Then (S, τ) is an IFTS. Here the IFS $D = \langle s, (0.5_p, 0.6_q), (0.3_p, 0.4_q) \rangle$ is an IF $\beta^{**}GCS$ in S.

Theorem 3.1. Every IFCS is an IF $\beta^{**}GCS$ in (S, τ) but the reverse is not true in general.

Proof. Let D be an IFCS in (S, τ) . Let $D \subseteq O$ and O is an IFOS in (S, τ) . Since D is an IFCS, cl(D) = D. Now $cl(int(cl(D))) \cap int(cl(int(D))) \subseteq cl(D) \cap cl(D) = D \cap D = D \subseteq O$. Hence D is an IF $\beta^{**}GCS$ in (S, τ) .

Example 2. In example 1, the $IFSD = \langle s, (0.5_p, 0.5_q), (0.5_p, 0.5_q) \rangle$ is an $IF\beta^{**}GCS$ but not an IFCS in (S, τ) , as $cl(D) = G_1^c \neq D$.

Theorem 3.2. Every IFSCS is an IF $\beta^{**}GCS$ in (S, τ) but the reverse is not true in general.

Proof. Let D be an IFSCS in (S, τ) . Let $D \subseteq O$ and O is an IFOS in (S, τ) . Since D is an IFSCS, $int(cl(D)) \subseteq D$. Now $cl(int(cl(D))) \cap int(cl(int(D))) \subseteq cl(D) \cap int(cl(D)) \subseteq int(cl(D)) \subseteq D \subseteq O$. Hence D is an IF β^{**} GCS in (S, τ) . \square

Example 3. In example 1, the $IFSD = \langle s, (0.3_p, 0.3_q), (0.7_p, 0.7_q) \rangle$ is an $IF\beta^{**}GCS$ but not an IFSCS in (S, τ) , as $int(cl(D)) = G_1 \not\subseteq D$.

Theorem 3.3. Every IFPCS is an IF $\beta^{**}GCS$ in (S, τ) but the reverse is not true in general.

Proof. Let D be an IFPCS in (S, τ) . Let $D \subseteq O$ and O is an IFOS in (S, τ) . Now $cl(int(cl(D))) \cap int(cl(int(D))) \subseteq cl(D) \cap cl(int(D)) \subseteq cl(D) \cap D = D \subseteq O$, by hypothesis. Hence D is an IF β^{**} GCS in (S, τ) .

Example 4. In example 1, the $IFSD = \langle s, (0.5_p, 0.5_q), (0.5_p, 0.5_q) \rangle$ is an $IF\beta^{**}GCS$ but not an IFPCS in (S, τ) , as $cl(int(D)) = cl(G_1) = G_1^c \not\subseteq D$.

Theorem 3.4. Every IFRCS is an IF $\beta^{**}GCS$ in (X, τ) but the reverse is not true in general.

Proof. Let D be an IFRCS in (S, τ) . Since every IFRCS is an IFCS, by theorem 3.1, D is an IF β^{**} GCS in (S, τ) .

Example 5. In example 1, the $IFSD = \langle s, (0.5_p, 0.5_q), (0.5_p, 0.5_q) \rangle$ is an $IF\beta^{**}GCS$ but not an IFRCS in (S, τ) , as $cl(int(D)) = G_1^c \neq D$.

Theorem 3.5. Every IF α CS is an IF β **GCS in (S, τ) but the reverse is not true in general.

Proof. Let D be an IF α CS in (S, τ) . Let $D \subseteq O$ and O be an IFOS in (S, τ) . Now $cl(int(cl(D))) \cap int(cl(int(D))) \subseteq D \cap int(cl(D)) \subseteq D \cap cl(D) = D \subseteq O$, by hypothesis. Hence D is an IF β^{**} GCS in (S, τ) .

Example 6. In example 1, the $IFSD = \langle s, (0.5_p, 0.5_q), (0.5_p, 0.5_q) \rangle$ is an $IF\beta^{**}GCS$ but not an $IF\alpha CS$ in (S, τ) , as $cl(int(cl(D))) = G_1^c \not\subseteq D$.

Theorem 3.6. Every IF β CS is an IF β **GCS in (S, τ) but the reverse is not true in general.

Proof. Let D be an IF β CS in (S, τ) . Let $D \subseteq O$ and O be an IFOS in (S, τ) . Since D is an IF β CS, $cl(int(cl(D))) \cap int(cl(int(D))) \subseteq cl(D) \cap D = D \subseteq O$, by hypothesis. Hence D is an IF β **GCS in (S, τ) .

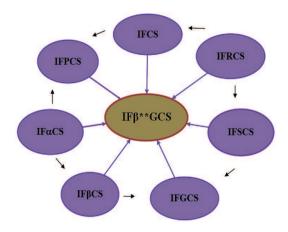
Example 7. Let $S = \{p,q\}$ and $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on S, where $G_1 = \langle s, (0.5_p, 0.6_q), (0.5_p, 0.4_q) \rangle$, $G_2 = \langle s, (0.6_p, 0.7_q), (0.4_p, 0.3_q) \rangle$. Then (S, τ) is an IFTS. Here the $IFSD = \langle s, (0.7_p, 0.8_q), (0.3_p, 0.2_q) \rangle$ is an $IF\beta^{**}GCS$ but not an $IF\beta CS$ in (S, τ) , as $int(cl(int(D))) = 1_{\sim} \not\subseteq D$.

Theorem 3.7. Every IFGCS is an IF $\beta^{**}GCS$ in (S, τ) but the reverse is not true in general.

Proof. Let D be an IFGCS in (S, τ) . Let $D \subseteq O$ and O be an IFOS in (S, τ) . Now $cl(int(cl(D))) \cap int(cl(int(D))) \subseteq cl(D) \cap cl(int(D)) = cl(D) \cap cl(D) = cl(D) \subseteq O$, by hypothesis. Hence D is an IF β^{**} GCS in (S, τ) .

Example 8. Let $S = \{p,q\}$ and $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on S, where $G = \langle s, (0.5_p, 0.4_q), (0.5_p, 0.6_q) \rangle$. Then the IFS $D = \langle s, (0.4_p, 0.4_q), (0.5_p, 0.6_q) \rangle$ is an IF $\beta^{**}GCS$ in S but not an IFGCS in (S, τ) , as $cl(D) = G^c \not\subseteq G$, where $D \subseteq G$.

The interrelation of IF β^{**} GCS with other existing closed sets is given below.



Remark 3.1. The union of any two IF $\beta^{**}GCSs$ need not be an IF $\beta^{**}GCS$ in (S, τ) in general.

Example 9. Let

$$S = \{p, q\}, G_1 = \langle s, (0.6_p, 0.8_q), (0.4_p, 0.2_q) \rangle$$

and

$$G_2 = \langle s, (0.5_p, 0.5_q), (0.4_p, 0.4_q) \rangle$$
.

Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ is an IFT on S. Here

$$IFSsD = \langle s, (0.5_p, 0.4_q), (0.4_p, 0.5_q) \rangle$$

and $E = \langle s, (0.4_p, 0.6_q), (0.5_p, 0.2_q) \rangle$ are IF β^{**} GCSs in (S, τ) but

$$D \cup E = \langle s, (0.5_p, 0.6_q), (0.4_p, 0.2_q) \rangle$$

is not an IF $\beta^{**}GCS$ in (S, τ) , as $int(cl(int(D \cup E))) \cap cl(int(cl(D \cup E))) = 1_{\sim} \not\subseteq G_1$ whereas $D \cup E \subseteq G_1$.

Remark 3.2. The intersection of any two IF $\beta^{**}GCSs$ need not be an IF $\beta^{**}GCS$ in (S, τ) in general.

Example 10. Let

$$S = \{p, q\}, G_1 = \langle s, (0.5_p, 0.7_q), (0.5_p, 0.3_q) \rangle$$

and

$$G_2 = \langle s, (0.5_p, 0.6_q), (0.5_p, 0.4_q) \rangle$$
.

Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ is an IFT on S. Here

$$IFSsD = \langle s, (0.5_p, 0.6_q), (0.5_p, 0.2_q) \rangle$$

and $E = \langle s, (0.5_p, 0.6_q), (0.4_p, 0.4_q) \rangle$ are IF β^{**} GCSs in (S, τ) but

$$D \cap E = \langle s, (0.5_p, 0.6_q), (0.5_p, 0.4_q) \rangle$$

is not an IF $\beta^{**}GCS$ in (S, τ) , as $int(cl(int(D \cap E))) \cap cl(int(cl(D \cap E))) = 1_{\sim} \not\subseteq G_1, G_2$ whereas $D \cap E \subseteq G_1, G_2$.

Theorem 3.8. If D is both an IFOS and an IF $\beta^{**}GCS$ in (S, τ) , then D is an IFROS in (S, τ) .

Proof. Let D be an IFOS and an IF β^{**} GCS in S. Then

$$int(cl(int(D))) \cap cl(int(cl(D))) \subseteq D$$
,

as $D \subseteq D$. Now

$$int(cl(D)) = int(cl(D)) \cap cl(D) \subseteq int(cl(int(D))) \cap cl(int(cl(D))) \subseteq D.$$

Hence $int(cl(D)) \subseteq D$. Since D is an IFOS, it is an IFPOS. Hence $D \subseteq int(cl(D))$. Therefore D = int(cl(D)) and Hence D is an IFROS in (S, τ) .

Theorem 3.9. If D is both an IFOS and an IF $\beta^{**}GCS$ in (S, τ) then D is an IF β CS in (S, τ) .

Proof. Let D be an IFOS and an IF β^{**} GCS in S. Then

$$int(cl(int(D))) \cap cl(int(cl(D))) \subseteq D,$$

as $D \subseteq D$. Now

$$int(cl(int(D))) = int(cl(int(D))) \cap cl(int(D)) \subseteq int(cl(int(D)))$$

 $\cap cl(int(cl(D))) \subseteq D,$

by hypothesis. Therefore $int(cl(int(D))) \subseteq D$ and hence D is an IF β CS in (S, τ) .

Theorem 3.10. An IFS A of an IFTS (S, τ) is an IF $\beta^{**}GCS$ if and only if $A_{\bar{q}}E \Rightarrow (int(cl(int(A))) \cap cl(int(cl(A)))_{\bar{q}}E$ for every IFCS E of S.

Proof. Necessity: Let E be an IFCS in S and $A_{\bar{q}}E$, then $A \subseteq E^c$, where E^c is an IFOS, Then $int(cl(int(A))) \cap cl(int(cl(A))) \subseteq E^c$, by hypothesis. Hence by Definition 2.5, $(int(cl(int(A))) \cap cl(int(cl(A)))_{\bar{q}}E$.

Sufficiency: Let O be an IFOS such that $A \subseteq O$. Then O^c is an IFCS and $A \subseteq (O^c)^c$. By hypothesis, $A_{\bar{q}}O^c \Rightarrow (int(cl(int(A))) \cap cl(int(cl(A)))_{\bar{q}}O^c$. Hence $int(cl(int(A)) \cap cl(int(cl(A))) \subseteq (O^c)^c = O$. Therefore

$$int(cl(int(A))) \cap cl(int(cl(A))) \subseteq O$$

and A is an IF β^{**} GCS in S.

Theorem 3.11. For an IFOS D in (S, τ) , the following conditions are equivalent:

- (i) D is an IFCS,
- (ii) D is an IF $\beta^{**}GCS$ and an IFQ-set.

- *Proof.* $(i) \Rightarrow (ii)$ Since D is an IFCS, it is an IF β^{**} GCS, by theorem 3.1, Now int(cl(D)) = int(D) = D = cl(D) = cl(int(D)), by hypothesis. Hence D is an IFQ-set.
- $(ii) \Rightarrow (i)$ Since D is both an IFOS and an IF β^{**} GCS, by theorem 3.8, D is an IFROS. Therefore D = int(cl(D)) = cl(int(D)) = cl(D), by hypothesis. Hence D is an IFCS in S.

Theorem 3.12. An IFS D of S is an IF $\beta^{**}GCS$ if $int(cl(int(D))) \cap cl(int(cl(D))) \subseteq ker(D)$.

Proof. Let O be any IFOS such that $D \subseteq O$. By hypothesis, $int(cl(int(D))) \cap cl(int(cl(D))) \subseteq ker(D)$ and since $D \subseteq O$, $ker(D) \subseteq O$. Therefore $int(cl(int(D))) \cap cl(int(cl(D))) \subseteq O$ and hence D is an IF β^{**} GCS in S.

Theorem 3.13. For an $IF\beta^{**}GCS$ D in an IFTS (S, τ) , the following conditions hold:

- (i) If D is an IFROS then scl(D) is an IF $\beta^{**}GCS$,
- (ii) If D is an IFRCS then sint(D) is an IF $\beta^{**}GCS$.
- *Proof.* (i) Let D be an IFROS in (S, τ) . Then int(cl(D)) = D. By definition, we have $scl(D) = D \cup int(cl(D)) = D$. Since D is an IF β^{**} GCS in S, scl(D) is an IF β^{**} GCS in S.
- (ii) Let D be an IFRCS in (S, τ) . Then cl(int(D)) = D. By definition, we have $sint(D) = D \cap cl(int(D)) = D$. Since D is an IF β^{**} GCS in S, sint(D) is an IF β^{**} GCS in S.

Theorem 3.14. If an IFS D of an IFTS (S, τ) is intuitionistic fuzzy nowhere dense, then D is an IF $\beta^{**}GCS$ in S.

Proof. If D is an intuitionistic fuzzy nowhere dense subset, then by Definition 2.11 we get, $int(cl(D)) = 0_{\sim}$. Let $D \subseteq O$ where O is an IFOS in S. Then $cl(int(cl(D))) \cap int(cl(int(D))) \subseteq cl(int(cl(D))) \cap int(cl((D))) = cl(int(cl(D))) \cap 0_{\sim} = 0_{\sim} \subseteq O$ and hence D is an IF β^{**} GCS in S.

Theorem 3.15. If every IFS in (S, τ) is an IF $\beta^{**}GCS$, then IF $O(S) \subseteq IF\gamma C(S)$.

Proof. Suppose that every IFS in (S, τ) is an IF β^{**} GCS. Let $O \in IFO(X)$. Then as $O \subseteq O$, and by hypothesis, $int(cl(O)) \cap cl(int(O)) = int(cl(int(O))) \cap cl(int(cl(O))) \subseteq O$. Therefore $O \in IF\gamma C(S)$ and $IFO(S) \subseteq IF\gamma C(S)$.

4. Intuitionistic fuzzy β^{**} generalized open sets

Here we have discussed and analyzed some of the properties of intuitionistic fuzzy β^{**} generalized open sets and produced many interesting characterization theorems.

Definition 4.1. The complement A^c of an $IF\beta^{**}GCS$ A in an IFTS (S, τ) is called an intuitionistic fuzzy β^{**} generalized open set $(IF\beta^{**}GOS)$ in S. The family of all $IF\beta^{**}GOSs$ of an IFTS (S, τ) is denoted by $IF\beta^{**}GO(S)$.

Example 11. Let $S = \{p,q\}$ and $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on S, where $G_1 = \langle s, (0.5_p, 0.4_q), (0.5_p, 0.6_q) \rangle$, $G_2 = \langle s, (0.8_p, 0.6_q), (0.2_p, 0.4_q) \rangle$. Then (S, τ) is an IFTS. Here the $IFSD = \langle s, (0.3_p, 0.4_q), (0.5_p, 0.6_q) \rangle$ is an $IF\beta^{**}GOS$ in S.

Theorem 4.1. Every IFOS, IFSOS, IFPOS, IF α OS, IFROS, IFGOS and IF β OS are IF β^{**} GOS in (S, τ) but the reverse is not true in general.

Proof. Straightforward.

Example 12. In Ex. 1, the IFS $D = \langle s, (0.5_p, 0.5_q), (0.5_p, 0.5_q) \rangle$ is an IF $\beta^{**}GOS$ but not an IFOS, IFPOS, IF α OS and IFROS in (S, τ) .

Example 13. In Ex. 1, the IFS $D = \langle s, (0.7_p, 0.7_q), (0.3_p, 0.3_q) \rangle$ is an IF $\beta^{**}GOS$ but not an IFSOS in (S, τ) .

Example 14. In Ex. 7, the IFS $D = \langle s, (0.3_p, 0.2_q), (0.7_p, 0.8_q) \rangle$ is an IF $\beta^{**}GOS$ but not an IF β OS in (S, τ) .

Example 15. In Ex. 8, the $IFSD = \langle s, (0.5_p, 0.6_q), (0.4_p, 0.4_q) \rangle$ is an $IF\beta^{**}GOS$ but not an IFGOS in (S, τ) .

Remark 4.1. The union of two IF $\beta^{**}GOSs$ need not be an IF $\beta^{**}GOS$ in (S, τ) in general.

Example 16. Let

$$S = \{p, q\}, G_1 = \langle s, (0.5_p, 0.7_q), (0.5_p, 0.3_q) \rangle$$

and

$$G_2 = \langle s, (0.5_p, 0.6_q), (0.5_p, 0.4_q) \rangle.$$

Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ is an IFT on S. Here

$$IFSsD = \langle s, (0.5_p, 0.2_q), (0.5_p, 0.6_q) \rangle$$

and $E = \langle s, (0.4_p, 0.4_q), (0.5_p, 0.6_q) \rangle$ are IF β^{**} GOSs in S but

$$D \cup E = \langle s, (0.5_p, 0.4_q), (0.5_p, 0.6_q) \rangle$$

is not an IF $\beta^{**}GOS$ in S.

Remark 4.2. The intersection of two IF $\beta^{**}GOSs$ need not be an IF $\beta^{**}GOS$ in (S, τ) in general.

Example 17. Let

$$S = \{p, q\}, G_1 = \langle s, (0.6_p, 0.8_q), (0.4_p, 0.2_q) \rangle$$

and

$$G_2 = \langle s, (0.5_p, 0.5_q), (0.4_p, 0.4_q) \rangle$$
.

Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ is an IFT on S. Here

$$IFSsD = \langle s, (0.4_p, 0.5_q), (0.5_p, 0.4_q) \rangle$$

and $E = \langle s, (0.5_p, 0.2_q), (0.4_p, 0.6_q) \rangle$ are IF β^{**} GOSs in S but

$$D \cap E = \langle s, (0.4_p, 0.2_q), (0.5_p, 0.6_q) \rangle$$

is not an $IF\beta^{**}GOS$ in S.

Theorem 4.2. An IFS D of an IFTS (S, τ) is an IF $\beta^{**}GOS$ if and only if $F \subseteq cl(int(cl(D))) \cup int(cl(int(D)))$ whenever E is an IFCS and $E \subseteq D$.

Proof. Necessity: Suppose D is an IF β^{**} GOS in S. Let E be an IFCS, such that $E \subseteq D$. Then E^c is an IFOS and $D^c \subseteq E^c$, by hypothesis D^c is an IF β^{**} GCS. We have $int(cl(int(D^c))) \cap cl(int(cl(D^c))) \subseteq E^c$. Therefore $E \subseteq cl(int(cl(D))) \cup int(cl(int(D)))$.

Sufficiency: Let O be an IFOS, such that $D^c \subseteq O$, and $O^c \subseteq D$ then $O^c \subseteq cl(int(cl(D))) \cup int(cl(int(D)))$, by hypothesis. Therefore $int(cl(int(D^c))) \cap cl(int(cl(D^c))) \subseteq O$ and D^c is an IF β^{**} GCS. Hence D is an IF β^{**} GOS in S.

Theorem 4.3. Let (S,τ) be an IFTS. Then for every $D \in IFS(S)$ and for every $E \in IFRO(S)$, $E \subseteq D \subseteq cl(int(cl(E))) \cap int(cl(int(E)))$ implies $D \in IF\beta^{**}GO(S)$.

Proof. Let E be an IFROS in S. Then E = int(cl(E)). By hypothesis, $D \subseteq cl(int(cl(E))) \cap int(cl(int(E))) \subseteq cl(E) \cap int(cl(E)) \subseteq int(cl(E)) \subseteq int(cl(D))$ as $E \subseteq D$. Therefore D is an IFPOS and by Theorem 4.1, A is an IF β^{**} GOS. Hence $A \in IF\beta^{**}GO(S)$.

REFERENCES

- [1] K. ATANASSOV: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 12 (1986), 87-96.
- [2] D. COKER: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, **88** (1997), 81-89.
- [3] D. COKER, M. DEMIRCI: On intuitionistic fuzzy points, Notes on Intuitionistic Fuzzy Sets, 1 (1995), 79-84.
- [4] I. M. HANAFY: Intuitionistic fuzzy γ continuity, Canad. Math. Bull, **52** (2009), 544-554.
- [5] R. SANTHI, D. JAYANTHI: Generalized semi-pre connectedness in intuitionistic fuzzy topological spaces, Annals of Fuzzy Mathematics and Informatics, **3** (2012), 243-253.
- [6] S. S. THAKUR. R. DHAVASEELAN: *Nowhere dense sets in intuitionistic fuzzy topological spaces*, Proceedings of National Seminar on Recent Developments in Topology, 2015, 11-12.
- [7] S. S. THAKUR, R. CHATURVEDI: Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si CercetariStiintifice, **16** (2006), 257-272.

AVINASHILINGAM INSTITUTE FOR HOME SCIENCE AND HIGHER EDUCATION FOR WOMEN, COIMBATORE, TAMIL NADU, INDIA.

E-mail address: sudhamaths2016@gmail.com

AVINASHILINGAM INSTITUTE FOR HOME SCIENCE AND HIGHER EDUCATION FOR WOMEN, COIMBATORE, TAMIL NADU, INDIA.

E-mail address: jayanthimathss@gmail.com