

Advances in Mathematics: Scientific Journal 9 (2020), no.2, 539-548

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

Special Issue on ICCSPAM-2020; https://doi.org/10.37418/amsj.9.2.2

A NOTE ON NANO $g^{\#}\alpha\text{-CLOSED}$ MAPS IN NANO TOPOLOGICAL SPACES

S. VISAGAPRIYA¹ AND V. KOKILAVANI

ABSTRACT. The point of this article is to show separation axioms of Nano $g^{\#}\alpha$ closed sets in nano topological space. We moreover present and explore nano $g^{\#}\alpha$ -closed maps and additionally consider their principal properties.

1. Introduction and Preliminaries

In [6], the specialists introduced a nano topological space with regard to a subset X of an universe which is characterized in terms of lower approximation, upper approximation and boundary region. He has also presented nano closed sets (in brief N-CS) and nano open sets (in brief N-OS). In [8], the experts presented the concept of $g^{\#}\alpha$ -closed sets to explore a few topological properties. V. Kokilavani et al [5] introduced $Ng^{\#}\alpha$ -closed sets in nano topological space (in brief nts). The essential expected of this paper is to present separation axioms of nano $g^{\#}\alpha$ closed sets. We likewise present the concept of $Ng^{\#}\alpha$ -closed maps and study their properties in nts.

Definition 1.1. A subset H of a nts $(U, \tau_R(G))$ is called

- (1) $N\alpha$ -CS [6] if $Nint(Ncl(Nint(H))) \subset H$.
- (2) Ng-CS [1] if $Ncl(H) \subseteq G$, whenever $H \subseteq G$ and G is N-OS.
- (3) Ngs-CS [2] if $Nscl(H) \subseteq G$ whenever $H \subseteq G$, G is N-OS.

¹corresponding author

Key words and phrases. $NT_{1/2}^*$ -space, $NT_{g_\alpha^\#}^*$ -space, $N\alpha^\# T_{1/2}$ -space, $N^*T_{g^\#\alpha}$ -space, $N\alpha^\# T_k$ -space, $N\alpha^\# T_k$ -space, $N\alpha^\# T_k$ -space.

- (4) $N \alpha g$ -CS [12] if $N \alpha cl(H) \subseteq G$ whenever $H \subseteq G$ and G is N-OS.
- (5) Ng^* -CS [10] if $Ncl(H) \subseteq G$ whenever $H \subseteq G$ and G is Ng-OS.
- (6) $Ng\alpha g$ -CS [9] if $Ncl(H) \subseteq G$ whenever $H \subseteq G$ and G is $N\alpha g$ -OS.

The complements of the above sets are called their particular N-OS.

Definition 1.2. A subset H of $(U, \tau_R(G))$ is called nano $g^\#\alpha$ -closed set[5] (in brief $Ng^\#\alpha$ -CS) if $N\alpha cl(H) \subseteq V$ whenever $H \subseteq V$ and V is Ng-OS in $(U, \tau_R(G))$. The complements of $Ng^\#\alpha$ -CS is $Ng^\#\alpha$ -OS in $(U, \tau_R(G))$.

Definition 1.3. Let $(U, \tau_R(G))$ and $(V, \sigma_R(H))$ be nts. Then the map

$$f: (U, \tau_R(G)) \to (V, \sigma_R(H))$$

is called:

- (1) nano continuous (in brief N-continuous) [13] if $f^{-1}(j)$ is a N-OS (resp N-CS) in $(U, \tau_R(G))$, for each N-OS (resp N-CS) j in $(V, \sigma_R(H))$.
- (2) $N\alpha$ -continuous (in brief $N\alpha$ -continuous) [7] if $f^{-1}(j)$ is a $N\alpha$ -OS (resp $N\alpha$ -CS) in $(U, \tau_R(G))$, for each N-OS (resp N-CS) j in $(V, \sigma_R(H))$.
- (3) Ng-continuous (in brief Ng-continuous) [4] if $f^{-1}(j)$ is a Ng-OS (resp Ng-CS) in $(U, \tau_R(G))$, for each N-OS (resp N-CS) j in $(V, \sigma_R(H))$.
- (4) $N\alpha g$ -continuous (in brief $N\alpha g$ -continuous) [7] if $f^{-1}(j)$ is a $N\alpha g$ -OS (resp $N\alpha g$ -CS) in $(U, \tau_R(G))$, for each N-OS (resp N-CS) j in $(V, \sigma_R(H))$.
- (5) Ngs-continuous (in brief Ngs-continuous) [3] if $f^{-1}(j)$ is a Ngs-OS (resp Ngs-CS) in $(U, \tau_R(G))$, for each N-OS (resp N-CS) j in $(V, \sigma_R(H))$.
- (6) $Ng\alpha g$ -continuous (in brief $Ng\alpha g$ -continuous) [9] if $f^{-1}(j)$ is a $Ng\alpha g$ -OS (resp $Ng\alpha g$ -CS) in $(U, \tau_R(G))$, for each N-OS (resp N-CS) j in $(V, \sigma_R(H))$.
- (7) Ng^* -continuous (in brief Ng^* -continuous) [11] if $f^{-1}(j)$ is a Ng^* -OS (resp Ng^* -CS) in $(U, \tau_R(G))$, for each N-OS (resp N-CS) j in $(V, \sigma_R(H))$.

Definition 1.4. A map $c: (U, \tau_R(G)) \to (V, \sigma_R(H))$ is said to be a $Ng^\#\alpha$ -continuous [5] if $c^{-1}(j)$ is a $Ng^\#\alpha$ -closed set in $(U, \tau_R(G))$ for each nano closed set j in $(V, \sigma_R(H))$.

Definition 1.5. A nts $(U, \tau_R(G))$ is said to be nano $T_{g\alpha g}$ -space [9] (in short $NT_{g\alpha g}$ -space) if each $Ng\alpha g$ -CS in it is N-CS.

2. Seperation Axioms in terms $Ng^{\#}\alpha$ -closed set

Definition 2.1. A nts $(U, \tau_R(G))$ is said to be

- (i) nano $T_{1/2}^*$ -space (in brief $NT_{1/2}^*$ -space) if each Ng^* -CS in it is N-CS.
- (ii) nano $T_{q^{\#}\alpha}$ -space (in brief $NT_{q^{\#}\alpha}$ -space) if each $Ng^{\#}\alpha$ -CS in it is N-CS.
- (iii) nano $\alpha^{\#}T_{1/2}$ -space (in brief $N\alpha^{\#}T_{1/2}$ -space) if each $Ng^{\#}\alpha$ -CS in it is $N\alpha$ -CS.
- (iv) nano ${}^*T_{g^\#\alpha}$ -space (in brief $N^*T_{g^\#\alpha}$ -space) if each $Ng^\#\alpha$ -CS in it is Ng^* -CS.
- (v) nano ** $T_{g^{\#}\alpha}$ -space (in brief $N^{**}T_{g^{\#}\alpha}$ -space) if each $Ng^{\#}\alpha$ -CS in it is $Ng\alpha g$ -CS.
- (vi) nano $\alpha^{\#}T_k$ -space (in brief $N\alpha^{\#}T_k$ -space) if each $N\alpha g$ -CS in it is $Ng^{\#}\alpha$ -CS.
- (vii) nano $\alpha^{\#\#}T_k$ -space (in brief $N\alpha^{\#\#}T_k$ -space) if each Ngs-CS in it is $Ng^{\#}\alpha$ -CS.

Theorem 2.1. In a nts $(U, \tau_R(G))$, every nano $T_{g^\#\alpha}$ -space are nano $T_{1/2}^*$ -space, $T_{g\alpha g}$ -space, nano $^*T_{g^\#\alpha}$ -space and nano $^*T_{g^\#\alpha}$ -space.

Proof. Let $(U, \tau_R(G))$ be a nano $T_{g^\#\alpha}$ -space and let D be a nano g^* -CS (resp $Ng\alpha g$ -CS, $Ng^\#\alpha$ -CS) in $(U, \tau_R(G))$. Since every Ng^* -closed set (resp $Ng\alpha g$ -CS) is $Ng^\#\alpha$ -CS [5] we have D is a nano $g^\#\alpha$ -CS. Moreover U is a nano $T_{g^\#\alpha}$ -space, then D is a N-CS in U. Consequently, $(U, \tau_R(G))$ is a nano $T_{1/2}^*$ -space (resp $T_{g\alpha g}$ -space, nano $T_{g^\#\alpha}$ -space and nano $T_{g^\#\alpha}$ -space).

The above theorem require not be true by the following illustration.

Example 1. Let $U = \{\alpha, \beta, \gamma, \delta\}$ with $U/R = \{\{\alpha, \beta\}, \{\gamma\}, \{\delta\}\}$ and $G = \{\alpha, \gamma, \delta\}$. Let $\tau_R(G) = \{\emptyset, \{\alpha, \beta\}, \{\gamma, \delta\}, U\}$ be the nts. Then $(U, \tau_R(G))$ is a nano $T_{1/2}$ -space and nano $T_{g\alpha g}$ -space but not nano $T_{g\#\alpha}$ -space. Let $U = \{a_1, a_2, a_3, a_4\}$ with $U/R = \{\{a_1\}, \{a_2, a_3\}, \{a_4\}\}$ and $G = \{a_2, a_4\}$. Let $\tau_R(G) = \{\emptyset, \{a_4\}, \{a_2, a_3\}, \{a_2, a_3, a_4\}, U\}$ be the nts. $Ng^\#\alpha$ -closed sets $= Ng^*$ -closed sets $= \{\emptyset, \{a_1\}, \{a_1, a_2\}, \{a_1, a_4\}, \{a_1, a_3\}, \{a_1, a_2, a_3\}, \{a_1, a_2, a_4\}, \{a_1, a_3, a_4\}\}$. Then $(U, \tau_R(G))$ is a nano $T_{g\#\alpha}$ -space but not nano $T_{g\#\alpha}$ -space. Let $U = \{b, e, d\}$ with $U/R = \{\{b, e\}, \{d\}\}$ and $G = \{b, e\}$. Let $\tau_R(G) = \{\emptyset, \{b, e\}, U\}$ be the nts. Then $(U, \tau_R(G))$ is a nano $T_{g\#\alpha}$ -space but not nano $T_{g\#\alpha}$ -space.

Remark 2.1. Every $N\alpha g$ -closed (resp. $N\alpha g$ -open) set is Ngs-closed (resp. Ngs-open) set.

Theorem 2.2. Every nano $\alpha^{\#\#}T_k$ -space is nano $\alpha^{\#}T_k$ -space.

Proof. The proof is obvious.

The converse of the above theorem need not be true shown by the following example.

Example 2. Let $U = \{1, 2, 3, 4\}$ with $U/R = \{\{1\}, \{2, 3\}, \{4\}\}$ and $G = \{2, 4\}$. Let $\tau_R(G) = \{\emptyset, \{4\}, \{2, 3\}, \{2, 3, 4\}, U\}$ be the nts. $N\alpha g$ -closed sets = $Ng^\# \alpha$ -closed sets = $\{\emptyset, \{1\}, \{2, 3\}, \{1, 4\}, \{1, 3\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}$. Then $(U, \tau_R(G))$ is a nano $\alpha^\# T_k$ -space but not nano $\alpha^\# T_k$ -space.

Theorem 2.3. If a nts $(U, \tau_R(G))$ is nano $T_{g^{\#}\alpha}$ -space, then every singleton of U is either nano g-CS or N-OS. But not conversely.

Proof. Let $x \in U$ and $(U, \tau_R(G))$ be a nano $T_{g^\#\alpha}$ -space. Suppose $\{x\}$ is not a nano g-CS of $(U, \tau_R(G))$, then X $\{x\}$ is not nano g-OS. Then X is the only nano g-OS containing X $\{x\}$. Then X $\{x\}$ is a $Ng^\#\alpha$ -CS of $(U, \tau_R(G))$. Since $(U, \tau_R(G))$ is a nano $T_{g^\#\alpha}$ -space, X $\{x\}$ is N-CS, which implies x is N-OS in $(U, \tau_R(G))$.

Theorem 2.4. If a nts $(U, \tau_R(G))$ is nano $\alpha^\# T_{1/2}$ -space, then every singleton of U is either nano g-CS or nano α -OS. But not conversely.

Proof. The proof is obvious.

Theorem 2.5. In a nts $(U, \tau_R(G))$, the following conditions are equivalent:

- (i) $(U, \tau_R(G))$ is both $N^*T_{g^\#\alpha}$ -space and $NT^*_{1/2}$ -space.
- (ii) $(U, \tau_R(G))$ is $NT_{q^{\#}\alpha}$ -space.

Proof. $(i)\Rightarrow (ii)$: Let C be a $Ng^\#\alpha$ -CS in $(U,\tau_R(G))$. Since $(U,\tau_R(G))$ is a $N^*T_{g^\#\alpha}$ -space, C is Ng^* -CS. Moreover since $(U,\tau_R(G))$ is a $NT_{1/2}^*$ space, C is N-CS. Consequently, $(U,\tau_R(G))$ is a $NT_{g^\#\alpha}$ -space.

 $(ii)\Rightarrow (i)$: Let L be a N-CS and M be a $Ng^\#\alpha$ -CS in $(U,\tau_R(G))$. Moreover each Ng^* -CS is $Ng^\#\alpha$ -CS in $(U,\tau_R(G))$, we have $L\subseteq M$. Moreover since $(U,\tau_R(G))$ is a $NT_{g^\#\alpha}$ -space, every $Ng^\#\alpha$ -CS is N-CS in $(U,\tau_R(G))$, (i,e) $M\subseteq L$. Hence L = M. Let C be a Ng^* -CS in $(U,\tau_R(G))$. Since each N-CS is Ng^* -CS [11] and each Ng^* -CS is $Ng^\#\alpha$ -CS [5], we have $L\subseteq M\subseteq C$. But $L=M\Longrightarrow M\subseteq C$. Thus L = M = C. (i,e) every $Ng^\#\alpha$ -CS is N g^* -CS and every Ng^* -CS is N-CS in $(U,\tau_R(G))$. Consequently, $(U,\tau_R(G))$ is both $N^*T_{g^\#\alpha}$ -space and $NT_{1/2}^*$ -space.

Theorem 2.6. In a nts $(U, \tau_R(G))$, the taking after conditions are equivalent:

- (i) $(U, \tau_R(G))$ is both $N^{**}T_{q^{\#}\alpha}$ -space and $NT_{g\alpha g}$ -space.
- (ii) $(U, \tau_R(G))$ is $NT_{g^{\#}\alpha}$ -space.

Proof. $(i) \Rightarrow (ii)$: Let C be a $Ng^{\#}\alpha$ -CS in $(U, \tau_R(G))$. Since $(U, \tau_R(G))$ is a $N^{**}T_{g^{\#}\alpha}$ -space, C is $Ng\alpha g$ -CS. Moreover since $(U, \tau_R(G))$ is a $NT_{g\alpha g}$ -space, C is N-CS. Consequently, $(U, \tau_R(G))$ is a $NT_{g^{\#}\alpha}$ -space.

 $(ii)\Rightarrow (i)$: Let L be a N-CS and M be a $Ng^\#\alpha$ -CS in $(U,\tau_R(G))$. Since each $Ng\alpha g$ -CS is $Ng^\#\alpha$ -CS in $(U,\tau_R(G))$, we have $L\subseteq M$. Moreover since $(U,\tau_R(G))$ is a $NT_{g^\#\alpha}$ -space, every $Ng^\#\alpha$ -CS is N-CS in $(U,\tau_R(G))$, (i,e) $M\subseteq L$. Hence L = M. Let C be a $Ng\alpha g$ -CS in $(U,\tau_R(G))$. Since each N-CS is $Ng\alpha g$ -CS [10] and every $Ng\alpha g$ -CS is $Ng^\#\alpha$ -CS [5], we have $L\subseteq M\subseteq C$. But $L=M\Longrightarrow M\subseteq C$. Thus L = M = C. (i,e) every $Ng^\#\alpha$ -CS is $Ng\alpha g$ -CS and every $Ng\alpha g$ -CS is N-CS in $(U,\tau_R(G))$. Consequently, $(U,\tau_R(G))$ is both $N^{**}T_{g^\#\alpha}$ -space and $NT_{g\alpha g}$ -space.

Theorem 2.7. Let $f:(U,\tau_R(G))\to (V,\sigma_R(H))$ be a $Ng^\#\alpha$ -continuous function. If $(U,\tau_R(G))$ is a nano $\alpha^\#T_{1/2}$ -space, then f is $N\alpha$ -continuous.

Proof. Let C be a N-CS in $(V, \sigma_R(H))$. Since f is $Ng^\#\alpha$ -continuous, $f^{-1}(C)$ could be a $Ng^\#\alpha$ -CS. Since $(U, \tau_R(G))$ is a nano $\alpha^\#T_{1/2}$ -space, we have $f^{-1}(C)$ is a $N\alpha$ -CS in $(U, \tau_R(G))$. Consequently, f is $N\alpha$ -continuous.

Theorem 2.8. Let $f:(U,\tau_R(G))\to (V,\sigma_R(H))$ be a $Ng^\#\alpha$ -continuous function. If $(U,\tau_R(G))$ is a $NT_{g^\#\alpha}$ -space, then f is nano continuous.

Proof. The proof is similar.

Theorem 2.9. Let $(U, \tau_R(G))$ and $(V, \sigma_R(H))$ be a nts and Let $j : (U, \tau_R(G)) \to (V, \sigma_R(H))$ be a map then the following statements hold:

- (i) If j is $N\alpha g$ -continuous function and $N\alpha^{\#}T_k$ -space, then j is $Ng^{\#}\alpha$ -continuous.
- (ii) If j is Ngs-continuous function and $N\alpha^{\#\#}T_k$ -space, then j is $Ng^{\#}\alpha$ -continuous.

Proof. (i) Let D be a N-CS in $(V, \sigma_R(H))$. Since j is $N\alpha g$ -continuous, $j^{-1}(D)$ is $N\alpha g$ -CS. Since $(U, \tau_R(G))$ is a $N\alpha^\# T_k$ -space, we have $j^{-1}(D)$ is a $Ng^\#\alpha$ -CS in $(U, \tau_R(G))$. Consequently, j is $Ng^\#\alpha$ -continuous.

(ii) The proof is similar.

Theorem 2.10. Let $(U, \tau_R(G))$ and $(V, \sigma_R(H))$ be a nts and Let $f : (U, \tau_R(G)) \to (V, \sigma_R(H))$ be a map then the following statements hold:

- (i) If f is $Ng^{\#}\alpha$ -continuous and $(U, \tau_R(G))$ be $N^*T_{g^{\#}\alpha}$ -space, then f is Ng^* -continuous.
- (ii) If f is $Ng^{\#}\alpha$ -continuous and $(U, \tau_R(G))$ be $N^{**}T_{g^{\#}\alpha}$ -space, then f is $Ng\alpha g$ -continuous.

Proof. (i) Let C be a N-CS in $(V, \sigma_R(H))$. Since f is $Ng^\#\alpha$ -continuous, $f^{-1}(C)$ is $Ng^\#\alpha$ -CS. Since $(U, \tau_R(G))$ is a $N^*T_{g^\#\alpha}$ -space, we have $f^{-1}(C)$ is a Ng^* -CS in $(U, \tau_R(G))$. Consequently, f is Ng^* -continuous.

(ii) The proof is similar.

3. $Ng^{\#}\alpha$ -Closed maps

Definition 3.1. A function $j:(U,\tau_R(G))\to (V,\sigma_R(H))$ is called $Ng^\#\alpha$ -open maps if for each nano open set E of $(U,\tau_R(G))$, its image j(E) is $Ng^\#\alpha$ -open maps in $(V,\sigma_R(H))$.

Example 3. Let $U = \{b_1, b_2, b_3, b_4\}$ be the universe with $U/R = \{\{b_1\}, \{b_3\}, \{b_2, b_4\}\}$ and let $G = \{b_1, b_2\}$. Then the N-OS are $\{\emptyset, \{b_1\}, \{b_2, b_4\}, \{b_1, b_2, b_4\}, U\}$. The $Ng^\#\alpha$ -CS are $\{\emptyset, \{b_3\}, \{b_3, b_4\}, \{b_1, b_3\}, \{b_2, b_4\}, \{b_2, b_3, b_4\}, \{b_1, b_3, b_4\}, \{b_1, b_2, b_4\}, U\}$. Let $V = \{a, b, c, d\}$ be the another universe with $V/R = \{\{a\}, \{b, c\}, \{d\}\}$ and let $H = \{b, d\}$. Then the N-OS are $\{\emptyset, \{d\}, \{b, c\}, \{b, c, d\}, V\}$. The $Ng^\#\alpha$ -CS are $\{\emptyset, \{a\}, \{a, b\}, \{a, d\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, V\}$. Define the function $j : (U, \tau_R(G)) \to (V, \sigma_R(H))$ as j(e) = b, j(f) = d, j(g) = a, j(h) = c. Now the images of N-OS of U which are $Ng^\#\alpha$ -OS in V. Thus the function j is $Ng^\#\alpha$ -open map.

Definition 3.2. A function $j:(U,\tau_R(G))\to (V,\sigma_R(H))$ is called $Ng^\#\alpha$ -closed maps if for every N-CS E of $(U,\tau_R(G))$, its image j(E) is $Ng^\#\alpha$ -closed maps in $(V,\sigma_R(H))$.

Example 4. In example 3, j(U) = V, $j(\emptyset) = \emptyset$, $j(\{g\}) = \{a\}$, $j(\{e,g\}) = \{a,c\}$, $j(\{f,g,h\}) = \{a,c,d\}$ are the images of N-CS of U which are $Ng^{\#}\alpha$ -closed maps in V. Thus the function j is $Ng^{\#}\alpha$ -closed map.

Theorem 3.1. A function $j:(U,\tau_R(G))\to (V,\sigma_R(H))$ is $Ng^{\#}\alpha$ -closed function if and only if $Ng^{\#}\alpha cl(f(C))\subseteq f(Ncl(C))$ for each subset C of $(U,\tau_R(G))$.

Proof. Let $j:(U,\tau_R(G))\to (V,\sigma_R(H))$ be a $Ng^\#\alpha$ -closed function and $C\subseteq U$. Then Ncl(C) is N-CS in $(U,\tau_R(G))$ and hence j(Ncl(C)) is $Ng^\#\alpha$ -closed function in $(V,\sigma_R(H))$. Since $C\subseteq Ncl(C)$, it implies that $j(C)\subseteq j(Ncl(C))$. As $Ng^\#\alpha$ cl(j(Ncl(C))) is the $Ng^\#\alpha$ -CS containing j(C), it follows that

$$Ng^{\#}\alpha cl(j(C)) \subseteq Ng^{\#}\alpha cl(j(Ncl(C))) \subseteq j(Ncl(C)).$$

Conversely, let C be any N-CS in $(U, \tau_R(G))$. Then C = Ncl(C) and so $j(C) = j(Ncl(C)) \supseteq Ng^\#\alpha cl(j(C))$ by the given hypothesis. Also, it follows that $j(C) \subseteq Ng^\#\alpha cl(j(C))$. Hence $j(C) = Ng^\#\alpha cl(j(C))$. i.e., j(C) is $Ng^\#\alpha$ -CS and hence $j: (U, \tau_R(G)) \to (V, \sigma_R(H))$ is $Ng^\#\alpha$ -closed function.

Theorem 3.2. A function $f:(U,\tau_R(G))\to (V,\sigma_R(H))$ is $Ng^\#\alpha\text{-CS}$ if and only if for each subset Y of $(V,\sigma_R(H))$ and for each N-OS A of $(U,\tau_R(G))$ containing $f^{-1}(Y)$, there is a $Ng^\#\alpha\text{-OS}$ B of $(V,\sigma_R(H))$ such that $Y\subseteq B$ and $f^{-1}(B)\subseteq A$.

Proof. Let Y be the subset of $(V, \sigma_R(H))$ and A be a N-OS of $(U, \tau_R(G))$ such that $f^{-1}(Y) \subset A$. Now V - f(U-A), say B, is a $Ng^\#\alpha$ -OS containing Y in V such that $f^{-1}(B) \subseteq A$. Conversely, let F be a N-OS of U, then $f^{-1}(V-f(F)) \subset U-F$ and U-F is N-OS. Now, there is a $Ng^\#\alpha$ -OS B of $(V, \sigma_R(H))$ such that $V-f(F) \subset B$ and $f^{-1}(B) \subset U-F$. Hence $F \subset U-f^{-1}(B)$ and thus $V-B \subset f(F) \subset f(U-f^{-1}(B)) \subset V-B$ which implies f(F)=V-B. Since V-B is $Ng^\#\alpha$ -CS, f(F) is a $Ng^\#\alpha$ -CS in $(V, \sigma_R(H))$ for each N-CS F in $(U, \tau_R(G))$. Hence $f: (U, \tau_R(G)) \to (V, \sigma_R(H))$ is a $Ng^\#\alpha$ -closed function. \square

Remark 3.1. The following illustration shows that the composition of two $Ng^{\#}\alpha$ -closed function require not be $Ng^{\#}\alpha$ -closed.

Example 5. Let $U = \{i, j, k, l\}$ be the universe with $U/R = \{\{i\}, \{k\}, \{j, l\}\}\}$ and let $G = \{i, j\}$. Then the N-OS are $\{\emptyset, \{i\}, \{j, l\}, \{i, j, l\}, U\}$ and the N-CS are $\{\emptyset, \{k\}, \{i, k\}, \{j, k, l\}, U\}$. The $Ng^{\#}\alpha$ -CS are $\{\emptyset, \{k\}, \{k, l\}, \{i, k\}, \{j, l\}, \{j, k, l\}, \{i, k, l\}, \{i, j, l\}, U\}$. The $Ng^{\#}\alpha$ -OS are $\{\emptyset, \{k\}, \{j\}, \{i\}, \{i, k\}, \{j, l\}, \{i, l\}, \{i, j, l\}, U\}$. Let $V = \{a, b, c, d\}$ be another universe with $V/R = \{\{a\}, \{b, c\}, \{d\}\}$ and let $H = \{b, d\}$. Then the N-OS are $\{\emptyset, \{d\}, \{b, c\}, \{b, c, d\}, V\}$ and the N-CS are $\{\emptyset, \{a\}, \{a, d\}, \{a, b, c\}, V\}$. The $Ng^{\#}\alpha$ -CS are $\{\emptyset, \{a\}, \{a, b\}, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a, b, d\}, V\}$ and $Ng^{\#}\alpha$ -OS are $\{\emptyset, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, V\}$.

Also, $W = \{t, u, v\}$ with $W/R = \{\{t, u\}, \{v\}\}$ and $I = \{t, u\}$. Let $\{\emptyset, \{t, u\}, W\}$ be the N-OS and $\{\emptyset, \{v\}, W\}$ be the N-CS. The $Ng^{\#}\alpha$ -CS are $\{\emptyset, \{v\}, \{u, v\}, \{u,$

 $\{t,v\},W\}$ and the $Ng^{\#}\alpha\text{-OS}$ are $\{\emptyset,\{t\},\{u\},\{t,u\},W\}$. Define the function $f:(U,\tau_R(G)) \to (V,\sigma_R(H))$ as f(i)=b, f(j)=d, f(k)=a, f(l)=c. Also define the map $h:(V,\sigma_R(H)) \to (W,\eta_R(I))$ be h(a)=t=h(d), h(b)=u, h(c)=v. Then both f and h are $Ng^{\#}\alpha\text{-closed}$ functions but their composition $h\circ f:(U,\tau_R(G))\to (W,\eta_R(I))$ is not $Ng^{\#}\alpha\text{-closed}$ functions since for the N-CS $\{j,k,l\}$ in $(U,\tau_R(G))$, $h\circ f(\{j,k,l\})=h[f(\{j,k,l\})]=h[\{a,c,d\}]=\{t,v\}$ is not $Ng^{\#}\alpha\text{-CS}$ in $(W,\eta_R(I))$. Consequently, the composition of two $Ng^{\#}\alpha\text{-closed}$ functions require not be $Ng^{\#}\alpha\text{-CS}$.

Theorem 3.3. If $f:(U,\tau_R(G))\to (V,\sigma_R(H))$ be a nano closed map and $h:(V,\sigma_R(H))\to (W,\eta_R(I))$ be $Ng^\#\alpha$ -closed mapping then their composition $h\circ f:(U,\tau_R(G))\to (W,\eta_R(I))$ is $Ng^\#\alpha$ -closed mapping.

Proof. Let C be a N-CS in $(U, \tau_R(G))$. Then f(C) is nano closed in $(V, \sigma_R(H))$. Then $h \circ f(C) = h(f(C))$ is $Ng^\#\alpha$ -closed since $h : (V, \sigma_R(H)) \to (W, \eta_R(I))$ is $Ng^\#\alpha$ -closed map. Hence their composition is $Ng^\#\alpha$ -closed mapping. \square

Theorem 3.4. If $f:(U,\tau_R(G))\to (V,\sigma_R(H))$ and $h:(V,\sigma_R(H))\to (W,\eta_R(I))$ be two mappings such that their composition $h\circ f:(U,\tau_R(G))\to (W,\eta_R(I))$ is $Ng^\#\alpha$ -closed mapping. If f is nano continuous and surjective then h is $Ng^\#\alpha$ -closed.

Proof. Let D be a N-CS in $(V, \sigma_R(H))$. Since $f: (U, \tau_R(G)) \to (V, \sigma_R(H))$ is nano continuous, it follows that $f^{-1}(D)$ is nano closed in $(U, \tau_R(G))$. Since $h \circ f: (U, \tau_R(G)) \to (W, \eta_R(I))$ is $Ng^\#\alpha$ -closed mapping, $(h \circ f)[f^{-1}(D)]$ is $Ng^\#\alpha$ -closed in $(W, \eta_R(I))$. i.e., h(D) is $Ng^\#\alpha$ -closed in $(W, \eta_R(I))$ as the function $f: (U, \tau_R(G)) \to (V, \sigma_R(H))$ is surjective. Hence the image of a nano closed set in $(V, \sigma_R(H))$ is $Ng^\#\alpha$ -closed in $(W, \eta_R(I))$. Thus $h: (V, \sigma_R(H)) \to (W, \eta_R(I))$ is $Ng^\#\alpha$ -closed.

Theorem 3.5. Let $(U, \tau_R(G))$ and $(V, \sigma_R(H))$ be any two nts. Let $j : (U, \tau_R(G)) \to (V, \sigma_R(H))$ be nano closed map. Then j is $Ng^\#\alpha$ -closed map but not conversely.

Proof. Let $j:(U,\tau_R(G))\to (V,\sigma_R(H))$ be a nano closed map. Let E be a N-CS in nts $(U,\tau_R(G))$. Then the image under the map j is nano closed in the nts $(V,\sigma_R(H))$. Since every N-CS is $Ng^\#\alpha$ -closed set. j(E) is $Ng^\#\alpha$ -CS. Hence j is $Ng^\#\alpha$ -closed.

The subsequent illustration shows that the reverse implication is not true.

Example 6. In example 3, the set $\{e,g\}$ is $Ng^{\#}\alpha$ -closed map but it is not nano closed map.

4. CONCLUSION

In this article we examined separation axioms of $Ng^{\#}\alpha$ -CS and $Ng^{\#}\alpha$ -homeomorphism. Additionally we analyzed their fundamental properties. In future it makes a difference to apply the concept in mappings and compactness.

REFERENCES

- [1] K. BHUVANESHWARI, K. M. GNANAPRIYA: *Nano Generalizesd Closed Sets*, International Journal of Scientific and Research Publications, **4**(5) (2014), 1-3.
- [2] K. BHUVANESHWARI, K. EZHILARASI: On Nano Semi Generalized and Nano Generalized Semi-Closed Sets, IJMCAR, 4(3) (2014), 117-124.
- [3] K. BHUVANESHWARI, K. EZHILARASI: *Nano Generalized Semi Continuity in Nano Topological Spaces*, International Research Journal of Pure Algebra, **6**(8) (2016), 361-367.
- [4] K. BHUVANESWARI, K. M. GNANAPRIYA: On Nano Generalized Continuous Function in Nano Topological Space, International Journal of Mathematical Archive, **6**(6) (2015), 182-186.
- [5] V. KOKILAVANI, S. VISAGAPRIYA: On Nano $g^{\#}\alpha$ -Closed Sets in Nano Topological Spaces, American International Journal of Research in Science, Technology, Engineering and Mathematics, ICCSPAM **19**(54) (2019), 389-396.
- [6] M. L. THIVAGAR, C. RICHARD: *On Nano Forms of Weakly Open Sets*, International Journal of Mathematics and Statistics Invention, **1**(1) (2013), 31-37.
- [7] R.T. NACHIYAR, K. BHUVANESWARI: Nano Generalized α Continuous and Nano α Generalized Continuous Functions in Nano Topological Spaces, International Journal of Engineering Trends and Technology, **14**(2) (2014), 79-83.
- [8] K. Nono, R. Devi, M. Devipriya, K. Muthukumraswamy, H. Maki: On $g^{\#}\alpha$ Closed Sets and The Digital Plane, Bull. Fukuoka University Ed. Part III, **53** (2004), 15 24.
- [9] Q. H. IMRAN, M. MOHAMMED, M H. HADI: On Nano Generalized Alpha Generalized Closed Sets in Nano Topological Spaces, General Mathematics Notes, **34**(2) (2016), 39–51.
- [10] V. RAJENDRAN, P. SATHISHMOHAN, K. INDIRANI: On Nano Generalized Star Closed Sets in Nano Topological Spaces, International Journal of Applied Research, 1(9) (2015), 4–7.
- [11] V. V. RAJENDRAN, P. SATHISHMOHAN, R. NITHYAKALA: On New Class of Continuous Functions in Nano Topological Spaces, Malaya Journal of Matematik, **6**(2) (2018), 385-389.

- [12] R. T. NACHIYAR, K. BHUVANESWARI: On Nano Generalized A-Closed Sets and Nano A-Generalized Closed Sets in Nano Topological Spaces, International Journal of Engineering Trends and Technology, **6**(13) (2014), 257-260
- [13] M.L. THIVAGAR, C. RICHARD: *On Nano Continuity*, Mathematical Theory and Modeling, **3**(7) (2013), 32-37.

RESEARCH SCHOLAR

DEPARTMENT OF MATHEMATICS

KONGUNADU ARTS AND SCIENCE COLLEGE

COIMBATORE-29, TAMILNADU, INDIA

E-mail address: visagapriya@gmail.com

Assistant Professor

Department of Mathematics

Kongunadu Arts and Science College

Coimbatore-29, Tamilnadu, India