

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1287-1292

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.73 Spec. Issue on ICNTMMA

FUZZY α -TRANSLATIONS AND FUZZY β -MULTIPLICATIONS OF Z-ALGEBRAS

S. SOWMIYA ¹ AND P. JEYALAKSHMI

ABSTRACT. In this article, fuzzy α - translations, fuzzy extensions and fuzzy β -multiplications of fuzzy Z-Subalgebras (fuzzy Z-ideals) of Z-algebras are initiated and some interesting results are proved.

1. Introduction

A new class of algebra that arise from the propositional calculi is the Z-algebra introduced by Chandramouleeswaran et al. [1] in the year 2017. This algebra differs from the BCK, BCI, BF-algebras [2–5] and so on.

Zadeh [9] in the year 1965, introduced the notion of fuzzy sets as the generalization of set theory to deal with the problems of uncertainty under real physical world. Since then many authors fuzzified different algebraic structures. The idea of fuzzy translations and fuzzy multiplications have been discussed by Lee et al. [6]. Similar concept have been discussed in BF-algebras by Chandramouleeswaran et al. [2]. In [7, 8] we have launched the notion of fuzzy Z-Subalgebras and fuzzy Z-ideals respectively. In this paper, we examine fuzzy α -translations and fuzzy β - multiplications of fuzzy Z-subalgebras and fuzzy Z-ideals in Z-algebras.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03B47, 03B52.

2. Preliminaries

Now we collect the necessary definitions from the articles ([1], [7], [8], [9]).

Definition 2.1. [1] A Z-algebra (**Z-algr**) (J, *, 0) is a nonempty set J with constant O and a binary operation * satisfying the following conditions:

- (Z1) u * 0 = 0
- (Z2) 0 * u = u
- (Z3) u * u = u
- (Z4) $u * \omega = \omega * u$ when $u \neq 0$ and $\omega \neq 0 \ \forall \ u, \omega \in J$.

Definition 2.2. [9] A fuzzy set (fy set) A in a set J is defined by a membership function (msfn) $\mu_A: J \to [0,1]$.

Definition 2.3. [7] Let (J,*,0) be a Z-algr. A fy set A in J with $msfn \ \mu_A$ is said to be a fy Z-Subalgebra(fy Z-Salgr) of a Z-algr J if $\mu_A(u*\omega) \geq min\{\mu_A(u), \mu_A(\omega)\} \ \forall \ u, \omega \in J$.

Definition 2.4. [8] Let (J, *, 0) be a Z-algr. A fy set A in J with $msfn \mu_A$ is said to be a fy Z-ideal(fy Z-idl) of a Z-algr J if:

- (i) $\mu_A(0) \ge \mu_A(u)$;
- (ii) $\mu_A(u) \ge \min\{\mu_A(u*\omega), \mu_A(\omega)\} \ \forall \ u, \ \omega \ \text{in } J.$

3. Fuzzy α -Translations and Fuzzy β -Multiplications of Fuzzy Z-Subalgebras (Fuzzy Z-Ideals)

Hereafter, (J,*,0) denotes a Z-algr; and $1-\sup\{\mu_A(u)|u\in J\}$ is denoted by T.

Definition 3.1. Let A be a fy set of a Z-algr J and let $\alpha \in [0,T]$. A fy α - translation (fy α -tlt) A_{α}^{T} of A with msfn $\mu_{A_{\alpha}^{T}}: J \to [0,1]$ is defined by $\mu_{A_{\alpha}^{T}}(u) = \mu_{A}(u) + \alpha$, $\forall u \in J$.

Example 1.

TABLE 1

*	0	s	p	g
0	0	s	p	g
S	0	S	g	p
p	0	g	p	S
g	0	p	s	g

 J
 O
 s
 p
 g

 c_A
 0.8
 0.6
 0.5
 0.5

Table 2

From Table 1, $J = \{0, s, p, g\}$ is a Z-algr. If a fy set A of J is given in Table 2, then $A_{0,1}^T$ is a fy 0.1- tlt of A.

Theorem 3.1. Let A be a fy set of Z-algr J and $\alpha \in [0,T]$. Then the fy α - tlt A_{α}^{T} of A is a fy Z-Salgr of $J \iff A$ is a fy Z-Salgr of J.

Definition 3.2. When A_1 and A_2 are fy sets of Z-algr J, A_2 is called a fy Z-Salgr extension (fy Z-Salgr ext) of A_1 if:

- $(S_1) \ A_2 \ \text{is a fy ext of} \ A_1 \ (\mu_{A_1}(u) \leq \mu_{A_2}(u) \ \forall \ u \in J) \ .$
- (S_1) If A_1 is a fy Z-Salgr of J, then A_2 is a fy Z-Salgr of J.

It follows from the definition of fy α -tlt, $\mu_{A_{\alpha}^T}(u) \geq \mu_A(u) \ \forall u \in J$. This proves the following propositions.

Proposition 3.1. Let A be a fy Z-Salgr of a Z-algr J and $\alpha \in [0,T]$. Then the fy α -tlt A_{α}^{T} of A is a fy Z-Salgr ext of A.

Proposition 3.2. Arbitrary intersection of fy Z-Salgr exts of a fy set A of a Z-algr J is a fy Z-Salgr ext of A.

Definition 3.3. For a fy set A of a Z-algr J, $\alpha \in [0,T]$ and $t \in [0,1]$ with $t \geq \alpha$, we define the upper level subset of A_{α}^{T} as $U_{\alpha}(\mu_{A};t) = \{u \in J | \mu_{A}(u) \geq t - \alpha\}$.

Proposition 3.3. Let A be a fy set of a Z-algr J and $\alpha \in [0, T]$. Then the fy α -tlt A_{α}^{T} of A is a fy Z-Salgr of $J \iff U_{\alpha}(\mu_{A}; t)$ is a Z-Salgr of J, $\forall t \in Im(A)$ with $t \geq \alpha$.

Proposition 3.4. Let A be a fy Z-Salgr of a Z-algr J and $\alpha, \lambda \in [0, T]$. If $\alpha \geq \lambda$, then the fy α -tlt A_{α}^{T} of A is a fy Z-Salgr ext of the fy λ -tlt A_{λ}^{T} of A.

Proposition 3.5. Let A be a fy Z-Salgr of a Z-algr J and $\lambda \in [0,T]$. For every fy Z-Salgr ext B of the fy λ -tlt A_{λ}^{T} of A, $\exists \alpha \in [0,T] \ni \alpha \geq \lambda$ and B is a fy Z-Salgr ext of the fy α -tlt A_{α}^{T} of A.

Definition 3.4. Let A be a fy set of a Z-algr J and $\beta \in (0,1]$. A fy β -multiplication (fy β -mlc) A_{β}^{M} of A with msfn $\mu_{A_{\beta}^{M}}: J \to [0,1]$ is defined by $\mu_{A_{\beta}^{M}}(u) = \beta \cdot \mu_{A}(u) \ \forall u \in J$.

Example 2. Consider a Z-algr $J = \{0, s, p, g\}$ and a fy Z-Salgr A of J as in Example 3.2. Then $A_{0.1}^M$ is a fy 0.1-mlc of A.

Proposition 3.6. If A is a fy Z-Salgr of a Z-algr J, then the fy β -mlc A_{β}^{M} of A is a fy Z-Salgr of J for all $\beta \in [0,1]$.

Proposition 3.7. For any fy set A of Z-algr J, A is a fy Z-Salgr of J iff A^M_{β} is a fy Z-Salgr of J, $\forall \beta \in (0,1]$.

Proposition 3.8. Let A be a fy set of a Z-algr J, $\alpha \in [0,T]$ and $\beta \in (0,1]$. Then every fy α -tlt A_{α}^{T} of A is a fy Z-Salgr ext of the fy β -mlc A_{β}^{M} of A.

Proof. A_{α}^{T} is a fy ext of A_{β}^{M} , since

$$\mu_{A^T_{\alpha}}(u) = \mu_A(u) + \alpha \ge \mu_A(u) \ge \beta \cdot \mu_A(u) = \mu_{A^M_{\beta}}(u) \forall u \in J.$$

If A^M_β is a fy Z-Salgr of J. Then A is a fy Z-Salgr of J by Proposition 3.14. It follows from Theorem 3.3 that A^T_α is a fy Z-Salgr of J $\forall \alpha \in [0,T]$.

Theorem 3.2. Let A be a fy set of Z-algr J and $\alpha \in [0,T]$. Then the fy α -tlt A_{α}^{T} of A is a fy Z-idl of $J \iff A$ is a fy Z-idl of J.

Definition 3.5. When A_1 , A_2 are fy sets of Z-algr J, A_2 is called a **fy Z-idl ext** of A_1 if:

- (I_1) A_2 is a fy ext of A_1 .
- (I_1) If A_1 is a fy Z-idl of J, then A_2 is a fy Z-idl of J.

Proposition 3.9. Let A be a fy Z-idl of a Z-algr J and $\alpha, \gamma \in [0, T]$. If $\alpha \geq \gamma$, then the fy α -tlt A_{α}^{T} of A is a fy Z-idl ext of the fy γ -tlt A_{γ}^{T} of A.

Proposition 3.10. Let A be a fy Z-idl of a Z-algr J and $\gamma \in [0,T]$. For every fy Z-idl ext B of the fy γ -tlt A_{γ}^{T} of A, $\exists \alpha \in [0,T] \ni \alpha \geq \gamma$ and B is a fy Z-idl ext of the fy α -tlt A_{α}^{T} of A.

Proposition 3.11. Let A be a fy Z-idl of a Z-algr J and $\alpha \in [0,T]$. Then the fy α -tlt A_{α}^{T} of A is a fy Z-idl ext of A.

Proposition 3.12. Arbitrary intersection of fy Z-idl ext of a fy Z-idl A of a Z-algr J is also a fy Z-idl ext of A.

Theorem 3.3. For $\alpha \in [0,T]$, let A_{α}^{T} be the fy α -tlt of a fy set A of a Z-algr J. Then A_{α}^{T} is a fy Z-idl of $J \Longleftrightarrow \forall t \in Im(A)$, $t > \alpha \Rightarrow U_{\alpha}(\mu_{A};t)$ is an Z-idl of J.

Proposition 3.13. For any fy set A of a Z-algr J, A is a fy Z-idl of $J \iff \forall \beta \in (0, 1]$, the fy β -mlc A_{β}^{M} of A is a fy Z-idl of J.

Proposition 3.14. Let A be a fy set of a Z-algr J, $\alpha \in [0,T]$ and $\beta \in (0,1]$. Then every fy α -tlc A_{α}^{T} of A is a fy Z-idl ext of the fy β -mlc A_{β}^{M} of A.

4. CONCLUSION

In this article, we have introduced fy α -tlts and fy β -mlcs of Z-algrs and discussed their properties. We extend this concept in our research work.

ACKNOWLEDGMENT

Authors wish to thank **Dr. M. Chandramouleeswaran**, Professor and Head, PG Department of Mathematics, Sri Ramanas College of Arts and Science for Women, Aruppukottai, for his valuable suggestions to improve this paper a successful one.

REFERENCES

- [1] M. CHANDRAMOULEESWARAN, P. MURALIKRISHNA, K. SUJATHA, S. SABARINATHAN: *A note on Z- algebra*, Italian Journal of Pure and Applied Mathematics, **38** (2017), 707–714.
- [2] M. CHANDRAMOULEESWARAN, P. MURALIKRISHNA, S. SABARINATHAN: *Fuzzy Translation and Fuzzy Multiplication in BF/BG-algebras*, Indian Journal of Science and Technology, **6**(9) (2013), 5216–5219.
- [3] Y. IMAI, K. ISEKI: *On axiom systems of propositional calculi XIV*, Proceedings of the Japan Academy, **42** (1966), 19–22.
- [4] K. ISEKI: *On BCI-algebras*, Mathematics Seminar Notes, Kobe University, **8** (1980), 125–130.

- [5] K. ISEKI, S. TANAKA: An introduction to the theory of BCK-algebras, Math. Japonica, **23**(1) (1978), 1–26.
- [6] K. J. LEE, Y. B. JUN, M. I. DOH: Fuzzy Translations and Fuzzy Multiplications of BCK/BCI-algebras, Commun. Korean Math.Soc., **24**(3) (2009), 353–360.
- [7] S. SOWMIYA, P. JEYALAKSHMI: *Fuzzy Algebraic Structure in Z-algebras*, World Journal of Engineering Research and Technology , **5**(4) (2019), 74–88.
- [8] S. SOWMIYA, P. JEYALAKSHMI: *On Fuzzy Z-ideals in Z-algebras*, Global Journal of Pure and Applied Mathematics, **15**(4) (2019), 505–516.
- [9] L. A. ZADEH: Fuzzy Sets, Information and Control, 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS

AVINASHILINGAM INSTITUTE FOR HOME SCIENCE AND HIGHER EDUCATION FOR WOMEN COIMBATORE- 43, TAMIL NADU, INDIA

Email address: vinayagarphd@gmail.com

DEPARTMENT OF MATHEMATICS

AVINASHILINGAM INSTITUTE FOR HOME SCIENCE AND HIGHER EDUCATION FOR WOMEN

COIMBATORE- 43, TAMIL NADU, INDIA

Email address: jeyapalanimaths@gmail.com