

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1359–1365

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.82 Spec. Issue on ICNTMMA

APPLICATIONS OF CUBIC LEVEL SET ON β -SUBALGEBRAS

P. MURALIKRISHNA¹, B. DAVVAZ, R. VINODKUMAR, AND G. PALANI

ABSTRACT. In this paper, the notion of cubic level set on fuzzy β —subalgebras has introduced and investigated few of its related outcomes.

1. Introduction

Neggers et al. [3] initiated the notion of β -algebra where two operations are coupled in such a way to reflect the natural coupling, which exists between the usual group operation and its associated B-algebra. The concept of fuzzy sets has been originated by Zadeh [7], which created a pathway for many researchers. Using a fuzzy set and interval valued fuzzy set, Jun et al. [4] introduced the concept of cubic sets in which the fascinating results have studied. In [6], Vijayabalaji et al. proposed the concept of cubic set theoretical approach to linear space. The thought of interval valued intuitionistic fuzzy β -subalgebras presented by Hemavathi et al. [1,2] and the level sets has extended in interval valued fuzzy β -subalgebra. Recently, Muralikrishna et al. [5] investigated the properties of cubic fuzzy β -subalgebras. This paper deals with the cubic level sets on β -subalgebra and its associated properties.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 08A72, 03E72.

Key words and phrases. β -algebra, Level set, Cubic set, Cubic level set.

2. Preliminaries

This section provides the basic definitions required for this work.

Definition 2.1. [3] $A \beta$ – algebra is a non-empty set X with a constant 0 and two binary operations + and – satisfying the following axioms:

- (i) x 0 = x;
- (ii) (0-x)+x=0;
- (iii) (x y) z = x (z + y) for all $x, y, z \in X$.

Example 1. [5] The following Cayley table shows $(X = \{0, 1, 2, 3\}, +, -, 0)$ is a β -algebra.

+	0	1	2	3
0	0	1	2	3
1	1	3	0	2
2	2	0	3	1
3	3	2	1	0

_	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Definition 2.2. [3] A non empty subset A of a β -algebra (X, +, -, 0) is called a β -subalgebra of X, if (i) $x + y \in A$; (ii) $x - y \in A$ for all $x, y \in A$.

Example 2. In example 1, of β -algebra X, the subset $I = \{0, 2\}$ is a β -subalgebra of X.

Definition 2.3. [2] Let C be a fuzzy set of X and $\alpha \in [0, 1]$. Then $C_{\alpha} = \{x \in X : \zeta(x) \geq \alpha\}$ is known as a level set of C.

Definition 2.4. [4] Let X be a non empty set. By a cubic set in X we mean a structure $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X\}$ in which $\overline{\zeta}_C$ is an interval valued fuzzy set in X and η_C is a fuzzy set in X.

Definition 2.5. [5] Let $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X\}$ be a cubic set in X. Then the set C is a cubic fuzzy β - subalgebra if it satisfies the following conditions

- $\text{(i)} \ \ \overline{\zeta}_C(x+y) \geq rmin\{\overline{\zeta}_C(x),\overline{\zeta}_C(y)\} \ \text{and} \ \overline{\zeta}_C(x-y) \geq rmin\{\overline{\zeta}_C(x),\overline{\zeta}_C(y)\}$
- (ii) $\eta_C(x + y) \le \max\{\eta_C(x), \eta_C(y)\}\$ and $\eta_C(x y) \le \max\{\eta_C(x), \eta_C(y)\}\$ for all $x, y \in X$.

Example 3. [5] For the β -algebra X given in the example 1, we define a cubic set $C = \{\langle x, \overline{\zeta}_C(x), \overline{\eta}_C(x) \rangle : x \in X\}$ on X as follows

$$\overline{\zeta}_C = \begin{cases} [0.3, 0.6]: & x = 0 \\ [0.2, 0.5]: & x = 2 \\ [0.1, 0.4]: & x = 1, 3 \end{cases} \quad \text{and} \quad \eta_C = \begin{cases} 0.7: & x = 0, 1 \\ 0.6: & x = 3 \\ 0.4: & x = 2 \end{cases}$$

Then C is a cubic fuzzy β -sub algebra of X.

3. Cubic Level set on β -subalgebra

This section presents the notions and related results of cubic level set on β —subalgebra.

Definition 3.1. Let $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X \}$ be a cubic set of X. Define $C_{\overline{\alpha},\lambda} = \{x \in X : \overline{\zeta}_C \geq \overline{\alpha}, \eta_C \leq \lambda \}$, where $\overline{\alpha} \in D[0,1]$ and $\lambda \in [0,1]$, called a cubic level set of C.

Theorem 3.1. If $C = \{x, \overline{\zeta}_C(x), \eta_C(x) : x \in X\}$ is a cubic fuzzy β -subalgebra in X, then $C_{\overline{\alpha},\lambda}$ is a β -subalgebra of X, for every $\overline{\alpha} \in D[0,1]$ and $\lambda \in [0,1]$.

Proof. For $x, y \in C_{\overline{\alpha}, \lambda}$ and $\overline{\zeta}_C(x) \geq \overline{\alpha}$ and $\overline{\zeta}_C(y) \geq \overline{\alpha}$, we can write

$$\overline{\zeta}_C(x+y) \geq rmin\{\overline{\zeta}_C(x), \overline{\zeta}_C(y)\} \geq rmin\{\overline{\alpha}, \overline{\alpha}\} \geq \overline{\alpha}.$$

This yields that $x+y\in C_{\overline{\alpha},\lambda}$. Similarly, we obtain $x-y\in C_{\overline{\alpha},\lambda}$. For $x,y\in C_{\overline{\alpha},\lambda}$ and $\eta_C(x)\leq \lambda$ and $\eta_C(y)\leq \lambda$ we have

$$\eta_C(x+y) \le \max\{\eta_C(x), \eta_C(y)\} \le \lambda.$$

This shows that $x+y\in C_{\overline{\alpha},\lambda}$. Similarly, we conclude that $x-y\in C_{\overline{\alpha},\lambda}$, and hence $C_{\overline{\alpha},\lambda}$ is β -subalgebra of X.

Theorem 3.2. Let $C = \{x, \overline{\zeta}_C(x), \eta_C(x) : x \in X\}$ be a cubic set in X such that $C_{\overline{\alpha},\lambda}$ is a β -subalgebra of X for every $\overline{\alpha} \in D[0,1]$ and $\lambda \in [0,1]$. Then C is a cubic fuzzy β -subalgebra of X.

Proof. Let $C=\{x,\overline{\zeta}_C(x),\eta_C(x):x\in X\}$ be a cubic set in X. Since $C_{\overline{\alpha},\lambda}$ is a β -subalgebra of X for $\overline{\alpha}\in D[0,1]$ and $\lambda\in [0,1]$, it follows that x+y and $x-y\in C_{\overline{\alpha},\lambda}$. Now, take $\overline{\alpha}=rmin\{\overline{\zeta}_C(x),\overline{\zeta}_C(y)\}$ and $\lambda=max\{\eta_C(x),\eta_C(y)\}$ then we obtain $x+y\in C_{\overline{\alpha},\lambda}$ this implies that $\overline{\zeta}_C(x+y)\geq \overline{\alpha}$ and $\eta_C(x+y)\leq \lambda$. Also, $x-y\in C_{\overline{\alpha},\lambda}$ which yields that $\overline{\zeta}_C(x-y)\geq \overline{\alpha}$ and $\eta_C(x-y)\leq \lambda$. Therefore,

we conclude that $\overline{\zeta}_C(x+y) \geq rmin\{\overline{\zeta}_C(x),\overline{\zeta}_C(y)\}$. Similarly, we have $\overline{\zeta}_C(x-y) \geq rmin\{\overline{\zeta}_C(x),\overline{\zeta}_C(y)\}$. Also, $\eta_C(x+y) \leq max\{\eta_C(x),\eta_C(y)\}$. Similarly, we have $\eta_C(x-y) \leq max\{\eta_C(x),\eta_C(y)\}$ hence C is a cubic fuzzy β -subalgebra of X.

Theorem 3.3. Any β -subalgebra of X can be realized as a level β -subalgebra of some cubic fuzzy β -subalgebra of X.

Proof. Let C be a cubic fuzzy β -subalgebra of X. Let us define,

$$\overline{\zeta}_C(x) = \begin{cases} \overline{\alpha} & x \in X \\ [0,0], & \text{otherwise} \end{cases} \text{ and } \qquad \eta_C(x) = \begin{cases} \lambda & x \in X \\ 1, & \text{otherwise} \end{cases}$$

Then we discuss the following cases.

Case (i)

Both $x, y \in C$. Then we have

$$\overline{\zeta}_C(x+y) \geq rmin\{\overline{\zeta}_C(x), \overline{\zeta}_C(y)\} \geq rmin\{\overline{\alpha}, \overline{\alpha}\} = \overline{\alpha}.$$

Similarly, we have $\overline{\zeta}_C(x-y) \geq \overline{\alpha}$. Also,

$$\eta_C(x+y) \le \max\{\eta_C(x), \eta_C(y)\} \le \max\{\lambda, \lambda\} = \lambda.$$

In the same way, we have $\eta_C(x-y) \leq \lambda$.

Case (ii)

Both $x, y \notin A$. Now we consider,

$$\overline{\zeta}_C(x+y) \ge rmin\{\overline{\zeta}_C(x), \overline{\zeta}_C(y)\}$$

$$\ge rmin\{[0,0], [0,0]\}$$

$$= [0,0].$$

Similarly, we can write $\overline{\zeta}_C(x-y) \ge [0,0]$. Also, we get

$$\eta_C(x+y) \le \max\{\lambda_C(x), \lambda_C(y)\}$$

$$\le \max\{1, 1\}$$

$$= 1.$$

Analogously, we have $\eta_C(x-y) \leq 1$.

Case (iii)

Let us take $x \in C$ and $y \notin C$. Then we have

$$\overline{\zeta}_C(x+y) \ge rmin\{\overline{\zeta}_C(x), \overline{\zeta}_C(y)\}$$

$$\ge rmin\{\overline{\alpha}, [0, 0]\}$$

$$= [0, 0].$$

Moreover, we have $\overline{\zeta}_C(x-y) \geq [0,0]$.

$$\eta_C(x+y) \le \max\{\eta_C(x), \eta_C(y)\}
\le \max\{\lambda, 1\}
= 1.$$

Similarly, we have $\eta_C(x-y) \leq 1$.

Case (iv)

Let us consider $x \notin C$ and $y \in C$. Then we obtain

$$\overline{\zeta}_C(x+y) \ge rmin\{\overline{\zeta}_C(x), \overline{\zeta}_C(y)\}$$

$$\ge rmin\{[0,0], \overline{\alpha}\}$$

$$= [0,0].$$

In the same manner, we have $\overline{\zeta}_C(x-y) \ge [0,0]$

$$\eta_C(x+y) \le \max\{\eta_C(x), \eta_C(y)\}$$

$$\le \max\{1, \lambda\}$$

$$= 1.$$

Likewise, we have $\eta_C(x-y) \leq 1$. Therefore, C is a cubic fuzzy β -subalgebra of X.

Lemma 3.1. If A and B be two level set of cubic fuzzy β -subalgebra of X, $\overline{\zeta}_A(x) \leq \overline{\zeta}_B(x)$ and $\eta_A(x) \leq \eta_B(x)$ then $A \subseteq B$.

Proof. By definition 2.1, we have $A_{\overline{\alpha}_A,\lambda_A} = \{\langle x, \overline{\zeta}_A(x) \geq \overline{\alpha}_A, \eta_A(x) \leq \lambda_A \rangle\}$ and $B_{\overline{\alpha}_B,\lambda_B} = \{\langle x, \overline{\zeta}_B(x) \geq \overline{\alpha}_B, \eta_B(x) \leq \lambda_B \rangle\}$ where $\overline{\alpha}_A \leq \overline{\alpha}_B$ and $\lambda_A \geq \lambda_B$. If $x \in \overline{\zeta}_B(\overline{\alpha}_B)$ then $\overline{\zeta}_B(x) \geq \overline{\alpha}_B \geq \overline{\alpha}_A$ which implies that $x \in \overline{\zeta}_A(\overline{\alpha}_A)$. Therefore, $\overline{\zeta}_B(x) \geq \overline{\zeta}_A(x)$ and if $x \in \eta_B(\lambda_B)$ then $\eta_B(x) \leq \lambda_B \leq \lambda_A$ which implies that $x \in \eta_A(\lambda_A)$. Therefore, $\eta_B(x) \leq \eta_A(x)$ hence $A \subseteq B$.

Theorem 3.4. Let $C = \{x, \overline{\zeta}_C(x), \eta_C(x) : x \in X\}$ be a cubic fuzzy β -subalgebra of X. If Im(C) is finite $\overline{\alpha}_0 < \overline{\alpha}_1 < ... < \overline{\alpha}_n$ and $\lambda_0 > \lambda_1 > \lambda_2 > ... > \lambda_n$ then any $\overline{\alpha}_i, \overline{\alpha}_j \in Im(\overline{\zeta}_C), \overline{\zeta}_{\alpha_i} = \overline{\zeta}_{\alpha_j}$ implies $\alpha_i = \alpha_j$ and $\lambda_i, \lambda_j \in Im(\eta_C), \eta_{\lambda_i} = \eta_{\lambda_j}$ implies $\lambda_i = \lambda_j$.

Proof. Assume that $\overline{\alpha}_i \neq \overline{\alpha}_j$ and $\lambda_i = \lambda_j$. If $x \in \overline{\zeta}_{\alpha_j}$ then $\overline{\zeta}_C(x) \geq \overline{\alpha}_j > \overline{\alpha}_i$ this implies that $x \in \overline{\zeta}_{\alpha_i}$ there exists $x \in X$ such that $\overline{\alpha}_i \leq \overline{\zeta}(x) < \overline{\alpha}_j$ then $x \in \overline{\zeta}_{\overline{\alpha}_i}$ but $x \in \overline{\zeta}_{\overline{\alpha}_j}$. Moreover, if $x \in \eta_{\lambda_j}$ then $\eta_C(x) \leq \lambda_j \leq \lambda_i \Rightarrow x \in \eta_{\lambda_i}$ there exists $x \in X$ such that $\lambda_i \geq \eta(x) > \lambda_j$ then $x \in \eta_{\lambda_i}$ but $x \in \eta_{\lambda_j}$ therefore $\overline{\zeta}_{\alpha_j} \subset \overline{\zeta}_{\alpha_i}$ and $\overline{\zeta}_{\alpha_j} \neq \overline{\zeta}_{\alpha_i}$ and $\eta_{\lambda_j} \supset \eta_{\lambda_i}$ and $\eta_{\lambda_j} \neq \eta_{\lambda_i}$ which is a contradiction.

Theorem 3.5. Let $C = \{x, \overline{\zeta}_C(x), \eta_C(x) : x \in X\}$ be a cubic fuzzy β -subalgebra of X. Two level subalgebras $C_{\overline{\alpha}_1}$ and $C_{\overline{\alpha}_2}$ (with $\overline{\alpha}_1 < \overline{\alpha}_2$) and C_{λ_1} and C_{λ_2} (with $\lambda_1 < \lambda_2$) of C are equal if and only if there is no $x \in X$ such that $\overline{\alpha}_1 \leq \overline{\zeta}_C(x) < \overline{\alpha}_2$ and $\lambda_1 \geq \eta_C(x) > \lambda_2$.

Proof. Assume that $C_{\overline{\alpha}_1}=C_{\overline{\alpha}_2}$ for $\overline{\alpha}_1<\overline{\alpha}_2$. Then there exists $x\in X$ such that the membership function $\overline{\alpha}_1<\overline{\zeta}_C(x)<\overline{\alpha}_2$ and $\lambda_1>\eta_C(x)>\lambda_2$. Hence $\overline{\zeta}_{\overline{\alpha}_2}$ is proper subset of $\overline{\zeta}_{\overline{\alpha}_1}$ and η_{λ_1} is proper subset of η_{λ_2} which is a contradiction.

Conversely, assume that there is no $x \in X$ such that the membership function $\overline{\alpha}_1 < \overline{\zeta}_C(x) < \overline{\alpha}_2$. Since $\overline{\alpha}_1 < \overline{\alpha}_2$ then $\overline{\zeta}_{\overline{\alpha}_2} \subseteq \overline{\zeta}_{\overline{\alpha}_1}$ and $\lambda_1 > \lambda_2$ then $\eta_{\lambda_1} \supseteq \eta_{\lambda_2}$. If $x \in \overline{\zeta}_{\overline{\alpha}_1}$ then $\overline{\zeta}(x) \ge \overline{\alpha}_1$ and $\overline{\zeta}(x) \ge \overline{\alpha}_2$ because $\overline{\zeta}(x)$ does not lies between $\overline{\alpha}_1$ and $\overline{\alpha}_2$. If $x \in \eta_{\lambda_1}$ then $\eta(x) \le \lambda_1$ and $\eta(x) \le \lambda_2$ because $\eta(x)$ does not lies between λ_1 and λ_2 . Hence $x \in \overline{\zeta}_{\overline{\alpha}_2}$ implies that $\overline{\zeta}_{\overline{\alpha}_1} \subseteq \overline{\zeta}_{\overline{\alpha}_2}$ and $x \in \eta_{\lambda_2}$ which yields that $\eta_{\lambda_1} \supseteq \eta_{\lambda_2}$. Therefore, $\overline{\zeta}_{\overline{\alpha}_1} = \overline{\zeta}_{\overline{\alpha}_2}$ and $\eta_{\lambda_1} = \eta_{\lambda_2}$.

4. Conclusion

In the present work, the concept of levels set is applied into the structure of cubic fuzzy β -subalgebra and examined the related results. In future, this can be explored into several algebraic substructures.

REFERENCES

[1] P. HEMAVATHI, P. MURALIKRISHNA, K. PALANIVEL: On interval valued intuitionistic fuzzy β —Subalgebras, Afrika Matematika, **5** (2018), 249–262.

- [2] P. HEMAVATHI, K. PALANIVEL: Level Sets of $i_v_{fuzzy} \beta$ —-Subalgebras, Advances in Algebra and Analysis, **11** (2019), 13–18.
- [3] J. NEGGERS, K. H. SIK: On β -algebras, Mathematica Slovaca, **52**(5) (2002), 517–530.
- [4] Y. B. Jun, C. S. Kim, K. O. Yang: *Cubic sets*, Annals of Fuzzy Mathematics and Informatics, **4**(1) (2012), 83–98.
- [5] P. MURALIKRISHNA, R.VINODKUMAR, G. PALANI: *Some aspects on cubic fuzzy* β -subalgebras of β -algebra, Journal of Physics: Conference Series- Communicated.
- [6] S. VIJAYABALAJI, S. SIVARAMAKRISHNAN: A Cubic Set Theoretical Approach to Linear Space, Abstract and Applied Analysis, 6 (2015), 1–8.
- [7] L. A. ZADEH: Fuzzy sets, Information and control, 8(3) (1965), 338-353.

DEPARTMENT OF MATHEMATICS

MUTHURANGAM GOVERNMENT ARTS COLLEGE (AUTONOMOUS)

VELLORE - 632 002, TAMILNADU, INDIA

Email address: pmkrishna@rocketmail.com

DEPARTMENT OF MATHEMATICS

YAZD UNIVERSITY

YAZD, IRAN

Email address: davvaz@yazd.ac.ir

DEPARTMENT OF MATHEMATICS

PRATHYUSHA ENGINEERING COLLEGE

THIRUVALLUR-602 025, TAMILNADU, INDIA

Email address: vinodmaths85@gmail.com

DEPARTMENT OF MATHEMATICS

DR. AMBEDKAR GOVERNMENT ARTS COLLEGE

CHENNAI-600 039, TAMILNADU, INDIA

Email address: gpalani32@yahoo.co.in